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Abstract: The importance of variable selection and regularization procedures in multiple regression
analysis cannot be overemphasized. These procedures are adversely affected by predictor space
data aberrations as well as outliers in the response space. To counter the latter, robust statistical
procedures such as quantile regression which generalizes the well-known least absolute deviation
procedure to all quantile levels have been proposed in the literature. Quantile regression is robust
to response variable outliers but very susceptible to outliers in the predictor space (high leverage
points) which may alter the eigen-structure of the predictor matrix. High leverage points that
alter the eigen-structure of the predictor matrix by creating or hiding collinearity are referred to as
collinearity influential points. In this paper, we suggest generalizing the penalized weighted least
absolute deviation to all quantile levels, i.e., to penalized weighted quantile regression using the
RIDGE, LASSO, and elastic net penalties as a remedy against collinearity influential points and high
leverage points in general. To maintain robustness, we make use of very robust weights based on
the computationally intensive high breakdown minimum covariance determinant. Simulations and
applications to well-known data sets from the literature show an improvement in variable selection
and regularization due to the robust weighting formulation.

Keywords: weighted quantile regression; RIDGE penalty; LASSO penalty; elastic net penalty;
high leverage points; collinearity influential points; minimum covariance determinant

1. Introduction

Variable selection and robust estimation procedures are an important consideration
of multiple regression analysis in the presence of predictor space data aberrations (high
leverage points (outliers in the X-space) and multicollinearity) as well as response variable
(Y-space) outliers. It is well known that the least squares (LS) are susceptible to both data
aberrations in the predictor space and response variable (Y-space) outliers. To counter the
influence of Y-space outliers, alternative robust procedures have been developed in the
literature. One such attractive robust procedure is quantile regression (QR) [1]. In addition
to being robust, QR is more versatile than the LS. This is due to the fact that, while the LS
procedure models the conditional mean (E(Y|X)) (center of distribution), the QR procedure
is able to detect heterogeneous effects of predictors at different quantile levels of the
outcome as it models the conditional quantiles (QY|X(τ) for 0 < τ < 1) of the response
variable Y given the predictors X over the entire range of quantiles in (0, 1) [2]. Regression
quantiles (RQs) are optimal solutions to an optimization problem obtained using linear
programming (LP) algorithms [3]. An RQ at the τ = 0.5 quantile level corresponds to the
well-known least absolute deviation (LAD) estimator, i.e., the `1 estimator. Although RQs
are robust to Y-space outliers, on the other hand, they are susceptible to high leverage
points as their influence function are bounded in the Y-space but unbounded in the X-space.
Amongst the numerous sources of multicollinearity, some high-leverage observations tend
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to influence the eigen-structure of the predictor matrix thereby creating multicollinearity
or hiding it [4]. Such high leverage points are referred to as collinearity-influential points.
However, not all high leverage observations are collinearity influential points. As remedies
to high leverage points influences, weighted LAD (WLAD) [5] and weighted QR (WQR)
have been suggested in the literature [6].

In both variable selection and regularization, in order to enhance the prediction
accuracy and interpretability of statistical models, the RIDGE type [7], the least absolute
shrinkage and selection operator (LASSO) type [8–10] penalties and a hybrid of these two
penalties, viz., elastic net (E-NET) penalty [11,12] as well as the smoothly clipped absolute
deviation (SCAD) penalty [13,14] have been suggested in the literature. Notable extensions
of the LASSO penalty in the literature are the adaptive LASSO proposed by [15], fused
LASSO [16], and group LASSO [17]. In high-dimensional sparse models where ordinary
quantile regression is not consistent, [18] proposed the `1-penalized QR. The author of [14]
developed, upon the procedure of [19] on model selection in composite quantile regression
(CQR) and suggested weighted CQR (WCQR), a procedure based on data driven efficient
weights, as the former researcher’s equal weight property procedure lacked optimality.
To mitigate against the undesirable effects of high leverage points in variable selection in the
`1 estimator (QY|X(0.5)), the weighted LAD-LASSO (WLAD-LASSO) procedure has been
suggested [20,21]. Few variable selection procedures based on WQR have been suggested
in the QR regression framework in different settings. We generalize the WLAD-LASSO
approach to penalized WQR to mitigate against collinearity influential points and high
leverage points in general, and maintain robustness via use of very robust weights.

In summary, the motivations of this study are premised on the following:

• The generalization of WLAD-LASSO [20,21] (in addition, we also include the RIDGE
and the E-NET penalties) procedure to the QR framework, i.e., to penalized WQR as
each RQ (including the LAD estimator) is a local measure, unlike the LS estimator,
which is a global one.

• Rather than carrying an "omnibus" study of penalized WQR as in [20,21], we carry
out a detailed study by distinguishing different types of high leverage points viz.,

– Collinearity influential points which comprise collinearity inducing and collinear-
ity hiding points.

– High leverage points which are not collinearity influential.

• Taking advantage of high computing power, we make use of the very robust weights
based on the computationally intensive high breakdown minimum covariance deter-
minant (MCD) method rather than the well-known classical Mahalanobis distance or
any LS based weights as in [20] which are amenable to outliers.

