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Working memory (WM) is the system responsible for maintaining and manipulating
information, in the face of ongoing distraction. In turn, WM span is perceived to
be an individual-differences construct reflecting the limited capacity of this system.
Recently, however, there has been some evidence to suggest that WM capacity can
increase through training, raising the possibility that training can functionally alter the
neural structures supporting WM. To address the hypothesis that the neural substrates
underlying WM are targeted by training, we conducted a meta-analysis of functional
magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood
Estimation (ALE). Our results demonstrate that WM training is associated exclusively with
decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the
fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA
39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering
on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological
mechanisms that could be responsible for the observed reductions in the BOLD signal
in relation to WM training, and consider their implications for the construct of WM span
as a limited resource.
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INTRODUCTION

Working memory (WM) is defined as “a multicomponent system
for active maintenance of information in the face of ongoing
processing and/or distraction” (Conway et al., 2005, p. 770).
Most classic accounts of WM have conceptualized this system
to be limited in capacity, reflecting the underlying notion that
it represents a limited resource (e.g., Miller, 1956; Cowan, 2001;
for a review, see Baddeley, 2003). Broadly speaking, a processing
resource can be defined as “something that exists in limited
supply and is responsible for the enhancing or enabling of
certain cognitive processes” (Salthouse, 1990, p. 102). Within
the construct of WM, capacity reflects individual differences
in the limit of this system, indicating that people can process
only a certain amount of content at any given time. Examining
why WM capacity is limited remains an active area of research,
with candidate processes (to be described further, below)
including temporal decay, limitations in cognitive resources and
mutual interference of WM representations, among others (see
Oberauer et al., 2016).

In contrast to accounts which consider WM to be a resource-
limited system which is only able to store and process a
small, fixed number of items, some contemporary views have
emphasized the flexibility with which information can be
maintained and manipulated in WM. For example, Ma et al.
(2014) reviewed a large body of behavioral and neuroimaging
data to argue for alternative resource models that do not invoke
a fixed limit on how many items can be stored in short-term
memory (e.g., magical number 4, or magical number 7—plus or
minus 2, etc.), but instead emphasize that WM capacity depends
on the quality or precision with which items are processed.
Such flexible resource models of WM assume that the internal
representations of sensory stimuli are inherently noisy, and
that this noise increases as the number of to-be-remembered
items increases in memory (see Palmer, 1990; Wilken and Ma,
2004; Bays and Husain, 2008). In turn, the extent to which any
given item is recalled with precision depends on the quantity
of resources devoted to processing it: As this quantity increases,
there is a corresponding decrease in the noise associated with
the item in memory, and increased likelihood of precise recall.
Consistent with such accounts, it has been shown that there is less
precision in the recall of items from memory as the number of to-
be-remembered items increases, and increased precision in recall
as their salience or goal-relevance increases (Gorgoraptis et al.,
2011). The upshot of this contemporary work is that even when
resources are limited, there can be flexibility in their allocation as
a function of context and goals, which can in turn impact quality
as well as quantity of recall.

Behavioral Effects of Working Memory
Training
Consistent with such flexible notions of information processing
in WM, there has been great interest recently in improving
WM capacity, skills, and performance via targeted training
(see Klingberg, 2012). Indeed, several largescale meta-analyses
and reviews of the behavioral literature have shown that WM

training can lead to near transfer—defined as performance
improvements on short-term and WM tasks that are similar
to the trained task (Morrison and Chein, 2011; Melby-Lervåg
and Hulme, 2013; Redick et al., 2015; Melby-Lervåg et al.,
2016; see also Soveri et al., 2017). Evidence for near transfer
suggests that WM training likely targets cognitive processes that
are commonly shared by most short-term memory and WM
tasks, such as maintenance and updating of information. In
contrast, there is little or no reliable evidence to suggest that
WM training can lead to far transfer—defined as observing
performance benefits in outcome measures that are dissimilar
to the trained task in terms of structure or surface features
(Perkins and Salomon, 1994; but see Au et al., 2015). There
could be many reasons why reliable evidence for far transfer
has not been observed. One reason could be that the untrained
tasks likely recruit other capabilities in addition to WM that
must also be targeted by training for benefits to be observed in
performance, including perhaps other executive functions (e.g.,
switching and inhibition). Another possibility might be that
the gains observed in WM span are due to the development
of strategies that are applicable to only certain tasks but not
others, or at least not to the same extent (e.g., chunking).
Finally, it could also be that WM training only leads to gains
in some aspects of WM span but not others (see Shipstead
et al., 2014), therefore limiting its broad utility. More generally,
it is likely necessary to specify the dimensions along which far
transfer can occur to optimize the goodness-of-fit between what
is trained and the target tasks that it is meant to transfer to
(see Barnett and Ceci, 2002).

Consistent with evidence that WM training can lead to near
transfer, there are also findings to suggest that WM training can
lead to gains in WM capacity. For example, Harrison et al. (2013)
asked participants to complete a battery of near-, moderate-,
and far-transfer tasks at baseline, followed by 20 sessions of
training that consisted of one of following three conditions:
Participants in the complex-span training condition completed
adaptive versions of the operation-span and symmetry-span
tasks during each session, whereas participants in the simple-
span training condition completed two adaptive simple span
tasks. In turn, the control condition consisted of participants
who trained on an adaptive visual search task only. The
same battery of near-, moderate-, and far-transfer tasks were
completed after training. In terms of near transfer, the complex-
span training group exhibited improvements on the rotation-
and reading-span tasks, even though both contained different
distractor tasks and different to-be-remembered items than the
training tasks. Both the complex-span and simple-span training
groups also showed improvement on the running-letter-span and
running-spatial-span tasks. Because the same to-be-remembered
stimuli were used for the training and running-span tasks,
this improvement could be attributable to either an increase
in WM capacity or learning of stimulus-specific strategies for
remembering letters and matrix locations. In terms of moderate
transfer, both the complex-span and simple-span training groups
showed improvement on the secondary memory component
of immediate free recall. In terms of far transfer, no group
exhibited any gain in fluid intelligence. These results suggest
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that WM training can lead to improvement in WM span,
although it is important to remember that one can observe
such improvements without necessarily improving WM capacity
at the construct level. This is because not all of the variance
in WM span task performance reflects WM capacity, but can
instead reflect other factors related to the performance (e.g.,
strategies, ability to chunk letters, and random error) (Kane
et al., 2004; see Harrison et al., 2013) and beyond (e.g., stress,
fatigue, and sleep loss). As such, when improvement in WM
capacity is observed, care must be exercised in interpreting
what has been targeted and improved by training (see also
Vartanian et al., 2016, 2021).

