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Introduction

The incidence of melanoma has steadily increased over the past 
50 y in most fair-skinned populations in Europe, especially 
among people living in Nordic countries. Though the survival 
of such melanoma patients has reportedly improved in the last 
decades, the mortality-dependent mortality rate continues to 
rise in Europe.1,2 The prognosis of patients affected by metastatic 
melanoma is poor, with a 5 year survival of approximately 10% 
and a median survival of 6–9 mo.3

Temozolomide (TMZ) is a cytotoxic alkylating agent used in 
the treatment of metastatic melanoma. TMZ is advantageous in 
that it can be administered orally and as it penetrates the blood-
brain barrier. Moreover, TMZ has comparable efficacy to dacar-
bazine (DTIC).4,5 As a standalone intervention against metastatic 
melanoma, TMZ is associated with an objective response rate of 

Therapeutic strategies to deplete lymphocytes, especially regulatory T cells, in cancer patients have been proposed to 
increase the benefits of (immuno)chemotherapy. In this study, we explored the influence of temozolomide (TMZ) on 
different T-cell populations and addressed if the depletion of CD4+ T cells would be associated to the clinical benefits of 
TMZ. Patients were treated with TMZ (150 mg/m2 daily, every two weeks on a 4-week schedule) until disease progression. 
Changes in T-lymphocyte subsets were characterized by flow cytometry. All patients enrolled in this study had 
histologically verified unresectable Stage IV melanoma. Objective responses were induced in 12.5% of the patients, while 
42.5% of them obtained short-term disease stabilization. The median progression-free survival (PFS) of this patient cohort 
was 8.7 mo. Lymphopenia (< 0.7 × 109 cells/L, grade 2) developed in 71% of the patients after 3 treatment cycles (~100 d). 
The development of grade 2 lymphopenia after the 3rd cycle of therapy positively correlated with clinical outcome (p = 
0.01), and was linked, though non-significantly, to prolonged median PFS (303 vs. 200 d). In addition, significant changes in 
CD8+ T-cell subgroups were observed, notably a shift from naïve T cells toward more differentiated memory T cells. Finally, 
we demonstrated that specific CD8+ T-cell responses against selected tumor associated antigens (TAAs) were enhanced 
by the administration of TMZ (p = 0.04), while virus-specific T-cell responses were stable. Thus, immunological monitoring 
in the course of TMZ treatment might become an important tool for clinical guidance in the future.
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4–20%.6–9 In Denmark, TMZ is also used as a systemic therapy 
in selected metastatic melanoma patients.

Different dosing regimens of TMZ have been investigated, 
including (1) five consecutive days of treatment in a 28-d cycle 
(5/28-d schedule), (2) seven consecutive days of treatment alter-
nating with 7 drug-free days (14/28-d schedule), (3) 21 consecu-
tive days of treatment in a 28 d cycle (21/28-d schedule), and 
(4) a 6-week continuous, extended dosing followed by a 2-week 
stop, every 8 weeks (8-week schedule).10 An unexpected high 
incidence of lymphopenia (60%) and occasional opportunistic 
infections have been retrospectively associated with the 8-week 
schedule back in 2004.11 This tendency was confirmed prospec-
tively by Rietschel et al. in 2008.12 In our study, 150 mg/m2 TMZ 
was given as a day 1–7 plus day 15–21 in a 28 d cycle (14/28-d 
schedule), which is the standard dosing for treatment of mela-
noma patients in Denmark.
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2 to 5 mo and one of them had an almost CR in a brain lesion 
(Fig. 1A). All 3 patients undergoing SD for > 6 mo continue 
in the same status, nowadays for more than 16, 21 and 7 mo. 
Median progression-free survival (PFS) was calculated using the 
Kaplain Meier method18 (Fig. 1B). PFS was defined as the time 
intervening between the first dose of TMZ and disease progres-
sion, death (for any cause) or—if neither of these events—data 
were censored at the date of last adequate disease assessment. 
Median PFS was 8.7 mo. The duration of treatment was defined 
as time intervening between the first and the last dose of TMZ. 
The median treatment duration was 3.9 mo (range 3.0–16.6 mo) 
(Fig. 1C).