The remainder of this article is structured as follows. Some preliminaries on QR and
variable selection in QR are discussed in Section 2. Variable selection in WQR as well as
motivation for our choice of weights are detailed in Section 3 while simulation studies
are detailed in Section 4. In Section 5, applications to two well-known data sets from the
literature are detailed. Lastly, Section 6 concludes the paper.

2. Preliminaries
2.1. Quantile Regression

Consider the linear regression model given by

yi = x′iβ + εi, f or i = 1, 2, 3, ..., n (1)

where yi denotes the value of the response variable vector Y for the ith observation,
xi = (xi1, xi2, ..., xip)

′ denotes the vector of p predictor variables from the n × p design
matrix X excluding the intercept, β = (β1, ..., βp)′ denotes a p × 1 vector of yet to be
estimated unknown regression coefficients (parameters) and εi denotes the value of the ith
random error term, with cumulative distribution function F (εi ∼ F).
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QR is based on an optimization problem which can be solved by linear programming
techniques, viz.,

β̂(τ) = argmin
β∈Rp

Σn
i=1ρτ(yi − x′iβ(τ)), i = 1, 2, ..., n (2)

where ρτ(u) = u[τ − I(u < 0)] ≡ u[τ.I(u ≥ 0) + (τ − 1).I(u < 0)] and β̂(τ) denotes the
τth RQ.

2.2. Variable Selection in Quantile Regression

In this section, we discuss QR variable selection. We specifically present variable
selection using LS-RIDGE [7], LASSO [9], adaptive LASSO [15], and E-NET [11] in a
QR scenario. Firstly, we consider QR penalized with the RIDGE penalty [7] denoted by
QR-RIDGE. The QR-RIDGE is given by the minimization problem

β̂(τ) = argmin
β∈Rp

Σn
i=1ρτ(yi − x′iβ(τ)) + λΣp

j=1β2
j , j = 1, 2, ..., p, i = 1, 2, ..., n (3)

where λ is a positive ridge parameter in the range 0 < λ < 1 and other terms are as defined
in Equation (3). Many variations of λ have been used in literature (see [7,22–26]). QR with
the RIDGE (`2-squared) penalty has been proposed as a remedy to the multicollinearity
problem [25]. The presence of multicollinearity results in undue large sample variance
resulting in unreliable inference and prediction.

Secondly, we consider QR variable selection procedure which uses the LASSO (`1)
penalty [9] denoted by QR-LASSO. The QR-LASSO is then given by the minimization
problem

β̂(τ) = argmin
β∈Rp

Σn
i=1ρτ(yi − x′iβ(τ)) + nλΣp

j=1|β j|, j = 1, 2, ..., p, i = 1, 2, ..., n (4)

where λ is the tuning parameter that shrinks some beta coefficients towards zero, the
second term is the penalty term, and other terms are as defined in Equation (3). This
`1-penalized QR may be superior to the `2-squared penalized QR in Equation (3) in some
instances.

Considering the more recent adaptive LASSO penalty by [15] in a penalized QR
scenario, the tuning parameter is no longer constant (λ) but λj for j = 1, 2, ..., p. The
minimization problem becomes

xβ̂(τ) = argmin
β∈Rp

Σn
i=1ρτ(yi − x′iβ(τ)) + nΣp

j=1λj|β j|, j = 1, 2, ..., p, i = 1, 2, ..., n (5)

where λj is the jth tuning parameter that shrinks some predictor variables to zero and other
unknowns are as defined in Equation (4).

We also present a penalized QR procedure that uses the elastic NET penalty from [11]
(E-NET-penalized QR which is best suitable for applications with unidentified groups of
predictors). The E-NET penalized QR is given by

β̂(τ) = argmin
β∈Rp

Σn
i=1ρτ |yi − x′iβ(τ)|+ αλΣp

j=1|β j|+ (1− α)λΣp
j=1β2

j , j = 1, 2, ..., p, i = 1, 2, ..., n (6)

where α ∈ [0, 1] and λ is the tuning parameter for the second and third terms, respec-
tively. Note that, for α = 0, the E-NET penalty reduces to the RIDGE penalty while, for
α = 1, it reduces to the LASSO penalty. In some instances, the E-NET based procedure
performs better than its ridge and LASSO counterparts [11]. Since QR is prone to outliers
in the predictor space, weighted QR has been proposed as a remedy to high leverage
points [6]. In the subsequent section, we motivate the choice of weights used in robust
variable selection in QR framework.
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3. Variable Selection and Regularization in Weighted Quantile Regression
3.1. Choice of Weights for Downweighing High Leverage Observations Motivation

