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ABSTRACT

The core promoter is the region in which RNA poly-
merase II is recruited to the DNA and acts to initiate
transcription, but the extent to which the core
promoter sequence determines promoter activity
levels is largely unknown. Here, we identified
several base content and k-mer sequence features
of the yeast core promoter sequence that are highly
predictive of maximal promoter activity. These
features are mainly located in the region 75 bp
upstream and 50 bp downstream of the main tran-
scription start site, and their associations hold for
both constitutively active promoters and promoters
that are induced or repressed in specific conditions.
Our results unravel several architectural features of
yeast core promoters and suggest that the yeast
core promoter sequence downstream of the TATA
box (or of similar sequences involved in recruitment
of the pre-initiation complex) is a major determinant
of maximal promoter activity. We further show
that human core promoters also contain features
that are indicative of maximal promoter activity;
thus, our results emphasize the important role of
the core promoter sequence in transcriptional
regulation.

INTRODUCTION

The RNA polymerase II (pol-II) core promoter is the
region in which pol-II is recruited to the DNA and acts
to initiate transcription, a process involving the general
transcription factors (GTFs, including the following:
TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH) (1).

The first core promoter element identified was the
TATA box (1), the binding site of TATA binding
protein (TBP; a subunit of TFIID), which is found in all
eukaryotes. Most yeast core promoters do not contain a

consensus TATA box (2). A recent study showed that
almost all yeast promoters contain sequences that differ
from the TATA box consensus by up to 2 bases, and that
TBP is recruited to such sequences, with lesser affinity (3).
In metazoans (e.g. human, drosophila), other core
promoter elements (Inr, DPE, etc.) were identified (4), re-
vealing a variety of core promoter architectures. These
elements are not found in yeast core promoters. In meta-
zoans, as in yeast, most core promoters do not have a
TATA box (4). However, as the TATA box is the best-
known element to which the pre-initiation complex (PIC)
is recruited, much of our knowledge of transcription ini-
tiation is based on TATA box containing core promoters.
A major difference between yeast and metazoan tran-

scription initiation is in transcription start site (TSS)
selection. In metazoans, PIC formation over a TATA
box results in TSS selection 25–30 bp downstream of it,
while in Saccharomyces cerevisiae, selected TSSs are
40–120 bp downstream of the TATA box (1). In both
yeast and metazoans, promoter DNA melting was
shown to occur �20 bp downstream of the TATA box
(5), such that the promoter sequence �30 bp downstream
of the TATA box is at the pol-II active center (6,7).
Another study proposed that following PIC formation,
the yeast pol-II performs a downstream scan of the
melted template strand, searching for TSS sequence
signals (5). This scanning model is supported by
studies showing that TSS locations can be at varying
distances downstream of where the PIC is recruited
(e.g. a TATA box), and depend on the sequence at
these locations (8–13). Various studies also showed that
TFIIB, TFIIF and TFIIH affect TSS selection in a
manner depending on the sequence next to the TSS and
upstream of it (14–17). Suggested yeast TSS consensus
sequences include RRYRR, TCRA (9), YAWR (18) and
A(Arich)5NYAWNN(Arich)6 (19).
Ample evidence suggests that variation of the TATA

box sequence alters promoter activity levels (20–26).
However, the role of downstream yeast core promoter
sequence signals that may affect pol-II scanning and
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TSS selection in determining promoter activity levels is
less explored. One study analyzed a set of 95 S. cerevisiae
promoters and noted that the sequence 30–10 bp upstream
of the TSS was T enriched and A depleted, while the
sequence between 8 bp upstream and 15 bp downstream
of the TSS was T depleted and A enriched (27). They
termed this base content signal the ‘locator’, suggesting
that it may affect TSS localization. They showed that
the ‘locator’ signal was stronger in 51 ‘strong’ promoters
compared with 34 ‘weak’ ones. Their results extend an
earlier study that analyzed 17 S. cerevisiae promoters
and noted the existence of a pyrimidine-rich stretch
ending �10 bp upstream of the TSS in the six high-ex-
pressing promoters (28). Another study demonstrated
the high efficiency of the main TSS of the SNR14 gene,
and quantified to what extent did various mutations
reduce its efficiency, leading to reduction in mRNA pro-
duction (12).
Here, we set out to explore the relation between various

base content and k-mer features of the yeast core
promoter sequence and promoter activity. We found
that several features are indicative of the maximal
promoter activity, both in promoters that are constitu-
tively active as well as in promoters that are induced or
repressed in specific conditions. Most of these features are
located within 75 bp upstream and 50 bp downstream of
the main TSS, and represent core promoter signals that
are downstream of the location to which the PIC is re-
cruited. This suggests that the yeast core promoter
sequence can greatly influence promoter activity by affect-
ing pol-II scanning rate and TSS selection. Extending our
exploration to human constitutive TSSs, we show that in
human, as in yeast, core promoter features are indicative
of maximal promoter activity. Taken together, our results
suggest that the core promoter is an important determin-
ant of promoter activity.