Process Specificity and the Brain
Although researchers have begun to gain traction on some of the
processes and mechanisms underlying behavioral performance
improvements associated with WM training—including its
possible moderators (see Jaeggi et al., 2014; Au et al., 2015)—
relatively less is known about its neural correlates (see Buschkuehl
et al., 2012). Nevertheless, a number of insights have begun
to emerge based on the available literature. First, there is
good reason to believe that whether transfer does or does not
occur depends in part on process specificity—defined as the
extent to which the specific cognitive process affected by the
training task also underlies performance on the untrained task
(Eriksson et al., 2016). Examples of such processes include the
storage of information, suppression of distractors, and updating
of information (see Flegal et al., 2019). Process specificity is
important at the neural level because the greater the functional
similarities between the trained and untrained tasks, the greater
the likelihood that the sets of brain regions underlying those
tasks will also overlap. In this sense, brain imaging studies
are useful because they can reveal possible neural mechanisms
whereby training-related improvements and transfer could occur
(Klingberg, 2010; Buschkuehl et al., 2012).

For example, Dahlin et al. (2008) examined participants’
brain activity using functional magnetic resonance imaging
(fMRI) before and after a 5-week regimen of WM training.
Neural data were obtained to assess training-related changes
in brain activity. Training consisted of a letter memory task
that focused specifically on updating of information in WM.
The experimenters administered three tasks while participants
underwent fMRI: The letter memory task, the n-back, and the
Stroop task—the latter two being the transfer tasks. Importantly,
both the letter memory task and the n-back task involved
updating of information in WM, whereas the Stroop task did
not. Not surprisingly, all three tasks engaged the well-established
fronto-parietal WM system. In terms of the two transfer tasks,
the investigators reasoned that if transfer hinges on a shared
fronto-parietal network, then it should be observed for both the
n-back task and the Stroop task—because both share activation
in that region with the letter memory task. However, if transfer
hinges specifically on updating of information in WM and is
associated with shared activity in the striatal updating network,
then it should be observed for the n-back task only. Indeed,
the results supported the latter prediction, demonstrating that
transfer occurs if the training task targets the same cognitive

process and/or mechanism that underlies the transfer task—in
this case updating of information in WM.

Increases and Decreases in Brain
Activation
A second finding that has emerged from neuroimaging studies
is that WM training can be correlated with both increases as
well as decreases in brain activation, although the reasons behind
this variability in the observed results are not well-understood.
For example, in his early review of this literature Klingberg
(2010) noted a pattern such that studies that involved short
periods of WM training (<3 h) had been shown to result in
decreased brain activity, whereas long periods of WM training
had been shown to result in an admixture of both increased
and decreased brain activity. Klingberg (2010) proposed that the
decreases in activation could have occurred because of a number
of different processes taking place, including strategy learning,
priming during encoding, and time-on-task effects—all of which
have been shown to be correlated with reductions in brain
activation (see also Brouwer et al., 2014). In turn, during longer
training regimens these reductions would be co-occurring with
increases in WM capacity, which would in turn be correlated with
activity in the intraparietal cortex, middle and superior frontal
gyri, and the caudate nucleus. However, in their own review of
largely the same literature on the neural effects of WM training,
Buschkuehl et al. (2012) called for additional data to understand
the impact of WM training on neural function. Specifically, they
reviewed evidence from several studies to demonstrate that WM
training was associated with decreases in brain activation in many
fMRI studies, suggesting that perhaps brain function can become
more efficient with increased practice and expertise. Given that
brains are metabolically expensive, the ability to perform tasks to
the same or improved level with less energy expenditure would
represent a significant adaptive benefit.

Dahlin et al.’s (2009) review of the neuroimaging studies of
WM training reached a conclusion quite similar to Buschkuehl
et al. (2012) in attempting to interpret patterns of neural
activation and deactivation. Namely, they noted that the central
executive component of Baddeley’s (1996) model of WM has
been linked strongly to the fronto-parietal system.1 Although
greater activation in this system as a function of WM training
can be attributed to either the recruitment of additional cortical
units with practice or the strengthening of the blood oxygen
level-dependent (BOLD) response within a specific region, a far
more common observation is a reduction in activation in this
system in association with WM training. Such reductions could
mean that the task was initially difficult and required resources
from the central executive, but with practice became less difficult
or required less conscious thought and thus required fewer
resources—and by extension less fronto-parietal involvement.

Interestingly, the opposite pattern was perceived in subcortical
areas such as the basal ganglia where brain activation was far

1It is important to note that some WM models such as Baddeley’s include “slave”
systems for processing modality-specific visual and auditory input, such as the
visuospatial sketchpad and the phonological loop, respectively (see Van Erp et al.,
2020). We are not making the argument here that such modality-specific systems
do not engage the fronto-parietal system.
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more likely to increase following WM training. Dahlin et al.
(2009) argued that such increases in activation in subcortical
areas could in turn reflect the strengthening of the specific skills
in association with training (e.g., updating of information in
WM). This two-pronged view suggests that during the early
phases of learning the prefrontal cortex likely exercises cognitive
control for the purpose of new rule and skill acquisition,
whereas over time, when the previously novel rules and skills
have been learned, the frontal lobes become less engaged and
the acquired rules and skills are implemented by other neural
systems (see Packard and Knowlton, 2002; Poldrack et al., 2005).
Thus, Dahlin et al. (2009) interpreted “the decreased cortical
activation as an indication of more automatized task performance
following training, and the increased striatal activation as a
change in the underlying skill” (p. 411). This interpretation
is also consistent with the idea that rather than being a
unitary construct, training can encompass the acquisition of new
mental operations or shortcuts as well as reducing inefficiencies
in existing processes. For example, Bryant and Niall (2020)
characterized three approaches to cognitive optimization that
are analogous—increasing the power of a cognitive capability,
increasing the effect one can derive from an existing level of
capacity, and providing external devices to perform cognitive
tasks to reduce the need for using cognitive capabilities. Training
might be viewed in a similar fashion—increasing the capacity of
WM, making WM more efficient, or off-loading some functions
of WM to other cognitive capacities. In turn, these effects can
be associated with variations in the structures and directions of
BOLD activity change in relation to WM training.