Immunological assessments. Lymphocyte counts were assessed 
before treatment and after each TMZ cycle. Lymphopenia was 
graded according to the Common Toxicity Criteria for Adverse 
Events (CTCAE). Overall, lymphopenia (< 0.7 × 109 cells/L, 
CTCAE grade 2) developed in 71% of the patients after 3 TMZ 
cycles (~100 d). The lymphocyte reduction was highly significant 
p < 0.001 (Fig. 2).

In 15 patients, the mean frequencies (%) (Fig. 3A–D) and 
absolute counts (cells/μL) (Fig. 4A–D) of CD3+, CD8+, CD4+ 
and Tregs (defined as CD4+,CD25high, CD127−) before and after 
the first and second cycles of TMZ were analyzed. After the first 
TMZ cycle, the frequencies and absolute numbers of CD3+ and 
CD8+ T cells were increased, whereas the frequencies and abso-
lute counts of CD4+ T cells and Tregs decreased. After the second 
TMZ cycle, CD8+ cells kept increasing significantly and CD4+ 
cells kept decreasing significantly. The frequency of Tregs was 
non-significantly increased after the second TMZ cycle, whereas 
the absolute numbers of Tregs were lower after the second TMZ 
cycle than after the first one, though this decrease did not reach 
the threshold for statistical significance (p = 0.2).

Recently, a subpopulation of Tregs that do not express the 
surface marker CD49 was suggested to exert potent immunosup-
pressive effects, hence constituting “true Tregs.”19 Thus, to fur-
ther characterize the Treg population we specifically quantified 
CD49d− Tregs, finding the percentage of CD49d− Tregs before 
TMZ treatment to be 3.9% (range 1.9–7.3%), and after TMZ 
treatment to be 3.6% (range 1.6–7.7%). Our data suggest that 
CD49d− Tregs undergo a small, non-significant decrease, in mel-
anoma patients receiving TMZ (data not shown).

Another highly potent immunosuppressive cell population 
is constitute by myeloid-derived suppressor cells (MDSCs), 
which have been defined as HLA−DR−Lin−(CD3−CD19−CD56−

CD33+CD11b+) cells. MDSCs can be further divided into two 
populations: monocytic MDSCs, which express CD14, and 
granulocytic MDSCs, which express CD15.20 The percentage 
of monocytic and granulocytic MDSCs was not altered in our 
patient cohort by the administration of TMZ (data not shown).

T-cell alterations correlate to clinical response. Thirty-
four patients were evaluable for the precise characterization of 
lymphopenia (i.e., they did not receive prednisone) as well as 
for clinical responses (by CT scans) after 3rd cycles of TMZ 
(Fig. 5A). We found a significant positive correlation between 
lymphocyte reduction and response to treatment (p = 0.01, Fisher 
exact test). After 3 cycles of TMZ, two patients subgroups, that 

Regulatory T cells (Tregs) are known to participate in the sup-
pression of antitumor immune responses as mediated by multiple 
mechanisms.13 Increased levels of Tregs in both the peripheral 
blood and the tumor microenvironment have been shown to 
negatively correlate with clinical outcome in patients affected by 
a variety of neoplasms. Thus, Tregs seem to be a major obstacle 
against the success of immunotherapy, and recent data suggest 
that Treg-eliminating strategies might constitute an important 
therapeutic tool.14 Recently, Rosenberg et al. have demonstrated 
that the addition of lymphodepleting cytotoxic regimens to adop-
tive T-cell transfer lead to impressive clinical responses in mela-
noma patients.15 TMZ-induced CD4+ lymphopenia might also 
be advantageous if the depletion mainly involve Tregs. This study 
was designed to address how 150 mg/m2 TMZ given in a 14/28 
d schedule affects the circulating levels of different T-cell subsets. 
We assessed changes in frequency and absolute counts of different 
T-cell subsets, i.e., CD3+ cells, CD4+ cells, Tregs, CD49d− Tregs, 
CD8+ cells and various CD8+ cell memory subsets including 
central memory (Tcm), CD45RA− effector memory (Tem), 
CD45RA+ effector memory (Temra) T cells, and of immunosup-
pressive myeloid-derived suppressor cells (MDSC), and evaluated 
if these changes were associated with clinical responses to TMZ 
treatment. Moreover, we detected CD8+ T-cell responses specific 
for viral antigens and melanoma-associated antigens in patients 
before and after TMZ therapy.