MATERIALS AND METHODS

Intrinsic nucleosome average occupancy predictions

We predicted the intrinsic nucleosome average occupancy
around yeast TSSs using the model published by (29) with
the temperature parameter set to 1 and the nucleosome
scaling (concentration-related parameter) set to 0.5.
Predictions were on 1000 bp flanked sequences around
the TSSs, to avoid sequence edge–related errors.
While in vitro–measured average occupancy is intrinsic,

it is measured with a nucleosome concentration much
lower than in vivo, and therefore does not adequately
reflect the intrinsic average occupancy in vivo. Using the
above parameters, the mean predicted intrinsic average
occupancy over the entire S. cerevisiae genome was
slightly >0.6.

Linear model learning

We chose to learn a linear model for several reasons. First,
linear models are simple and easy to interpret. Second, for
yeast data we have <1K data points, yet an initial set of
>54K features. This requires efficient feature selection to
be performed; otherwise, overfitting the model to the

training data is inevitable. Instead of having to perform
feature selection before model learning, regularized linear
regression algorithms allow to learn relatively sparse
models that can avoid, or at least reduce, overfitting.

Our linear regression algorithm of choice was the elastic
net (30), imposing a combination of L1 and L2 regulariza-
tion terms. The L1 term contributes to sparseness, while
the L2 term contributes to spreading the weight among
multiple covariates. For the purpose of learning an
elastic net from training data, we used the glmnet
software (http://www-stat.stanford.edu/�tibs/glmnet-
matlab/). We chose a mixing ratio of 1:1 between the L1

and the L2 terms (glmnet parameter �=0.5). To enforce
relative sparseness, we limited the number of non-zero
effect sizes to 200 (glmnet parameter dfmax=200). We
say that a feature was included in the model if its effect
size was non-zero.

glmnet uses least angle regression (31) to generate a grid
of solutions on the regularization path of the model coef-
ficients vector, between the 0 model and the non-
regularized model. Each solution on the regularization
path corresponds to a specific value of the regularization
coefficient l, with l monotonically decreasing between the
0 model and the non-regularized model (where l=0). To
select the value of l, we used a 10-fold cross validation
(CV) scheme over the training data. For this purpose, the
training set was randomly partitioned (10 different times)
to an internal training set and a validation set. For each
internal training set, we learned a grid of up to 1000 so-
lutions (glmnet parameter nlambda=1000) on the regu-
larization path, and took the value of l of the solution
that performed best on the held-out validation set
(in terms of the R2 statistic). The final value of l was
taken to be the mean of the 10 selected l values.

RESULTS

Features of the core promoter sequence greatly differ
between S. cerevisiae genes with high and with low
maximal expression

In a recent study performed in our lab (to be published
elsewhere), 859 native S. cerevisiae promoters were
inserted upstream of a YFP reporter gene, and their
promoter activity was accurately measured in 10 different
conditions. Many of these genes were constitutively ex-
pressed in all conditions, and we will refer to them here
as constitutive genes. We will refer to all other genes as
regulated genes, as each of them is further induced or re-
pressed in a subset of the conditions. This first classifica-
tion of genes is related to their mode of regulation. We
alternatively classified the genes based on their maximal
promoter activity. As an approximation to the real
maximal promoter activity (in any possible condition),
we used the maximal measured promoter activity,
denoted by Emax, and classified as follows: low
(Emax< 0.1), medium (0.1�Emax< 0.4), high (0.4�
Emax< 1) and very high (Emax� 1). By definition, this ap-
proximation is more accurate for genes with high Emax

values, and may be less accurate for genes with low Emax

values, as they may be highly expressed in a condition
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other than the 10 examined. In total, we had 729 genes out
of the above 859 that also had their TSS measured by (32)
(see Supplementary Table S1). Applying both of the
above classification criteria, we partitioned these 729
genes into eight subsets: 171 constitutive–low (both con-
stitutive and low), 104 regulated–low, 190 constitutive–
medium, 80 regulated–medium, 122 constitutive–high,
18 regulated–high, 36 constitutive–very high, and 8
regulated–very high.

For each of the above eight gene subsets, we analyzed
base content (of mononucleotides and G+C) and hits of
the TATA box TATAWAWR consensus (2) in the region
between 200 bp upstream and 100 bp downstream of the
main TSS (denoted the [�200, 100] region), as mapped
by (32).