A fundamental problem when assessing this body of work
concerns how to interpret the changes in the BOLD signal
observed in relation to WM training. For example, in several
cases to date, reductions in the BOLD signal due to training
have been interpreted as reflecting increased efficiency of neural
function. Poldrack (2015) has argued convincingly that such an
interpretation is unjustified because a reduction in the BOLD
signal does not necessarily mean that there is less energy
expenditure for conducting the same task. Indeed, a reduction
in the BOLD signal can be observed because a different set
of cognitive processes and/or neural computations are being
performed—neither of which means that there is reduced energy
expenditure for the same amount of work. As noted by Poldrack
(2015), one could argue for neural efficiency if the same neural
computation were being performed with identical time and
intensity, but with different metabolic expenditure due to factors
such as amount of transmitter release, nature of neurovascular
coupling, or the degree to which the neural computations
draw on oxidative vs. non-oxidative metabolism. However, such
inferences require information about metabolism at the cellular
level, which the BOLD signal does not provide (Logothetis, 2008).
Constantinidis and Klingberg (2016) came to a similar conclusion
when interpreting the literature on the neuroscience of WM
training, as the changes in brain activation could be due to many
physiological factors including the number and/or the firing rate
of the neurons during maintenance of representations in WM,
among others. This prompted them to note that “A cautious
interpretation is thus that these fMRI studies point to the areas
of change but do not inform us about the underlying cellular

mechanisms” (p. 444). Nevertheless, localizing where the changes
occur and the direction in which they occur is a necessary first
step for understanding the structures whose function is impacted
by training, although subsequent research will be necessary to
understand precisely why the changes have occurred, and the
extent to which they reflect variations in metabolic expenditure
at the cellular level.

Aims of Present Meta-Analysis
Our meta-analysis had three aims. The first aim was to reveal
brain structures that are activated reliably across studies as
a function of WM training. To this end, we employed the
Activation Likelihood Estimation (ALE) approach, which is a
widely adopted coordinate-based platform for the quantitative
meta-analysis of neuroimaging data (Eickhoff et al., 2012).
To address this aim, we specifically restricted our focus to
studies that involved pre-test and post-test assessments of WM
performance with fMRI, and training regimens involving a
WM task. We are aware of three earlier meta-analyses of the
literature on the neural bases of WM training, with different
scopes and aims than ours. First, Li et al. (2015) investigated
the neural correlates of WM training in healthy adults and
patients with schizophrenia. Next, Salmi et al. (2018) investigated
the neural correlates of WM training in healthy adults, but
also included studies in which the target fMRI task was not
necessarily a WM task (e.g., multitasking, divergent thinking,
etc.). In turn, Pappa et al. (2020) focused exclusively on studies
that utilized a WM updating task as the training task (rather
than a maintenance task, etc.) to achieve greater homogeneity
across studies in terms of the specific process that was being
trained. All three meta-analyses included data from elderly
samples. Although these meta-analyses have made valuable and
important contributions to our understanding of the neural bases
of WM training, we believe that the present meta-analysis fills
a unique niche in the literature. First, we focused exclusively
on samples of neurologically healthy adults having a mean age
of <65 years, given the well-established finding that older adults
display overactivation in functional brain imaging studies, likely
as a compensatory mechanism against age-related decline in
cognition (for review, see Reuter-Lorenz and Cappell, 2008; see
also Cabeza et al., 2018; Tagliabue and Mazza, 2021). We reasoned
that focusing on young-to-middle aged adults would reduce
some of the heterogeneity in the findings due to the age-related
differences in brain activation. Second, we focused exclusively
on studies that has used a WM task both for training and for
pre- and post-testing. The reason for this decision was to reduce
heterogeneity in the tasks under consideration by focusing only
on tasks that target WM function. We reasoned that by virtue of
focusing on neurologically healthy non-senior adults who were
trained and tested (pre- and post-training) exclusively on WM
tasks, we would be in a position to examine whether training on
any WM task can reliably impact brain function in regions of the
brain that underlie WM in target tasks. Of particular interest were
regions in the fronto-parietal network that have been consistently
linked to performance and individual differences in this capacity
(Wager and Smith, 2003; Owen et al., 2005; Darki and Klingberg,
2015), as well as subcortical systems such as the basal ganglia
(Eriksson et al., 2016).
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The second aim of our meta-analysis was to examine whether
there are differences in brain regions that exhibit activation
increases vs. decreases as a function of WM training (i.e., the
directionality of training effects in the BOLD response). Indeed,
one of the distinguishing features of individual studies to date has
been the heterogeneity in the direction of change noted in brain
activation following WM training, with some studies reporting
exclusively increases or decreases in activations, whereas others
have reported changes in both directions in different structures.
As noted by Dahlin et al. (2009) in their review of this literature,
the results “support the views that training does not result
in a monotonic increase or decrease in neural activity. . ., and
that training-related activation changes are not restricted to
an isolated part of the brain. To better understand the neural
reorganization that takes place after training, it is critical to
identify neural networks underlying these activity changes” (p.
410). To address this second aim, we distinguished between foci
that have shown increases vs. decreases in activation, aiming to
highlight the reliability of the directionality of the differences
in response to WM training. Notably, all three meta-analyses
of WM training to date have revealed an admixture of activity
increases and decreases in the brain (Li et al., 2015; Salmi et al.,
2018; Pappa et al., 2020). We were keen to examine whether
a similar pattern would arise when the scope was limited to
neurologically healthy non-elderly adults who were trained and
tested (pre- and post-training) exclusively on WM tasks.

The third aim of our meta-analysis focused not on the neural
data, but instead on behavioral data collected in a subset of the
fMRI studies under examination that had administered WM span
tasks pre- and post-training. This is because from a theoretical
perspective, we were particularly interested in the impact of WM
training on WM span. Therefore, aside from conducting the
meta-analysis of fMRI data to address the first two aims of the
study, we also conducted a descriptive review of the subset of
studies that had administered WM span tasks pre- and post-
training to examine the reliability of transfer from WM training
to WM span, and to examine whether there are specific features
of training and testing that increase the likelihood of that transfer.
This descriptive review was meant to supplement the core meta-
analysis of the fMRI data by shedding light on factors that
facilitate transfer from WM training to WM span, and what the
implications might be for models of WM that treat WM span as
a limited resource.

METHOD

Literature Search
The identification of articles relating to WM training was
conducted by a series of Boolean searches of PsychINFO,
PubMed, and Web of Science databases last updated in January
2022. The following keywords were used: “working memory
training,” “brain training,” “cognitive training,” “fMRI,” and
“PET.” Furthermore, we examined review papers, past meta-
analyses, and reference sections for additional studies. Our
search yielded 341 references. These references were subsequently
screened based on (a) article and journal title information, (b)

abstract information, and (c) full-text evaluation (see Figure 1).
Ultimately, this yielded 32 studies (reported in 31 unique
publications) for the meta-analysis.