Results

Demographics. Forty patients with metastatic melanoma were 
enrolled in this prospective study. All patients received at least 
3 cycles of TMZ and were evaluated for clinical responses using 
CT scans. Among these 40 patients, 6 patients were excluded 
from immunological assessments due to concomitant treatment 
with prednisone. The study population, including 3 patients with 
uveal melanoma, was constituted of 19 women and 21 men with a 
median age of 67 y (range 39–85 y). TMZ treatment represented 
the first line systemic regimen in 73% of the patients. Patients 
were not eligible for other first line systemic treatments due to 
age (54%), brain metastases (38%) or co-morbidity (8%). Thus, 
only 6 patients had formerly been treated with high dose interleu-
kin-2/interferon α (IL-2/IFNα) (decrescendo regimen).16,17 All 
patients had metastatic Stage IV disease, (M1a = 2, M1b = 9 and 
M1c = 29 patients), and the average number of completed TMZ 
cycles were 5.3 (range 3–13 cycles).

Clinical efficacy and overall survival time. The overall objec-
tive response rate in this study was 12.5%. Complete responses 
(CRs) were obtained in 2/40 patients and partial responses (PRs) 
in 3/40 patients. Disease stabilization (SD) for 3 mo was observed 
in 14/40 (35%) patients and SD for 6 mo in 3/40 (7.5%) patients. 
The rate of clinical benefit, defined as CR or PR or SD for at least 
6 mo was 8/40 (20%), whereas disease progression (PD) at first 
evaluation was observed in 18/40 (45%) of the patients.

One patient manifesting a CR developed hemolytic anemia, 
severe lung infection and died shortly thereafter; whereas the 
other patient developing a CR has never evolved since, nowadays 
more than 18 mo. Three patients manifested PRs lasting from 
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we investigated the repertoire of distinct populations of CD8+ 
T lymphocytes, including naïve T cells as well as antigen-expe-
rienced Tcm, Tem and Temra, as described by Sallusto et al.21 
The frequencies of CD8+ naïve, Tcm, Tem, Temra T cells were 
measured in the course of TMZ treatment (n = 15). We found 
a significant decrease in the frequency of CD8+ naïve T cells 
(p = 0.05), and a significant increase in the frequency of the dif-
ferentiated CD8+ T cells (i.e., CD8+ Tcm plus Tem plus Temra T 
cells; p = 0.02) after 2 cycles of TMZ (Fig. 6B and C).

We then analyzed CD8+ T-cell immune responses in mela-
noma patients before and after chemotherapy, focusing on a panel 
of 27 peptides that have recently been described as targets for mel-
anoma infiltrating lymphocytes.22,23 Peptides were selected from 
a library of previously described melanoma-associated antigens, 
including overexpressed, differentiation-associated and cancer-
testis antigens presented on HLA-A1, HLA-A2, HLA-A3 and 
HLA-B7.23 We also included a number of viral epitopes, to moni-
tor the general status of the immune system. To screen the reac-
tivity against these peptides using minimal amounts of patient 
material, we took advantage of the recently described technique 
for the combinatorial encoding of specific T-cells by fluorescent 

is, lymphocyte responders (defined as individuals with lym-
phocyte counts ≤ 0.7 × 109 cells/L; n = 23 patients) and lym-
phocyte non-responders (defined as subjects with lymphocyte 
counts > 0.7 × 109 cells/L; n = 11 patients), showed a non-signifi-
cantly (p = 0.2, Log-rank test) different median PFS (lymphocyte 
responders vs. non-responders 303 vs. 200 d (7 mo) (Fig. 5B).

To evaluate the impact of Tregs, we compared the Treg/CD4+ 
T-cell ratio in clinical responders (CR+PR+SD) and non-
responders (PD). In responders the pre-treatment ratio was 0.02, 
after the first cycle 0.03, and after the second cycle 0.04, whereas 
the ratio of non-responders remained stable at 0.02 throughout 
TMZ cycles, suggesting perhaps that Tregs decrease in clinical 
responders. To characterize if clinical responders had a supe-
rior CD8+ T-cell profile than non-responders, the CD8+/CD4+ 
T-cell ratio was calculated during the first 2 cycles of TMZ. The 
CD8+/CD4+ T-cell ratio in clinical responders before treatment 
was 1.7, after the first cycle 2.9, and after the second cycle 5.22, 
whereas non-responders displayed a CD8+/CD4+ T-cell ratio 
before TMZ of 2.15, after the first cycle of 2.35 and after the 
second cycle of 3.16, indicating a comparatively stronger CD8+ 
T-cell profile among clinical responders (Fig. 6A). In addition, 