Strikingly, we found that genes with higher Emax values
have core promoter sequences that are significantly
(see rank-sum P-values in Supplementary Figure S1)
more T rich (Figure 1 and Supplementary Figure S1A)
upstream of the main TSS (within the [�70, �10]
region), and alternately more A rich (Figure 1 and
Supplementary Figure S1B) at and downstream of the
main TSS (within the [0, 50] region). A similar result
was shown by (27) for a smaller set of genes (see above).
Here we also show that this signal is highly similar for
both constitutive and regulated genes that have similar
levels of Emax.

Genes with higher Emax values (both constitutive and
regulated) also tend to have significantly lower G\C
content around their main TSS (Figure 1 and
Supplementary Figure S1C). Interestingly, reduced G\C
content around the main TSS of genes with high Emax is
mainly achieved by significantly reduced G content
(Figure 1 and Supplementary Figure S1D) and not C
content (Figure1). G\C content is known to be highly
correlated with intrinsic nucleosome occupancy (33) that
depends only on the DNA sequence and the concentration
of histone proteins. This intrinsic occupancy was shown to
be well predicted by a thermodynamic model learned
based on in vitro nucleosome occupancy data (29). Using
this model, we predicted and computed the mean intrinsic
nucleosome occupancy around the main TSS (see
‘Materials and Methods’ section) for the eight gene sets
defined above, shown in Figure 2A. Indeed, there is simi-
larity between the G\C content tracks (Figure 1) and the
predicted intrinsic nucleosome occupancy tracks, suggest-
ing that lower intrinsic nucleosome occupancy around the
main TSS contributes to higher levels of maximal
promoter activity. This trend is also evident when
examining the mean YPD in vivo nucleosome occupancy
(29) shown in Figure 2B, although for regulated genes,
many of which not induced in YPD (with glucose avail-
able), there are significant differences between the YPD in
vivo and the predicted intrinsic nucleosome occupancies.

Consensus TATA boxes are known to be high-affinity
binding sites of TBP, with one and two mismatches
leading to weaker binding affinities (3). In accord with
(2), when comparing regulated and constitutive genes
that have similar Emax values, we found a higher frequency
of consensus TATA boxes (Figure 1) in core promoters of
regulated genes. Still, for both regulated and constitutive

genes, consensus TATA box frequency is higher in genes
with higher Emax. This is in support of TBP high-affinity
binding contributing to higher expression (26).
These results thus identify several specific core promoter

sequence signals that are predictive and may thus affect
the maximal promoter activity of yeast promoters.

T richness upstream of the main TSS is a predictor of the
maximal promoter activity

We next sought to test the extent to which core promoter
sequence features can predict Emax levels. To this end, we
focused on the T-richness signal upstream of the main TSS
(Figure 1). For each of our sliding windows (20 bp long,
10 bp step) within the [�80, �1] region, we computed per
promoter, the T content to A\T content ratio in that
window, and took the maximum over these windows to
be a T-richness feature value. Taking the T content to A\T
content ratio and not the T content itself normalizes out
differences in A\T content between constitutive and
regulated genes with similar Emax. For each pair of gene
subsets (out of the above eight), we then computed an
AUC score, quantifying the extent to which our
T-richness feature separates between genes of one subset
and the other subset. A score of 0.5 is attained by random,
while a score of 1 represents a perfect separation (classi-
fication). An advantage of reporting AUC scores over
P-values (of rank-sum tests, for instance) is that
P-values are highly sensitive to the sizes of the compared
gene subsets, while the AUC scores are not. The computed
AUC scores are shown in Figure 3 in a triangular color
matrix. Each intersection of a row and a column holds the
AUC score for how well the T-richness feature separates
between the subset at the right of the row and the one at
the head of the column. For each AUC score, we also
tested whether it is significantly different than 0.5
by computing an empirical P-value based on 10 000
random permutations of the feature values. AUC scores
with a non-significant P-value (controlled for allowing a
false discovery rate of 0.05) were marked by ‘x’.
We found two important observations. First, the

T-richness feature does not significantly separate
between gene subset pairs (constitutive versus regulated)
of the same Emax level. Second, in most cases, the
T-richness feature can significantly separate between
gene subsets that have different levels of Emax, and the
measure of separation (AUC) increases as the difference
in Emax levels increases. There are four exceptions to this
rule (constitutive–medium versus Constitutive–low,
regulated–medium versus regulated–low, regulated–high
versus regulated–medium and regulated–very high versus
regulated–high), where separation is weak and not
significant.
Taken together, these results demonstrate that the

T-richness feature defined above is predictive of the Emax

level of a gene.