Selection Criteria
The articles were screened for neurologically healthy participants.
In cases where a neurologically healthy control group was
included as a comparison condition for a patient group, the data
from the former group were included in the meta-analysis if
separate results had been reported (n = 2), or by contacting the
authors to obtain results only from the neurologically healthy
control sub-group (n= 1). We focused exclusively on studies that
reported data from samples with a mean age of <65 years. All
articles included a WM training regimen, although the specific
training task varied across studies. Furthermore, in each case the
pre- and post-test measures were also WM tasks. In some cases,
the pre- and post-test WM measures were identical to the WM
training task, whereas in others it was a different WM task that
was implemented for training vs. pre- and post-testing (Table 1).

All selected studies included neuroimaging data collected
prior to and following WM training (i.e., pre- and post-test).
In cases where post-test neuroimaging data were collected at
two time points following the termination of WM training (e.g.,
immediately after training and again >1 month after training),
we focused on the time point nearest to the termination of
training (i.e., immediately after training). This allowed for a direct
comparison of post-test data across studies using immediate vs.
immediate and delayed methodologies, eliminating this potential
confound. All the studies reported voxel-wise, whole brain data
which reported foci in 3D coordinate space (i.e., not ROI
analysis). In cases where the performance of an experimental
group (i.e., WM training) was compared to a control group (i.e.,
active or passive control) at pre- and post-test time points, we
selected the results of the Group × Time interaction effect for
analysis. In cases where only the results of the training group
were available/reported at pre- and post-test, we included in
our analysis the coordinates associated with the simple main
effect of training. In both cases above, if the authors reported
results separately for different levels of difficulty of the same
task (e.g., 3-back vs. 2-back for n-back at post-test compared
to 1-back at pre-test), we selected the contrast that isolated the
neural correlates of the more difficult level (i.e., 3-back at post-
test compared to 1-back at pre-test rather than 2-back at post-test
compared to 1-back at pre-test). In total, 31 articles that included
32 studies met the criteria and were included in the meta-analysis,
including data from 813 participants and 385 foci (Table 1).

Activation Likelihood Estimation
ALE is a quantitative meta-analysis technique that compares
activation likelihoods calculated from observed activation foci
with a null distribution of randomly generated activation
likelihoods. It pools peak activation coordinates across studies
that have investigated an effect of interest (Laird et al.,
2005). These coordinates must be spatially renormalized to a
single template. For this meta-analysis, all coordinates were
renormalized to MNI space using the icbm2tal transformation
(Lancaster et al., 2007) implemented in the GingerALE 3.0.2
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FIGURE 1 | Flow diagram for literature search.

toolbox (Research Imaging Center of the University of Texas
Health Science Center, San Antonio, TX).2 The resulting
coordinates were used to generate “activation likelihoods” for
each voxel in the brain. For each focus, ALE computes each
voxel as a function of its distance from that focus using a three-
dimensional Gaussian probability density function centered
at its coordinates. This generates vectors of values for each
voxel representing probabilities of belonging to a specific focus.
These values are assumed to be independent such that the
existence of one focus does not give information about whether
another focus will occur. The vector values are combined with
the addition rule for log-probabilities, yielding ALE statistics.
Thus, the ALE statistic represents the probability of a certain
voxel to belong to any of the included foci. Significance tests
are conducted by comparing the ALE statistic in each voxel
with a null distribution, generated via repeatedly calculating
ALE statistics from randomly placed activation foci. This null
distribution is then used to estimate the threshold based on
a given cut-off. Finally, a cluster threshold (i.e., minimum
spatial extent of significant contiguous clusters) can be applied.
As recommended in Eickhoff et al. (2016), we conducted
our analyses based on a cluster-level family-wise error (FWE)
correction, which involves using an uncorrected cluster-forming
threshold (p < 0.001) and employing a cluster-extent threshold
(p < 0.05) that controls the chance of observing a cluster
of that size if foci were randomly distributed—implemented
in GingerALE 3.0.2 (Eickhoff et al., 2017). We used 1,000
thresholding permutations.3

2http://brainmap.org
3Based on a largescale simulation of meta-analysis datasets using empirical
parameters derived from the BrainMap database, Eickhoff et al. (2016)
demonstrated that cluster-level family-wise error correction represents the most
optimal statistical thresholding method, although voxel-wise family-wise error
correction also represents an appropriate, but more conservative approach,
to statistical thresholding. In turn, both uncorrected inference and correction

RESULTS

Omnibus Analysis
The results of the omnibus analysis spanning all 32 studies
revealed that WM training was associated with the involvement
of the fronto-parietal system encompassing clusters in the left
inferior parietal lobule (BA 40), right middle frontal gyrus (BA
9), and medial frontal gyrus bordering on the cingulate gyrus (BA
6/32) (Figure 2 and Table 2).

Increases vs. Decreases in Activation
Next, we separated the 385 foci based on whether they had
been reported as increases (176) or decreases (209) in activation
in previous studies, and conducted the meta-analysis separately
for each group of foci. The results demonstrated that WM
training was associated with decreases in brain activation in
clusters within the fronto-parietal system that underlie WM,
encompassing the bilateral inferior parietal lobule (BA 39/40),
middle (BA 9) and superior (BA 6) frontal gyrus, and medial
frontal gyrus bordering on the cingulate gyrus (BA 8/32)
(Figure 2 and Table 3). In contrast, the analysis of foci which had
exhibited increases in activation in previous studies did not reveal
any cluster associated with WM training.4

Impact of Training on Working Memory
Span: Behavioral Results
Of the 32 fMRI studies included in the present meta-analysis,
we identified a subset of seven studies that had administered

for multiple comparisons using the false-discovery rate represent inappropriate
methods.
4Note that it was not possible in ALE to directly conduct a contrast analysis
involving foci that had exhibited activation decreases vs. foci that had exhibited
activation increases because in the latter case no statistically significant results
emerged.
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TABLE 1 | List of 32 studies included in the meta-analysis.

Reference Raw
coordinates

Training task Target task Frequency
(sessions)

Duration
(min)

Aguirre et al., 2019 MNI Adaptive n-back task n-back task 4 60

Ando et al., 2007 Tal Visuospatial WM Visuospatial WM 105 ?

Ando et al., 2009 Tal Visuospatial WM Visuospatial WM 210 ?

Buschkuehl et al., 2014 MNI Visuospatial n-back task Visuospatial n-back task 7 20

Chang et al., 2017 Tal Cogmed 2 back 20–25 30–40

Clark et al., 2017a MNI Lumosity visuospatial n-back
task

Lumosity visuospatial
n-back task

30 20

Dahlin et al., 2008 (Exp. 1) MNI Multimodal WM training Letter memory, 3 back 15 45

Emch et al., 2019 MNI Adaptive n-back task n-back 32 ?