Figure 1. Clinical efficacy and overall survival of melanoma patients treated with temolozomide. (A) Magnetic resonance imaging (MRI) scans from a 
patient undergoing a partial response and demonstrating an almost complete response in a brain lesion after 6 mo of temolozomide (TMZ) treat-
ment. (B) Kaplan-Meier plot of progression-free survival (PFS) for all patients included in this study (n = 40). Median PFS was 260 d. PFS was defined as 
the time intervening between the first dose of TMZ until disease progression or death from any cause. When no progression or death occurred, data 
were censored at the date of last adequate disease assessment. (C) Duration of TMZ treatment for all enrolled patients. The duration of treatment was 
defined as time intervening between the first and the last dose of TMZ. The mean treatment duration was 173 d (95% CI = 135.4–210.3), corresponding 
to ~5 cycles of TMZ treatment.
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as a result of CD4+ T-cell depletion, whereas the CD8+ T-cell 
population seems relatively less affected by TMZ.12

Here, we have demonstrated a statistically significant reduc-
tion of T lymphocytes in melanoma patients after 3 cycles 
of TMZ, which is in concordance with the hypothesis of 
the study. Moreover, we have shown that the development of 
≥ Grade 2 lymphopenia after the 3rd TMZ cycle positively cor-
relates with clinical response. Recently, we have shown a similar 
correlation between lymphopenia and clinical outcome in Stage 
IV melanoma patients receiving both TMZ and thalidomide.25 In 
the present study, we have also shown that PFS is not correlated 
with treatment-dependent lymphopenia (< 0.7 × 109 cells/L).

It is generally accepted that Tregs influence oncogenesis and 
tumor progression, and that the host immune system plays a 
critical role in therapeutic responses. Treg-depleting strategies 
to achieve potent anticancer immune responses with therapeu-
tic impact have been investigated by other groups. Targeting 
CD25 with denileukin has resulted in the partial depletion 
of circulating Tregs, resulting in an improved stimulation of 
tumor-specific T cells.26 Rasku et al. have found that denileu-
kin breaks peripheral tolerance and allow for the expansion of 
the effector T cells.27 Golovina et al. have studied the clinical 
use of the anti-CD25 antibody daclizumab and demonstrated 
that Tregs are efficiently eliminated by this approach, suggesting 
that daclizumab might also be effective in modulating Tregs.28 
In our study, we focused on both the frequency and absolute 
abundance of Tregs and CD4+ T lymphocytes during TMZ 
treatment. We found decreasing levels of both CD4+ T cells and 
Tregs after the first cycle of therapy. However, after the second 
cycle the absolute counts of Tregs kept decreasing whereas their 
frequency had increased. This increase in frequency may be due 
to a global depletion of CD4+ T cells or to the re-expansion/re-
trafficking of T cells from lymph nodes, as recently suggested by 
Rasku et al.27 Surprisingly, even though a general depletion of 
CD4+ T cells and Tregs occurred, we found a Treg/CD4+ T-cell 
ratio favoring Tregs in clinical responders to TMZ therapy, 
which was not seen among non-responders.

Kleinewietfield et al. have shown how anti-CD49d anti-
bodies can be an important tool in defining “true Tregs,” as it 
allows for the removal of CD49d+CD127+ cells to effector cells 
from Tregs.19 We have previously shown that Tregs with proven 
inhibitory function can be determined by CD49d expression on 
the cells surface.29 In the present study, we performed a similar 
CD49d staining, which revealed only a marginal decline of this 
Treg population in the course of TMZ treatment.