Prediction of maximal promoter activity from core
promoter sequence features

Encouraged by our above results, we sought to learn a
quantitative model that predicts a gene’s Emax from
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features of its core promoter sequence, with two goals in
mind: to provide a lower bound on how predictive the
core promoter region is of the maximal promoter
activity, and to elucidate core promoter sequence
features that may have a role in determining it.
For each of the 729 genes, we computed a large set of

base content and k-mer (k=1, . . . ,4) counts and existence
features over different windows within the [�200, 50]
region. For each 4-mer feature, we computed another
version of it with up to 1 mismatch of the 4-mer
allowed. Adhering to a 10-fold CV scheme, we defined
10 pairs of training and test gene sets in the following
way: we randomly partitioned the 729 genes into 10
subsets of (about) the same size. Each time we took one
of the 10 subsets to be the test set, while the training set
consisted of all other genes. For each of the 10 training
sets, we first pruned sparse features (that had a support of
<5% of the genes in the training set), and used the

remaining features (>54K) to learn a linear model
that predicts Emax based on a small subset of them (see
‘Materials and Methods’ section). This model was then
used to predict the Emax values of the genes in the respect-
ive test set. Model performance was evaluated by three
measures: the R2 statistic (quantifying the proportion of
variance in the data that is explained by the model), the
Pearson correlation, r, and the Spearman correlation, �.

The mean (over the 10 models) performance measures
are shown in Figure 4A (bar plot). Most importantly, the
mean test R2 is 0.254, indicating that the core promoter
sequence itself can explain at least 25.4% of the variance
in the maximal promoter activity of yeast promoters. The
difference between the mean test Pearson correlation
(0.527) and the mean test Spearman correlation (0.425)
indicates a small bias of the models to better predict
high Emax values. This can be expected in cases such as
ours, where the distribution of response values is greatly

Figure 1. Yeast core promoter sequence signals differ between genes with different maximal promoter activity. Mean nucleotide and TATA box
content, computed using a sliding window (20 bp long, 10 bp step) over the [�200, 100] region around the main TSS (32), for the eight yeast gene
subsets (defined in the main text). Here, the TATA box window content was defined to be the fraction of genes in the subset that had a hit of the
TATA box consensus TATAWAWR (2) within the window (a hit was counted if the first T was in the window). Plots are arranged in a table-like
fashion. Columns are arranged by the genes’ maximal promoter activity level (Emax). The top three rows are for constitutive genes, while the bottom
three rows are for regulated genes. In addition, similar plots were generated for the set of all genes (bottom of the figure). The vertical dashed lines
represent the location of the main TSS. The horizontal dotted lines are to assist with the comparison of plots between columns.
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skewed (Supplementary Figure S3). A comparison of
mean model performance on the training data versus the
test data (Figure 4A, bar plot) shows that there is a degree
of overfitting to the training data. This too is expected, as
each model was learned on a large set (>54K) of features.
We will therefore focus on features that were included in
at least 5 of the 10 models (48 such features), as they are
likely to represent real signals. We term these features,
robust features.

A table detailing the robust features is included in
Figure 4A. For each feature (row) we show its sequence
element (e.g. the 4-mer ‘TTTT’) and the promoter window
(relative to the main TSS) where it was computed.
Notably, most features could be related to one of the
core promoter sequence signals that we discussed above.
Based on that, we partitioned the features to several
classes (class definitions appear in the left column), and
sorted them within each class by their mean effect size
(computed over the 10 models, color coded in the right
column).

Robust features 1–11 (serial numbers appear in the
gray-shaded column) are of T-rich k-mers in windows
within the [�75, �1] region, and have positive effects
(toward higher predicted Emax values), in accord with

our above observations. Notably, most predictive are
T-rich k-mers within the [�20, �11] region, as they are
included in both robust features 1 and 2, and their effect
size is the sum of effects of the two features. Robust
feature 12 is also of a T-rich 4-mer, but at a small
window further upstream.
Robust features 13–19 are of T-less k-mers within the

[�100, �1] region. Robust features 20–22 are of the
maximum A-content to A\T-content ratio, taken over a
sliding window (size 10 bp, step 5 bp), within the [�75,
�16] region. Robust features 13–22 all represent T-poor
elements upstream of the main TSS, and have negative
effects.
Robust features 23–29 likely involve TBP binding

signals, as they include k-mers that are part of the consen-
sus TATA box, up to 1 mismatch (3), and are upstream of
the main TSS. Interestingly, such signals within the 100 bp
upstream of the main TSS (robust features 23–26) have
positive effects, while those further upstream (robust
features 27–29) have negative effects, suggesting that
TBP binding far upstream of the main TSS is less suited
for achieving high promoter activity. This is in accord with
the pol-II scanning model, as TBP binding far upstream of
the main TSS would require longer pol-II scanning, and