Flegal et al., 2019 MNI Adaptive visuospatial and
visuo-verbal WM tasks

Visuospatial WM 10 50

Gaab et al., 2006 Tal Pitch memory Pitch memory 5 60

Garavan et al., 2000 Tal Visuospatial WM Visuospatial WM 1 32*

Jansma et al., 2001 Tal Sternberg Sternberg 1 45

Jolles et al., 2010 MNI Verbal WM Verbal WM 10.5 25

Kirschen et al., 2005 Tal Verbal WM Verbal WM 1 12

Koch et al., 2006 Tal Sternberg Sternberg 1 24*

Koch et al., 2007 Tal Sternberg Sternberg 1 24*

Landau et al., 2004 MNI Face recognition task Face recognition task 1 30

Miró-Padilla et al., 2018 MNI Adaptive n-back task n-back task 4 50

Miró-Padilla et al., 2020 MNI Adaptive n-back task Auditory, arithmetic WM 4 50

Moore et al., 2006 MNI Simultaneous match to sample,
delayed recognition, family
placement, family discrimination

Match to sample 7 90

Olesen et al., 2004 (Exp. 1) Tal Visuospatial WM, backwards
digit span, letter span

Visuospatial matching task 20–30 35–45

Olesen et al., 2004 (Exp. 2) Tal Visuospatial WM tasks: grid,
grid rotation, 3D grid

Visuospatial matching task 25 35–45

Opitz et al., 2014 Tal Adaptive n-back Orthographic task (Chinese
character learning)

14 40*

Ramsey et al., 2004 MNI Verbal matching Verbal matching 1 21

Sayala et al., 2006 Tal Delayed object/spatial
recognition

Delayed object/spatial
recognition

1 30

Schneiders et al., 2011 Tal Adaptive n-back Visual n-back 8–10 50

Schneiders et al., 2012 Tal Auditory adaptive n-back Auditory and visual WM 8 50

Schweizer et al., 2013 MNI Affective dual n-back Affective dual n-back 18–20 20–30

Thompson et al., 2016 MNI Adaptive n-back or multiple
object tracking

Dual n-back 20 40*

van Raalten et al., 2008 MNI Sternberg Sternberg 1 25

Wagner et al., 2021 MNI Dual n-back Word order recognition task 40 30

Zimmer et al., 2012 MNI Change Detection task Change Detection task 12 ?

WM, working memory; ?, not reported; Exp., experiment.
*To the best of our calculations based on reported data.

WM span tasks before and after training. Importantly, those
measures were not necessarily the tasks that were administered in
the fMRI scanner before and after WM training, but were more
commonly included as part of the larger set of neuropsychological
measures to assess near and far transfer effects from WM training
to other outcome measures. Nevertheless, a descriptive review of
those studies is useful for examining the extent to which WM
training can transfer to measures of WM span—both simple and
complex. Measures of simple WM generally involve presenting
participants with a list of to-be-remembered items (e.g., letters,

digits, or words) which they must subsequently recall in the
correct serial order (e.g., forward or backward) (see Unsworth
and Engle, 2006). As such, span subscales from the Wechsler
Adult Intelligence Scale—Revised (WAIS-R: Wechsler, 1981) can
be considered measures of simple WM span. Chang et al. (2017)
administered the WAIS-R Digit-Span and Spatial-Span tasks
to participants in the adaptive or non-adaptive WM training
groups before and after training. The results demonstrated a
Group (Training vs. Control) × Time (pre- vs. post-training)
interaction on both Digit Span and Spatial Span such that the
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FIGURE 2 | The neural correlates of working memory training. Across all studies, working memory training engaged clusters encompassing the left inferior parietal
lobule (BA 40), right middle frontal gyrus (BA 9), and medial frontal gyrus bordering on the cingulate gyrus (BA 6/32) (depicted in red). In turn, working memory
training was associated with decreases in brain activation in clusters encompassing the bilateral inferior parietal lobule (BA 39/40), middle (BA 9), and superior (BA 6)
frontal gyrus, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32) (depicted in blue) (see text, Tables 2, 3). The transparencies of the activations are
set to 50% to reveal three areas of overlap in the left inferior parietal lobule (BA 40), right middle frontal gyrus (BA 9), and medial frontal gyrus bordering on the
cingulate gyrus (BA 6/32). IPL, inferior parietal lobule; MFG, middle frontal gyrus; SFG, superior frontal gyrus; MEFG, medial frontal gyrus.

TABLE 2 | The neural correlates of working memory training across all studies.

Area BA Center Spatial extent of cluster Size Contributing studies

Inferior parietal lobule 39 −35, −59, 46 −42, −66, 40 to −28,
−50, 52

1,936 Ramsey et al., 2004; Kirschen et al., 2005; Moore et al.,
2006; van Raalten et al., 2008; Thompson et al., 2016;
Miró-Padilla et al., 2018; Aguirre et al., 2019

Medial frontal gyrus 6/32 1, 25, 43 −8, 16, 38 to 10, 32, 48 1,880 Garavan et al., 2000; Moore et al., 2006; Sayala et al.,
2006; Koch et al., 2007; Thompson et al., 2016;
Miró-Padilla et al., 2018; Aguirre et al., 2019

Middle frontal gyrus 9 48, 33, 28 42, 26, 22 to 56, 38, 32 1,264 Olesen et al., 2004; Moore et al., 2006; Koch et al., 2007;
Schneiders et al., 2011; Thompson et al., 2016;
Aguirre et al., 2019

Number of studies = 32, number of participants = 813, number of foci = 385. The areas have been listed in order of decreasing cluster size.
BA, Brodmann Area; Size, cluster size in mm3, coordinates are reported in MNI space.