Furthermore, we found increasing levels of CD8+ T cells. This 
suggests that the CD8+ T-cell population might be able to expand 
even though CD4+ cells are reduced. Importantly, we observed 
that the CD8+/CD4+ T-cell ratio was higher among clinical 
responders than in non-responders, suggesting that a better CD8+ 
T-cell profile might be advantageous for therapeutic responses. In 
this context, the depletion of T cells bearing a non-specific T-cell 
receptor (TCR) might generate space for development of a better-
primed T-cell population bearing tumor-specific TCRs.27

To further investigate if a tumor-specific immune response 
was induced in the course of TMZ treatment, we analyzed the 

MHC multimers22,24 (Fig. 7A and B). In 7 patients, MHC 
multimer staining was performed to investigate if CD8+ T-cell 
responses against the selected peptides were influenced by TMZ. 
The majority of the patients analyzed (6/7) expressed HLA-A2 
molecules, constituting the restriction element for most selected 
peptides (Fig. 7A). In 5/7 patients, we demonstrated significantly 
enhanced T-cell responses against different TAAs (p = 0.04), 
whereas in the remaining 2 patients no responses against TAAs 
were detected. In 5/7 patients, we also demonstrated preserved 
T-cell responses against selected viral epitopes after TMZ treat-
ment (Fig. 7B–D). There was no correlation between the capa-
bility of patient material from these 7 individuals to recognize 
TAAs and clinical outcome.

Discussion

To improve the selection of patients that are likely to respond 
to therapy as well as to combine and develop new therapeutic 
approaches against melanoma, it is important to identify rele-
vant biomarkers. In this sense, we estimated of value assessing 
T-cell subpopulations in the course of cytotoxic TMZ treatment. 
We have formerly shown that the levels of Tregs are lowered in 
patients receiving TMZ before entering an experimental den-
dritic cell-based vaccine protocol. In the present study, we have 
determined changes in the frequency and absolute abundance 
of different T-cell subsets in the peripheral blood of melanoma 
patients treated with TMZ (Danish standard doses) and com-
pared these changes to clinical response.

Previously, it has been shown that TMZ given as a continuous 
dosing (8-week schedule) induces lymphopenia.11,12 Rietschel et 
al. found that 75% of these patients develop lymphopenia after 
the 3rd cycle of TMZ, and that the incidence of lymphopenia 
increases with additional cycles. The same authors also reported 
that TMZ induces a steady decline of total CD3+ cells, mainly 

Figure 2. Lymphopenia induced by temolozomide in melanoma pa-
tients. Lymphocyte counts on freshly drawn blood samples (as assessed 
by flow cytometry) before the administration of temolozomide (TMD) 
and after the first, second and 3rd cycles of chemotherapy. **p < 0.01; 
***p < 0.001 (paired Student’s t-test).
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for using a marker of cell death when performing T-cell assays. 
Rasku et al. have also observed that the CD4+ T-cell population 
is more fragile than CD8+ T cells.27

We also investigated the repertoire of antigen-naïve CD8+ 
T cells as well as of distinct populations of antigen-experienced 
CD8+ T lymphocytes, including Tcm, Tem and Temra. We dem-
onstrated a significant decrease of naïve CD8+ T cells along with 
a significant increase of differentiated CD8+ T cells (Temra plus 
Tcm plus Tem) after 2 cycles of TMZ, that is, a rise in the mature 
CD8+ compartment at the expenses of naïve CD8+ cells. It is 
well known that anti-melanoma CD8+ T cells are primed against 
cancer during oncogenesis and disease progression. Hence, an 
increase in these CD8+ cell populations might be critical for ther-
apeutic responses. The naïve CD8+/differentiated CD8+ T-cell 
ratio was similarly reduced in the course of treatment in both 
clinical responders and non-responders. In our experience, the 
profile of CD8+ memory cells during TMZ treatment has not yet 
been investigated by others, and additional insights into memory 
cell subsets, including information on their antigen specificity, is 
needed to elucidate the importance of our data.

Another cell population that influence the therapeutic response 
of cancer patients, due to their potent immunosuppressive activ-
ity, is constituted by MDSCs. Solito et al. have demonstrated that 

capacity of patient material to recognize a library of TAAs-derived 
peptides that are known to be recognized by melanoma-infiltrat-
ing lymphocytes.23,30 In 7 patients, we assessed TAA-specific 
T-cell populations by MHC multimer combinatorial encoding. 
We found that CD8+ T-cell responses against TAAs are signifi-
cantly enhanced post TMZ, whereas virus-targeting CD8+ T-cell 
responses were stable, suggesting that the chemotherapy-induced 
killing of cancer cells might release TAAs that can be presented 
by antigen-presenting cells and hence elicit significant T-cell 
responses. As suggested by Galluzzi et al.,31 classical cytotoxic 
agents may stimulate tumor-specific immune responses by induc-
ing immunogenic cell death, a peculiar form of apoptosis involv-
ing the release of ATP and activating numerous immune effector 
mechanisms. This lends support to the idea of combining TMZ 
with anticancer vaccine strategies.