Figure 2. Nucleosome occupancy of yeast core promoters differs between genes with different maximal promoter activity. (A) Mean predicted
nucleosome occupancy in the [�200, 100] region around the main TSS, for the eight yeast gene subsets (defined in the main text). Predictions
were made with the model of (29), with parameters that gave a genomic mean nucleosome occupancy of �0.6 (indicated by the dotted horizontal
lines). Plots are arranged in a table-like fashion. Columns are arranged by the genes’ maximal promoter activity level (Emax). The top row is for
constitutive genes, while the bottom row is for regulated genes. The vertical dashed lines represent the location of the main TSS. (B) Mean in vivo
(YPD) normalized nucleosome occupancy (29). Y-axis value of 1 (dotted horizontal lines) represents the genomic mean.
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perhaps even increase the chance of pol-II falling off
before initiation.
Robust features 30–41 are in windows overlapping the

main TSS or slightly downstream of it. These features
have positive effects and include A content (robust
feature 33), as well as A-rich k-mers that also contain
pyrimidines, and capture signals that have some resem-
blance to the TSS motif of (19).
Robust feature 42 is the occurrence of the ‘AATG’

4-mer within the 50 bp downstream of the main TSS,
and has a positive effect. This feature may in fact represent
a translation-related signal, suggesting that a short 50UTR
contributes to higher translation rates (recall that the
promoter activity measures were based on YFP measure-
ments), perhaps in relation with the ribosome scanning of
the mRNA for the first AUG (34). To further assess this

result, we compared 50UTR lengths (32) of four gene
subsets: constitutive–high, constitutive–low, regulated–
high and regulated–low. Figure 5 shows the cumulative
distributions of 50UTR lengths for these four subsets.
For constitutive–high genes alone, 50UTRs were found
to be significantly shorter than those of the other subsets
(rank-sum P-values< 10�5). This suggests that 50UTR
length may indeed have an effect on expression for con-
stitutive genes, but less so for regulated genes. Our result
extends previous results (35,36) that showed that consti-
tutive genes tend to have shorter 50UTRs than other genes.

Robust features 43–48 are of G\C content and of
G\C-rich 4-mers in windows around the main TSS, and
have negative effects, in accord with above observations.

Thus, by using a quantitative modeling approach, our
results demonstrate that core promoter sequence features
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can explain a large fraction of the variance in maximal
promoter activities of held-out genes. We were also able
to suggest specific sequence features in different parts of
the core promoter as having a role in determining the
maximal promoter activity. These features fall into
several classes, as illustrated in Figure 4B.

The effects of the complexity and location of sequence
features on prediction

The linear modeling results reported in the previous
section were based on features of the core promoter
region with sequence complexity ranging from base
content and up to 4-mers. An interesting question that
arises is whether low sequence complexity features
suffice to get similar performance. To test this, we
repeated our linear model learning scheme several times,
starting with only base content features, and gradually
added features of higher sequence complexity, up to
features of 5-mers. The mean (over 10 models) test R2 is
reported in Figure 6A for each sequence complexity
threshold, demonstrating that using base content
features alone can explain (on average) >20% of the
variance in the test data. Still, increasing sequence com-
plexity up to 4-mers further contributed to test perform-
ance, suggesting that higher complexity sequence features
of the core promoter region indeed play an additional
non-redundant role in determining the maximal
promoter activity.
Another interesting question is which regions of the

core promoter are more predictive of the maximal
promoter activity. To shed light on this, we again
repeated our linear model learning scheme multiple
times (using features of up to 4-mers), each time using
only features that fall within a certain window (of length
100 or 50 bp) over the core promoter region. For each
such window, its resulting mean test R2 is shown in
Figure 6B, showing that it suffices to take features

within the [�50, 49] or the [�75, 24] regions to explain
19.4% of the test variance. Indeed, most of the robust
features that were found to have high (absolute) effects
(Figure 4A) were computed over windows that fall
within the [�75, 49] region around the TSS.

Core promoter sequence is also indicative of maximal
promoter activity in human

Our results above show that core promoter sequence is
indicative of maximal promoter activity in yeast. A
natural question that arises is whether these results also
hold for other organisms.

To explore this, we examined mRNA expression data
(37) of 10 human cell lines (GM12878, GM12892, H1-
hESC, HCT116, HeLa-S3, HepG2, HSMM, HUVEC,
K562 and MCF7), available at TSS resolution (for each
gene, an FPKM mRNA abundance measure is reported
for different TSSs, see also Supplementary Information).
For each cell line, there were between two and four repli-
cates of mRNA expression measurements, and for each
TSS we conservatively took the minimum replicate value
as its mRNA expression level. We then chose only TSSs
that were expressed in all cell lines, and were the most
highly expressed out of all other TSSs of the same gene.
This left us with a set of 8025 TSSs that are constitutively
expressed in the above 10 cell lines (see Supplementary
Table S2). We further defined two subsets of these
TSSs, based on their maximal mRNA expression (the
maximal FPKM over the 10 different cell lines): 1035
TSSs with high maximal mRNA expression (maximal
FPKM� 100) and 1218 TSSs with low maximal expres-
sion (maximal FPKM< 5). The high maximal expression
subset is, by definition, a subset of TSSs with high
maximal promoter activity. The low maximal expression
subset is an approximation of a subset with low maximal
promoter activity, as some of its TSSs may be highly ex-
pressed in other cell lines or conditions, or alternatively,
their mRNA products may be strongly downregulated
posttranscriptionally.