(adaptive) WM training group registered significantly greater
gains on both measures than did the non-adaptive control group.
Olesen et al. (2004, Experiment 2) administered the WAIS-R
Digit Span task to participants before and after a 5-week regimen
of visuospatial WM training, observing significant post-training
gains compared to baseline. Emch et al. (2019) administered
the German version of the WAIS, the Hamburg-Wechsler-
Intelligenztest für Erwachsene—Revision (HAWIE-R; Lutz et al.,
1991) digit span sub-test (forward and backward versions) (Molz
et al., 2010) to experimental and control participants before and
after training. The HAWIE-R digit span sub-test requires one to
repeat up to nine numbers in the same order as read aloud by
the examiner (forward version), and afterward in reverse serial
order (backward version). They observed a Group (Training
vs. Control) × Time (pre- vs. post-training) interaction effect,
such that there was a performance increase in the experimental
group and a performance decrease in the control group. In
contrast, Jolles et al. (2010) did not observe WM training-
related gains in simple WM span as measured by the WAIS-
R. Specifically, they administered the WAIS-R Digit Span task

to participants who either trained on a WM task or were in
a passive control condition before and after training, and did
not observe a Group (Training vs. Control) × Time (pre-
vs. post-training) interaction effect. Rather than administering
the WAIS-R, Dahlin et al. (2008, Experiment 1) administered
a different simple WM span measure referred to as “Letter
Memory,” which consisted of ten lists of serially presented
letters (A-D) of varying length (7, 7, 9, 9, 11, 13, 9, 15, 13,
15). The task was to recall the last four letters as quickly
as possible following the termination of the presentation. The
results demonstrated a Group (Training vs. Control) × Time
(pre- vs. post-training) interaction such that the (updating) WM
training group registered significantly greater gains in Letter
Memory than did the control group.

In turn, some of the studies administered measures of complex
WM span before and after WM training. As noted by Unsworth
and Engle (2006), like simple span tasks, complex span tasks
also require participants to recall a set of to-be-remembered
items in their correct, but in addition some form of processing
activity is interleaved between the to-be-remembered items.
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TABLE 3 | Clusters exhibiting reduced brain activation in relation to working memory training.

Area BA Center Spatial extent of cluster Size Contributing studies

Inferior parietal lobule 39 −34, −58, 45 −42, −66, 38 to −26,
−50, 52

1,888 Ramsey et al., 2004; van Raalten et al., 2008; Zimmer
et al., 2012; Thompson et al., 2016; Miró-Padilla et al.,
2018; Aguirre et al., 2019

Medial frontal gyrus 8/32 1, 27, 42 −8, 16, 38 to 8, 32, 46 1,448 Sayala et al., 2006; Koch et al., 2007; Thompson et al.,
2016; Miró-Padilla et al., 2018; Aguirre et al., 2019

Superior frontal gyrus 6 29, 4, 56 24, −4, 50 to 34, 12, 66 1,352 Garavan et al., 2000a; Sayala et al., 2006; Schneiders
et al., 2011; Miró-Padilla et al., 2018; Aguirre et al., 2019

Middle frontal gyrus 9 49, 33, 28 42, 26, 24 to 56, 38, 34 1,328 Olesen et al., 2004; Koch et al., 2007; Schneiders et al.,
2011; Thompson et al., 2016; Aguirre et al., 2019

Inferior parietal lobule 40 48, −42, 44 42, −48, 38 to 56, −38, 48 960 Koch et al., 2006; Schneiders et al., 2011, 2012;
Miró-Padilla et al., 2018

Number of studies = 25, number of participants = 648, number of foci = 209. The areas have been listed in order of decreasing cluster size.
BA, Brodmann Area; Size, cluster size in mm3, coordinates are reported in MNI space.
Note that no cluster exhibited increased brain activation in relation to working memory training (see text).

For example, Clark et al. (2017a) administered the Automated
Operation Span Task (AOSPAN: Unsworth et al., 2005) and
the WAIS-R Digit Span task to their participants who were
randomized to either the WM training or active control condition
at pre- and post-test (see Clark et al., 2017b). The AOSPAN
is “a complex measure of WM which requires participants to
remember the sequential ordering of presented stimuli while
carrying out simple mathematic problems as a distraction” (Clark
et al., 2017b, p. 8). The Group (Training vs. Control) × Time
(pre- vs. post-training) interaction was not observed for either
outcome measure. In turn, Flegal et al. (2019) administered
complex WM span measures involving verbal stimuli with
the AOSPAN (Unsworth et al., 2005) and involving visual
stimuli with a change localization (Gold et al., 2006) version
of the Change Detection task (Luck and Vogel, 1997). Here,
too, Group (Training vs. Control) × Time (pre- vs. post-
training) interactions were not observed. However, it is important
to note those two WM span tasks were selected specifically
because they target the executive function of updating without
changing the demand on WM capacity itself. For that reason,
the fact that training-related improvements in WM updating
performance did not transfer to complex WM span measures
was not surprising.

DISCUSSION

This meta-analysis examined the neural correlates of WM
training, with three aims in mind. Below, we will discuss the
results with respect to each aim in a separate subsection.

General Neural System Sensitive to
Working Memory Training
Based on a substantial body of evidence linking performance
and individual differences in WM tasks to the fronto-parietal
system, we had predicted that this system would be modulated by
WM training across studies. This prediction was confirmed with
respect to the omnibus analysis involving all studies (Table 2 and
Figure 2). As noted by Salmi et al. (2018) in their meta-analysis

of a largely overlapping set of studies of WM training, “current
brain imaging evidence does not provide evidence of areas that
would be sensitive to learning per se but rather emphasizes the
modulation of the core systems” (p. 117). It appears that the
same inference can be drawn from the present meta-analysis,
focused as it was on neurologically healthy non-senior adults
that were tested and trained on WM tasks exclusively. There is
evidence to show that the posterior cortices are the primary site
where WM representations are stored and rehearsed, and that
the frontal lobes become important contributors to the process
when there is interference during a retention interval (Jonides
et al., 2005), or a need for top-down regulation of stored content
(Lara and Wallis, 2015). The present results suggest that WM
training might have a modulatory effect, both on brain regions
that store information as well as those that act on stored memory
representations.