In general, we found that the absolute lymphocyte counts in our 
patients were rather low, probably due to their age (mean = 67 y). 
In line with this notion, Rech et al. found that absolute lympho-
cyte and CD4+ T-cell counts are low (< 200 cells/μL) in cancer 
patients treated with adjuvant chemotherapy or having meta-
static disease as compared with healthy donors.32 We found that 
the CD4+ T-cell population is more vulnerable to freezing/thaw-
ing procedures than its CD8+ counterpart, emphasizing the need 

Figure 3. Alterations of the frequency T-cell subsets as induced by temolozomide in melanoma patients. (A–D) Frequency of T cell subpopulations 
on frozen/thawed peripheral blood mononuclear cells (PBMCs, as assessed by flow cytometry) before the administration of temolozomide (TMD) and 
after the first and second cycles of chemotherapy: *p < 0.05; NS = non-significant (paired Student’s t-test).
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those who benefit the most from immunotherapy.4 This suggests 
that TMZ treatment may be suitable for combination with other 
immunotherapies, e.g., melanoma antigen-specific vaccines. Kyte 
et al. have reported that the administration of TMZ together with 
hTERT-derived peptide vaccine resulted in one long-term survi-
vor (> 5 y, PET-CT scan negative).36 At our institution, we have 
set up a new clinical trial to investigate the combination of TMZ 
and a peptide vaccine in melanoma patients (NCT01543464).

TMZ has been shown to exert clinical efficacy in patients 
affected by aggressive tumors such as Stage IV melanoma. 
Here, we demonstrated that ≥ Grade 2 lymphodepletion after 
the 3rd TMZ cycle correlates with treatment response and that 
median PFS does not change significantly between lymphocyte 
responders and non-responders. In clinical responders, TMZ 
induced a significant increase in CD8+ T-cell memory subsets 
along with a drop in naïve T cells and a beneficial CD8+ T-cell 
profile. Furthermore, we proved that CD8+ T-cell responses spe-
cific for selected viral antigens and TAAs were preserved or even 
enhanced after TMZ treatment. Though these data need valida-
tion, our study indicates that the modulation of specific differen-
tiated T-lymphocyte subsets could be important for the clinical 
efficacy of systemic chemotherapies. However, further studies are 
required to elucidate if CD4+ T-cell depletion in general provides 
clinical benefits to melanoma patients.

increased circulating levels of MDSCs correlate with worsened 
prognosis in patients affected by colorectal cancer,20 though an 
unambiguous phenotype of MDSCs exerting immunosuppres-
sive functions is intensively discussed. A recent review of murine 
and human MDSCs suggests that MDSCs mainly consist of a 
monocytic population characterized by the expression of CD14 
but not CD15.33 Finkelstein et al. have investigated the influ-
ence of MDSCs in renal cell carcinoma and melanoma patients 
treated with high-dose IL-2, finding increased levels of MDSCs 
after treatment even in patients with the most favorable clinical 
outcome.34 In our study, we observed that the levels of monocytic 
and granulocytic MDSCs are unaffected in metastatic melanoma 
patients receiving TMZ.

The clinical efficacy of TMZ in our cohort (PFS = 8.7 mo 
and objective RR = 12.5%) was in accordance with previous stud-
ies in similar clinical settings.12,35 One patient still manifests an 
ongoing CR, nowadays for more than 18 mo, and all 3 patients 
exhibiting SD for more than 6 mo have not yet progressed, nowa-
days exhibiting SD for more than 16, 21 and 7 mo. CRs in Stage 
IV melanoma patients treated with TMZ/DTIC do occur and 
are occasionally durable, though very infrequent.11,12 Long-term 
survival after TMZ/DTIC treatment not always is induced by 
chemotherapy, but rather can results from host factors or from an 
indolent disease. Presumably, patients bearing indolent disease are 

Figure 4. Alterations of the absolute abundance of T-cell subsets as induced by temolozomide in melanoma patients. (A–D) Absolute T-cell counts 
on frozen/thawed peripheral blood mononuclear cells (PBMCs, as assessed by flow cytometry) before the administration of temolozomide (TMD) and 
after the first and second cycles of chemotherapy. *p < 0.05; NS = non-significant (paired Student’s t-test).
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according to RECIST v. 1.0, and a World Health Organisation 
(WHO) performance status of 0–2. Patients were treated daily 
with 150 mg/m2 TMZ for 7 d every second week in 4-week cycles 
until unacceptable toxicity, progression of disease or patients 
wish. Peripheral blood samples of 30 mL were collected prospec-
tively before the initiation of the treatment and after the first and 
second TMZ cycle. The protocol was approved by the Ethics 