Similar to our analysis in yeast (see above), we analyzed
various sequence signals within the [�200, 100] region
around the TSSs, including base content (mononu-
cleotides and G+C), CpG and GpC content, as well as
the percent of TSSs with TATA box hits, or with hits of 6-
mers of the SP1 transcription factor motif consensus (GG
GCGG or its reverse complement CCGCCC). For all of
these sequence signals (Figure 7A) there were significant
differences (see rank-sum P-values in Supplementary
Figure S4) between the set of high maximal expression
TSSs (Figure 7A, left column) and the set of low
maximal expression TSSs (Figure 7A, middle column).

High maximal expression TSSs tend to have signifi-
cantly lower A and T content around the TSS than
low maximal expression TSSs (Supplementary Figure
S4A and B), and, conversely, higher C, G, G\C, GpC
and CpG content around the TSS (Supplementary
Figure S4C–G). While human core promoters are
known to have high G\C, GpC and CpG content
compared with flanking regions (38,39), here we show
that their core promoter content is indicative of the

Figure 5. 50UTR length may affect expression in constitutive genes.
Cumulative distributions of 50UTR lengths (32) for four gene subsets.
50UTRs of constitutive–high genes tend to be shorter than those of the
other three subsets (rank-sum P-values< 10�5).

5576 Nucleic Acids Research, 2013, Vol. 41, No. 11



maximal promoter activity. Accordingly, features of G\C,
GpC and CpG richness around the TSS were found to
significantly separate between the high and the low
maximal expression TSSs, with AUC scores of 0.623,
0.64 and 0.682, respectively (Supplementary Figure S5).
Recently, one study showed that high G\C and CpG
content promote nucleosome depletion in mammalian
promoters, both in vivo and in vitro (40). Thus, higher
G\C and CpG content around the TSS would lower its
nucleosome occupancy, making it more accessible for PIC
formation and hence more highly expressed, in line with
our results. Importantly, our focus here on constitutive
core promoters removes the possibility that the differences
between the high and the low maximal expression TSSs
are due to differences between constitutive and tissue-
specific core promoters (for instance, constitutive human
core promoters are known to be CpG richer (39)).

Among several TF motifs that are known to be enriched
in core promoters of constitutive genes, SP1 motifs are the
most abundant (38). SP1 consensus 6-mers (GGGCGG or
its reverse complement CCGCCC) in the 100 bp upstream
of the TSS are found in 3355 of the 8025 (41.8%) consti-
tutive core promoters, and are significantly depleted in the
low maximal expression subset (found in 304 out of 1218,
25%, P< 10�39), suggesting that their existence may

contribute to higher levels of maximal promoter activity.
Other TF motifs known to be enriched in core promoters
include those of NF-Y (the CAAT-box) and ETS (38).
Similar to the SP1 consensus 6-mers, both NF-Y consen-
sus 5-mers (CCAAT or its reverse complement ATTGG)
and ETS consensus 6-mers (CCGGAA or its reverse com-
plement TTCCGG) occur more around high maximal ex-
pression TSSs than around low maximal expression TSSs
(Supplementary Figure S6).
While 10–24% of human genes were estimated to have a

core promoter containing a TATA box, core promoters of
constitutively expressed human genes were shown to be
mostly TATA-less (41). In line with this, consensus
TATA boxes (TATAWAWR) that are distanced
50–20 bp upstream of the TSS are found in only 60 of
the 8025 constitutive core promoters (0.75%). Albeit the
small numbers, they are significantly enriched in the high
maximal expression subset (found in 29 out of 1035, 2.8%,
P< 10�11), and depleted in the low maximal expression
subset (found in 3 out of 1218, 0.25%, P-value 0.013),
suggesting that the TATA box may contribute to higher
levels of maximal promoter activity, as in yeast (see
above).
While for most of the above sequence elements, the

mean signal of the high maximal expression TSSs
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Figure 6. A comparison of mean test R2 of linear models learned with varying complexity/location constraints on the sequence features. Here, the
same 10-fold cross validated linear model learning scheme, described in the main text and in the Figure 4 legend, was applied. (A) Comparing
the mean test R2 of models with increasing complexity of the sequence features allowed to be used. Using base content features alone can result in
mean test R2 of >0.2, but <0.254, which can only be attained when higher order features (up to 4-mers) are also allowed to be used. (B) Comparing
the mean test R2 of models where the sequence features allowed to be used are constrained to be within different 100 and 50 bp windows (around the
main TSS). Each window is represented by a rectangle over its positions, color coded according to its mean test R2. The highest mean test R2 of 0.194
is attained for features within the [�75, 24] or within the [�50, 49] windows.
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(Figure 7A, left column) seems relatively similar to that of
all constitutive TSSs (Figure 7A, right column), there are
significant differences between the two sets (see Supple-
mentary Figure S4B–E). Most notably, high maximal ex-
pression TSSs tend to have higher C content immediately
upstream of the TSS, and lower G content at and down-
stream of the TSS, compared with the average constitutive
TSS.