Interestingly, however, subcortical structures, such as those in
the basal ganglia, did not exhibit involvement in WM training,
despite the fact that they have been regularly engaged by WM
tasks (Eriksson et al., 2016). This could perhaps be explained
by the dissociation noted by Dahlin et al. (2009) regarding
the involvement of the fronto-parietal system vs. subcortical
regions in WM training. Namely, they noted that whereas the
fronto-parietal system may play a more central role in the
executive aspects of WM training, the subcortical regions may
play a more critical role in the acquisition of skills during WM.
Because many different types of tasks emphasizing different
types of skills were employed for WM training across studies
(Table 1), the variation in the specific skills targeted by training
might have engaged different subcortical regions, thereby not
coalescing in a shared subcortical region across studies. Indeed,
there has even been some variation in previous meta-analyses of
WM training studies in terms of the engagement of subcortical
structures. For example, Li et al. (2015) did not report the
reliable engagement of subcortical regions in WM training,
whereas subcortical regions did emerge in the meta-analyses
conducted by Salmi et al. (2018) and Pappa et al. (2020). Focusing
strictly on WM updating studies, Pappa et al. (2020) reported
consistent fronto-parietal activity decreases, but an admixture of
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activity increases and decreases in subcortical regions. Reviewing
specific studies in the area, they noted that subcortical regions
were more likely to be engaged if the training regimen had
specifically involved a WM updating task than other varieties
of WM tasks. As such, they argued that subcortical systems
are more likely to be engaged by WM training if the task
necessitates goal-directed flexibility—a hallmark of updating
tasks. In support of this view, Pappa et al. (2020) reviewed
theoretical frameworks according to which subcortical systems
are hypothesized to play an important role in exhibiting goal-
directed flexibility in behavior, in part via their interplay with
the prefrontal cortex (Cools and D’Esposito, 2011; Nyberg and
Eriksson, 2016). In turn, Salmi et al. (2018), who explored
differences in the neural systems that support WM training
vs. perceptual-motor learning, noted that the striatum was
involved in both processes. This suggests that rather than
making a unique contribution to WM per se, the striatum
likely makes a domain-independent contribution to learning
in both cases. Indeed, their analysis demonstrated that what
distinguished WM training from perceptual-motor learning was
the engagement of the dorsolateral and ventrolateral prefrontal
cortex in the former process, although higher striatal and
ventrolateral prefrontal activations coupled with lower activation
in the dorsolateral prefrontal cortex were better predictors of
transfer to other untrained WM tasks. Echoing Dahlin et al.
(2008), these results suggest that “the functional roles of the
transfer-related regions showing enhanced brain activity suggest
that near transfer may not be based on modulation of core
WM processes, but on the development of relatively task-specific
skills” (Salmi et al., 2018, p. 119).

Increases vs. Decreases in Activation
When we examined the neural correlates of WM training
separately for foci that had exhibited increases vs. decreases
in fMRI studies, our results demonstrated that WM training
is associated exclusively with decreases in brain activation in
clusters within the fronto-parietal system that underlie WM,
including bilateral inferior parietal lobule (BA 39/40), middle (BA
9) and superior (BA 6) frontal gyrus, and medial frontal gyrus
bordering on the cingulate gyrus (BA 8/32). This observation was
somewhat surprising, given that all three previous meta-analyses
of WM training had revealed an admixture of activity increases
and decreases in the brain (Li et al., 2015; Salmi et al., 2018; Pappa
et al., 2020). There could be a few explanations for the divergence
of our results with previous meta-analytic studies. First, we
opted to focus exclusively on samples of neurologically healthy
adults with mean age <65 years, given the well-established
finding that older adults display overactivation in functional
brain imaging studies, likely as a compensatory mechanism
against age-related decline (Reuter-Lorenz and Cappell, 2008;
see also Cabeza et al., 2018; Tagliabue and Mazza, 2021). We
opted not to focus on the elderly to reduce that possible source
of variability in our findings. It is possible that not including
those studies may have impacted our findings, although there
has been quite a bit of heterogeneity in findings involving
the elderly as there have been reports of both increases (Kim
et al., 2017; Takeuchi et al., 2020) as well as decreases (Brehmer

et al., 2011; Heinzel et al., 2016) in brain activity in relation
to WM training. An additional reason might be the choice
of training and/or target tasks that formed the focus of our
analysis. In terms of the former, it is possible that WM training
tasks that target updating might facilitate increases in brain
activity in regions that underlie learning of skills and strategies
(Pappa et al., 2020). In turn, extending the pre- and post-
training measures to tasks that measure other abilities aside from
WM (e.g., multitasking and divergent thinking) might engage
structures that exhibit increases in brain activity due to the
cognitive requirements of those tasks (Salmi et al., 2018). Our
findings combined with those of others suggests that even when
the focus of the meta-analysis is largely on the same literature,
the specific choice of studies can have a noticeable effect on
findings, and should be taken into consideration when drawing
inferences from the work.

One possible lens for interpreting the reductions observed
in brain activation in relation to WM training is in terms of
increased expertise. Specifically, it could be argued that repeated
practice on the same task, especially in cases where the task was
adaptive, likely resulted in greater proficiency in the maintenance
and manipulation of information in WM, and that this greater
proficiency (i.e., expertise) was reflected in reductions in the
BOLD signal in the fronto-parietal WM network. Here we can ask
whether expertise is reliably associated with reductions in neural
activation across domains. Neumann et al. (2016) conducted an
ALE meta-analysis exploring the neural correlates of cognitive
expertise in several domains (mental calculation, chess, language,
memory, and music without motor involvement), and found that
compared to non-experts, experts were more likely to exhibit
activation increases rather than decreases. It is important to
note that in the studies analyzed by Neumann et al. (2016),
persons needed to have had many years of training to qualify
as true experts in a domain. It is therefore possible that short-
term increases in skill acquisition might lead to reductions in
brain activation, whereas true expertise that typically emerges
following long-term engagement with domain-specific tasks
eventually leads to increases in brain activation (see Klingberg,
2010). In addition to a focus on increases and decreases in
brain activation, it is also important to note that in domains
such as music, skill learning and expertise are associated not
only with increases and decreases in brain activation but also
with cortical reorganization, including the formation of new
functional connections between brain regions (see Chang, 2014).
Although the focus of the present meta-analysis has been on
differences in the direction of activations, examining changes in
the connectivity of large-scale brain systems and structures in
relation to WM training can certainly add to our understanding
of its neural bases.

Impact of Working Memory Training on
Span
Although our focus was on the neuroanatomy of WM training,
we were also interested in examining whether the studies reported
transfer to measures of WM span. We reviewed the results
separately for studies of simple vs. complex span, given that they
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draw on different processes (Unsworth and Engle, 2006). Seven
studies from the identified subsample administered measures
of simple WM span at pre- and post-test. In the case of three
studies, WM training led to statistically significant gains in WM
capacity (Olesen et al., 2004; Dahlin et al., 2008; Chang et al.,
2017, Experiment 2). A common feature of the training regimens
in all three studies was that the task was adaptive, meaning that
the level of difficulty was adjusted automatically to maintain
maximal cognitive exertion. In contrast, Jolles et al. (2010) and
Clark et al. (2017b) who did not use an adaptive version of a WM
task found no transfer effect to simple WM span. Finally, Emch
et al. (2019) did find a statistically significant Group (Training
vs. Control) × Time (pre- vs. post-training) interaction effect,
but the interpretation of this effect is complicated by the fact
that the performance increase in the experimental group was
paired with a performance decrease in the control group. On
balance, it seems that when the WM training task is adaptive,
then there is a higher likelihood of transfer to simple WM
span. In turn, when we switch to complex WM span, there is
simply insufficient evidence to infer whether one can observe
transfer or not. Specifically, Clark et al. (2017b) found no effect
of training on AOSPAN. Furthermore, Flegal et al. (2019) found
no effect of training on AOSPAN (Unsworth et al., 2005) or
with a change localization (Gold et al., 2006) version of the
Change Detection task (Luck and Vogel, 1997), although as noted
earlier their focus during training was on WM updating rather
than on expanding WM span itself. On balance, it would be
prudent to conclude that more research is needed to determine
whether WM training can transfer to complex WM span (see also
Harrison et al., 2013).