Material and Methods

Patients and blood samples. Patients with Stage IV metastatic 
melanoma planned for TMZ therapy were eligible. All included 
patients fulfilled the following criteria: ≥ 18 y of age, histologi-
cal confirmation of unresectable American Joint Committee on 
Cancer (AJCC) Stage IV melanoma with progressive disease 

Figure 5. Correlation between temolozomide-induced lymphopenia 
and clinical parameters. (A) Correlation between the grade of lym-
phopenia (as determined on freshly drawned blood samples) and the 
response of n = 34 melanoma patients to 3 cycles of temolozomide 
(TMZ). p = 0.01 (Fischer’s exact test). Lymphocyte counts were done 
directly on. (B) Progression-free survival (PFS) of lymphocyte respond-
ers (defined as individuals with lymphocyte counts ≤ 0.7 × 109 cells/L, 
n = 23) and lymphocyte non-responders (defined as individuals with 
lymphocyte counts > 0.7 × 109 cells/L, n = 11). The Kaplan-Meier esti-
mate demonstrates a non-significantly (p = 0.2, Log-Rank test) prolon-
gation in median PFS in lymphocyte responders (303 d) vs. lymphocyte 
non-responders (200 d).

Figure 6 (right). CD8+ T-cell subsets in melanoma patients respond-
ing or not to temolozomide. (A) CD8+/CD4+ T-cell ratio (as assessed by 
flow cytometry) before the administration of temolozomide (TMD) and 
after the first and second cycles of chemotherapy to clinical respond-
ers, exhibiting either complete response (CR), either partial response 
(PR) or stable disease (SD), and clinical non-responders, exhibiting 
progressive disease (PD). (B) Frequency of naïve CD8+ T cells (as as-
sessed by flow cytometry) before the administration of temolozomide 
(TMD) and after the first and second cycles of chemotherapy. *p < 0.05; 
NS = non-significant (paired Student’s t-test). (C) Frequency of dif-
ferentiated CD8+ T cell (Tcm plus Tem plus Terma) (as assessed by flow 
cytometry) before the administration of temolozomide (TMD) and after 
the first and second cycles of chemotherapy. *p = 0.02; NS = non-signifi-
cant (paired Student’s t-test).
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to the Lymphoprep technique. Isolated cells were frozen imme-
diately with 10% DMSO and 90% humanised AB-serum and 
stored at -140°C.

CD4+/Treg assays. PBMCs were thawed and stained for cyto-
fluorometric analyzis with a FACSCanto II cytometer (BD bio-
science). Briefly, PBMCs were thawed and incubated with mouse 
serum (Invitrogen) followed by labeling with the following 
fluorochrome–conjugated antibodies or relevant isotype (sur-
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was conducted in accordance with the Helsinki Declaration of 
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Figure 7. Tumor-associated antigen- and viral antigen-specific T-cell responses in melanoma patients receiving temolozomide. (A) Peptide panel 
used for screening T-cell responses in patients with tissue types HLA-A1, A2, A3 and B7. (B) Responses to viral and tumor-associated antigens evalu-
ated before and after temolozomide (TMD) chemotherapy in n = 7 melanoma patients. (C) Examples of pre and post-chemotherapy T-cell responses 
in-patient 05, as detected by flow cytometry with MHC multimers. CD8+ T-cell responses were gated on living single CD8+ T cells (mean number of 
CD8+ cells for all experiments = 73,655; range = 8056–238,576). MHC multimer positive populations are depicted in blue, from the top recognizing 
(1) Gp100(VLY), labeled by PE and Q655, (2) MelanA/Mart1, labeled by Q585 and Q605 and (3) CMV13, labeled by Q605 and Pe-Cy7. (D) Viral antigen- 
and tumor antigen-specific responses pre- and post-TMZ chemotherapy. *p = 0.04; NS = non-significant (paired Student’s t-test). The dotted line 
represents the detection limit = 0.002% CD8+ T cells.
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