Out of the above defined set of 8025 constitutive TSSs,
50 were TSSs of ribosomal proteins (RPs). Human RPs
share a common core promoter architecture (42,43), and
most of them are similarly expressed across tissues (44),
suggesting that they are jointly regulated. Many of the 50
constitutive RP TSSs were very highly expressed, with 46
of them included in the above high maximal expression
TSSs subset. We partitioned these 50 TSSs to the 25 with
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higher maximal expression and the 25 with lower maximal
expression, and compared their mean base content around
the TSS (Figure 7B). Here, too, we found significant dif-
ferences between the two subsets. Most notably, RP TSSs
with higher maximal expression tend to be C richer and G
poorer in the [�10, 9] window around the TSS (rank-sum
P-values 0.02 and 0.032, respectively). Accordingly, C
content in that window separates the higher maximal ex-
pression RP TSSs from the lower ones with an AUC score
of 0.69. Mammalian RP core promoters were shown to
have a polypyrimidine initiator (43). Our results suggest
that the pyrimidine content of this initiator element may
affect its efficiency.

Finally, following the same 10-fold CV linear model
learning scheme as with the yeast data (see above), we
learned 10 linear models that predict the maximal expres-
sion (log of the maximal FPKM measure) of the 8025
constitutive human TSSs from base content and k-mer
features of their core promoters. Mean model perform-
ance measures (R2, Pearson correlation r, Spearman cor-
relation �) and a table detailing 58 robust features (that
were included in at least 9 out of the 10 models) are shown
in Supplementary Figure S7. The linear models could only
explain, on average, 7% of the variation in the maximal
expression of held-out test TSSs (with corresponding test
mean r=0.268 and �=0.238), but consistently so (low
standard deviation between models). The low predictive
power of these linear models is likely due to the great
complexity and diversity of human core promoter archi-
tectures. In accord with the results above, features of CpG
containing k-mers were found to be the most significant
predictors of higher maximal expression, and features of
TATA box, NF-Y, ETS and SP1 consensus k-mers were
also found to contribute to higher maximal expression.

Taken together, our results show that various human
core promoter sequence features are predictive of maximal
promoter activity, suggesting that they likely have a causal
role in their determination.

DISCUSSION

Possible functional roles of different yeast core
promoter features

In this work, we studied the relation between the yeast
core promoter sequence and maximal promoter activity.
Using a linear modeling framework, we were able to high-
light a concise set of yeast core promoter features that may
play a role in determining maximal promoter activity, out
of a large initial set of base content and k-mer features.

The majority of these features are located between 75 bp
upstream and 50 bp downstream of the main TSS, mostly
downstream of TBP binding signals (see Figure 1).
Following our base content analysis shown in Figure 1,
we assigned these features into 3 major classes (Figure 4):
features of T-rich or T-poor elements upstream of the
main TSS, features of TSS-related elements (mostly A
rich) at and downstream of the main TSS and features
of G\C-rich elements around the main TSS.

We showed that core promoters that have high maximal
promoter activity tend to be T rich upstream of the main

TSS and A rich at and downstream of the main TSS
(Figures 1, 3 and 4), and moreover, that this is true for
both constitutive and regulated genes (Figures 1 and 3).
This suggests that the T-richness followed by A-richness
signals do not affect the regulation of PIC recruitment
(that differs between constitutive and regulated genes),
and because they are physically downstream of where
the PIC is formed, they probably represent signals that
affect pol-II scanning and TSS selection. This is in line
with past evidence that pol-II is subjected to additional
rate-limiting steps following its recruitment (45).
High maximal promoter activity core promoters also

tend to have lower G\C content around their main TSS
(Figure 1). Again, this is true for both constitutive and
regulated genes, although they differ in their overall
G\C-content landscape, suggesting that here too the
effect is on pol-II scanning and TSS selection. As G\C
content and the intrinsic nucleosome occupancy are
highly correlated ((33), Figures 1 and 2A), this suggests
that lower intrinsic occupancy of the +1 nucleosome
(Figure 2A) over the TSS contributes to higher maximal
promoter activity.
Two major differences between core promoters of con-