Two additional points deserve attention here. First, as noted
by Bryant and Niall (2020), training can impact performance in
many ways, such as increasing the power of a cognitive capability,
increasing the effect one can derive from an existing level of
capacity, and providing external devices to perform cognitive
tasks that reduce the need for using cognitive capabilities. In
turn, not all of those training outcomes would be equally likely
to impact WM capacity per se, such that one might observe
improvements in WM performance that are not necessarily
accompanied by gains in WM span. Second, as noted earlier,
there is some evidence to suggest that WM training can lead
to near transfer, but there is no such evidence regarding far
transfer (Morrison and Chein, 2011; Melby-Lervåg and Hulme,
2013; Redick et al., 2015; Melby-Lervåg et al., 2016; see also
Soveri et al., 2017). Although that specific question was not
under investigation here, a similar picture emerged across the
32 studies included in our meta-analysis. Pappa et al. (2020)
who examined that question formally by conducting a meta-
analysis of the behavioral data associated with neuroimaging
studies of WM updating found a moderate and statistically
significant effect for near transfer (Hedge’s g = 0.63), but a small
and statistically non-significant effect for near transfer (Hedge’s
g = 0.15). These relatively weak transfer effects likely have a
bearing on the neuroanatomy of WM training insofar as one
might expect that more robust neural changes would accompany
more robust behavioral/performance changes. As the size of this
literature grows, it would be important to compare the impact of

WM training for studies that report successful vs. unsuccessful
near- and far-transfer effects.5

Working Memory Training and Cognitive
Resources
Typically, reductions in brain activation in relation to WM
training have been attributed to neural efficiency. However,
as noted by Poldrack (2015), one could argue for neural
efficiency only if the same neural computations were being
performed with identical time and intensity, but with different
metabolic expenditure. Unfortunately, due to our incomplete
understanding of the cellular basis of the BOLD signal
(Logothetis, 2008), coupled with the fact that we cannot rule
out other factors with certainty (e.g., whether different set
of cognitive processes and/or neural computations are being
performed), we are not in a position to equate reductions
in brain activation in relation to WM training within the
fronto-parietal system to neural efficiency (Constantinidis and
Klingberg, 2016). Nevertheless, it is prudent to consider the
contribution of several candidate processes to this pattern of
findings. First, it is possible that the observed pattern is driven
by a shift from controlled to automatic processing (Shiffrin and
Schneider, 1977). Specifically, it is well known that engagement
with an initially novel task can be more effortful, whereas
repeated engagement and familiarization with the same task can
lead to greater levels of automaticity in task performance. This
transition from controlled to automatic processing is captured
by dual-process models of cognition that involve an interplay
between effortful and automatic processing in the service of task
performance (Evans and Over, 1996; Sloman, 1996; Kahneman
and Frederick, 2002). In this sense, it is possible that the reduction
in brain activation due to WM training could be due to greater
automaticity in WM performance because of familiarization (see
Chein and Schneider, 2005). Second, decreased brain activity
could reflect increased specificity and precision for detecting
stimuli—what has been referred to as narrowing of tuning curves
(Rainer and Miller, 2000). As noted by Constantinidis and
Klingberg (2016), a narrower tuning curve could be an indicator
that fewer prefrontal or parietal neurons are necessary for coding
a stimulus, which will be associated with a lower BOLD response.
A third possibility is of course that fewer neurons are engaged for
performing the same task post-training—a possibility that has not
been tested directly in this domain.

Finally, what do the findings mean for our understanding
of WM capacity as a processing resource (i.e., an entity that
exists in limited supply and is responsible for the enhancing
or enabling cognitive processes, Salthouse, 1990)? Historically,
scholars who have considered the psychological reality of limited
processing resources (or “mental energy”) have typically also
assumed that those resources have a physiological correlate (see
Craik and Byrd, 1982). In this sense, one would expect that if
WM training were to increase WM capacity, then there should
be a corresponding change in activity in the neurological system

5When using the most optimal thresholding method (i.e., cluster-level family-wise
error correction), a minimum of 17 experiments is necessary to perform reliable
and robust meta-analyses (Eickhoff et al., 2016).
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that supports it. Although WM training leads to decreases in
activation in the fronto-parietal system, it is not possible to
infer that this reflects an increase in WM capacity per se.
Not only is more research needed to examine how variations
in the activity of the fronto-parietal system are related to
variations in WM capacity measures, but it is also necessary to
consider the broader context within which limited processing
resources are measured. As noted by Navon (1984) in his
classic criticism of resource models, “resource theory ascribes
variability in performance of a task to the amount of some
limited internal input dedicated to the task” (italics added, p. 217).
However, we now know that performance on such tasks and our
subjective assessments thereof (e.g., workload) are influenced by
a host of contextual, environmental, and motivational factors
that likely interact with those internal inputs dedicated to
the task. In this sense, examining the neural correlates of
constructs hypothesized to be limited by processing resources
needs to be informed better by the assumptions that characterize
their measurement.

CONCLUSION

Our meta-analysis demonstrated that WM training is associated
with reduced activation in a set of regions that reside within
the fronto-parietal system, including the bilateral inferior
parietal lobule (BA 39/40), middle (BA 9) and superior
(BA 6) frontal gyrus, and medial frontal gyrus bordering
on the cingulate gyrus (BA 8/32) (Figure 2 and Table 3).
This pattern of findings suggests that WM training targets
neural structures that are involved in the storage, rehearsal,
and/or manipulation of mental representations within the core
fronto-parietal system that supports WM. Importantly, due to
our incomplete understanding of the cellular processes that
underlie the BOLD signal, coupled with the fact that we
cannot rule out other factors with certainty (e.g., whether
different sets of cognitive processes and/or neural computations
are being performed), it is not possible to isolate a specific
mechanism that can explain the biological basis of the
observed reduction in brain activation as a function of

WM training. When viewed in the context of extant meta-
analytic evidence suggesting that WM training reduces brain
activation within the fronto-parietal system (Li et al., 2015;
Salmi et al., 2018; Pappa et al., 2020), our results underscore
the importance of developing paradigms to examine the
biological basis of the observed effect, and thus lead to an
improved understanding of what this finding means for resource
models of WM.
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