stitutive and regulated genes are evident (Figure 2). First,
constitutive core promoters encode for an intrinsic nucleo-
some-free region (NFR) upstream of their main TSS,
while most regulated core promoters encode for an intrin-
sic NFR at the main TSS. Second, the in vivo nucleosome
occupancy in rich media growth conditions and the intrin-
sic nucleosome occupancy of constitutive core promoters
are highly similar, while for many regulated core pro-
moters (especially with medium and high Emax), they are
not, with their in vivo NFR situated upstream of the TSS.
Recently, one study showed that in yeast cells grown in
rich medium, TSSs of ‘TATA-less’ genes (most of which
are constitutive genes) are tightly located around the 50

edge of the+1 nucleosome, while TSSs of ‘TATA-contain-
ing’ genes (most of which are regulated genes) are more
freely dispersed downstream into the +1 nucleosome
location (3). This study suggested that in the core pro-
moters of ‘TATA-containing’ genes there may be compe-
tition between the PIC and the+1 nucleosome, where the
PIC formation is coupled with +1 nucleosome eviction
that removes an impediment to pol-II scanning. This hy-
pothesis would be more adequate had the+1 nucleosome
occupancy over the TSS been intrinsic (which is often not
the case, as shown in Figure 2). Instead, we suggest the
following explanation. In many of the regulated genes,
repression or downregulation is achieved by remodeling
of the +1 nucleosome, shifting it from its intrinsically
favored location, downstream of the TSS, to a more
upstream location where the TSS is occupied. This mode
of repression was recently demonstrated for genes that are
either repressed on carbon starvation or repressed in rich
medium (and induced on carbon starvation) (46). The
shift of the +1 nucleosome away from its intrinsically
favored location is transient (47), still allowing PIC re-
cruitment at lower rates as the +1 nucleosome shifts
back to its intrinsically favored position, in which the
TSS is not occupied. Such remodeling does not occur in
constitutive genes, and thus, their in vivo nucleosome
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occupancy around the TSS is highly similar to the intrinsic
one. Under such a model of repression by+1 nucleosome
remodeling, the+1 nucleosome is not evicted, and in both
constitutive and regulated genes, the PIC is recruited to
the core promoter when the+1 nucleosome is at its intrin-
sically favored position. Consequently, for both constitu-
tive and regulated genes, lower intrinsic nucleosome
occupancy over the TSS can be expected to result in
fewer impediments on the scanning pol-II and contribute
to higher maximal promoter activity. This is in line with
what we observed.

Is yeast core promoter T richness followed by A richness
a TSS locator signal?

As mentioned above, (27) suggested that yeast core
promoter T richness followed by A richness is a signal
that plays a role in TSS localization, and termed it the
TSS ‘locator’. Because most genes have multiple alterna-
tive TSSs (of varying intensities, see (12) for example), this
suggests that a stronger ‘locator’ signal would lead toward
focused transcription initiation, at one strong TSS, while a
weak ‘locator’ signal would lead toward dispersed tran-
scription initiation, at multiple weak TSSs. To assess this,
we used data of (48) that measured multiple TSS instances
per gene (some instances being different measurements of
the same TSS) for many of the S. cerevisiae genes. Each
measured TSS instance is in fact a sample from the
unknown TSS distribution of the respective gene, and
the number of samples depended on the expression level
of the gene in cells grown in rich media conditions. We
therefore limited our analysis to a comparison of consti-
tutive genes with either high or very high maximal
promoter activity (as above defined), as they are highly
expressed in rich medium. Still, to avoid cases that were

significantly undersampled, we used only genes that had at
least 10 measured TSS instances. This left us with 31 (out
of 36) constitutive–very high genes, and with 77 (out of
122) constitutive–high genes. For each gene we computed
the proportion of TSS instances that were within 20 bp of
the main TSS (the one with most instances), indicating
how focused is transcription initiation of that gene. In
Figure 8, we show the histograms of these values for the
constitutive–very high and for the constitutive–high genes.
It is evident that transcription initiation of constitutive–
very high genes tends to be more focused than that of
constitutive–high genes (rank-sum P-value 0.0077). This
provides some support for the above TSS ‘locator’ hy-
pothesis, as the T-richness followed by A-richness signal
is stronger in constitutive–very high genes (Figure 1).

In this study, we show that core promoter sequence is
predictive of maximal promoter activity, and suggest
various sequence features that play a role in determining
it in yeast as well as in human. Our results also highlight
open questions on how the core promoter sequence affects
promoter activity. In yeast, we do not yet know how the
core promoter sequence determines the TSS distribution
and how this TSS distribution affects promoter activity. In
human, we still do not know the relation between the
multitude of possible configurations of core promoter
elements and promoter activity. We intend to pursue
these questions in future studies.
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