In the LS case, statistics of the hat (projection) matrix hi = xi(X′X)−1x′i [4] have been
used as standard tools to generate weights for weighted LS (WLS) estimation. Although
this approach is both mathematically and practically tractable, such estimators have a
breakdown point of only 1/n so a single high leverage point can completely dominate the
ensuing estimates. Furthermore, such weights may suffer from the masking and swamping
effect associated with the LS. Permitting contamination in both the predictor and response
variables results in the breakdown point of LAD (and hence QR) estimator being the same
as that of LS, 1/n (see, e.g., [27]). To circumvent the undesirable effects of both outliers and
high leverage points, Ref. [5] proposed a weighted version of an LAD (WLAD) estimator.
The weights

ωj = min

(
1,

p
RD(xj)2

)
, j = 1, 2, ..., n (7)

of this estimator are based on the computationally intensive high breakdown Minimum

Covariance Determinant (MCD) method [28]. RD(xj) =
√(

xj − µ̂
)′

Σ̂−1
(
xj − µ̂

)
is the

robust distance (a modification of the classical Mahalanobis distance), µ̂ is the center of the
smallest ellipsoid (whose classical covariance matrix has the lowest possible determinant)
containing half (or h observations as defined by the user) of the observations of the design
matrix X, and Σ̂ is their covariance matrix multiplied by a consistency factor [29]. To
side step the huge computational load associated with this weight, Ref. [30] suggested

ωi =
√

minj(hj/hci ), where hci = xi(X′cXc)−1x′i is the ith leverage point relative to the clean

subset Xc (without high leverage points). However, in this study, we make use of RD(xj)
due to the existing computer power (efficient algorithms) as well as its robustness to gener-
alize the WLAD concept to the whole set of weighted conditional quantiles, i.e., weighted
regression quantiles (WRQs).

Generalizing the [20] WLAD regression estimator and making use of the MCD based
weights, we suggest a WQR estimator as a minimization problem given by

̂̃β(τ) = argmin
β∈Rp

Σn
i=1ωiρτ |yi − x′iβ(τ)| i = 1, 2, ..., n, (8)

where ωi and ρτ(.) are as defined in Equations (2) and (7), respectively.

3.2. Penalized Weighted Quantile Regression

Building on Equation (8), we suggest a penalized weighted QR (WQR) variable
selection procedure using MCD based weight 7 to counter the undesirable influences of
high leverage observations. We achieve robustness of WQR in the X-space due to the
robustness of the this MCD based weights chosen appropriately as in the LS case (see
also [5,30]). The then suggested penalized WQR variable selection procedures are based on
three penalty functions, viz., the RIDGE, LASSO, and the E-NET penalties bringing about
the WQR-RIDGE, WQR-LASSO, and WQR-E-NET estimators, respectively.

Let ωi be a robust weight. We use ωi in our proposed quantile variable selection
procedures. The incorporation of WLAD-LASSO in the procedure inherits X-space robust-
ness property as in [20]. The weight ωi was discussed in Section 3. First, we propose the
WQR-RIDGE given by

̂̃β = argmin
β̃∈Rp

Σn
i=1ωiρτ(yi − x′iβ(τ)) + λΣp

j=1β2
j , j = 1, 2, ..., p, i = 1, 2, ..., n (9)

where the terms are already defined. The tuning parameter λ shrinks the coefficients of the
predictor variables towards zero.
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We take advantage of the properties of WLAD-LASSO [20] and propose a weighted
quantile variable selection procedure called WQR-LASSO. The WQR-LASSO procedure
is expected to be robust and superior to its penalized QR counterpart, QR-LASSO. The
WQR-LASSO is the solution of a minimization problem given by

̂̃β = argmin
β̃∈Rp

Σn
i=1ωiρτ(yi − x′iβ(τ)) + nλΣp

j=1|β j|, j = 1, 2, ..., p, i = 1, 2, ..., n (10)

where tuning parameter λ is constant. In the literature, this procedure is found to perform
better than the WQR-RIDGE procedure under deviations from the Normality assumptions.

Lastly, we apply the E-NET penalty to WQR variable selection to bring about the
WQR-E-NET procedure. This weighted penalized QR procedure has both the LASSO
and RIDGE penalties properties inherent in it [11]. The WQR-E-NET is the solution to a
minimization problem given bŷ̃β = argmin

β̃∈Rp
Σn

i=1ωiρτ(yi − x′iβ(τ)) + αΣp
j=1|β j|+ (1− α)λΣp

j=1β2
j , j = 1, 2, ..., p, i = 1, 2, ..., n (11)

where α and λ are as in Equation (6).

3.3. Asymptotic Properties

We conveniently decompose the regression coefficient as β = (β′1, β′2)
′, where β′1 =

(β1, ..., βp0)
′ and β′2 = (βp0+1, ..., βp)′; x′i = (x′i1, x′i2)

′, where x′i1 = (xi1, ..., xip0)
′ and x′i2 =

(xi(p0+1), ..., xip)
′ such that

yi = x′iβ + εi ≡ x′i1β1 + x′i2β2 + εi, f or i = 1, 2, 3, ..., n, (12)

with true regression coefficient β1 corresponding to non zero coefficients and β2 = 0.
To establish asymptotic normality, suppose for a suitable choice of λn that we now

assume the two theoretical conditions to be true as stated in [13], as follows:

(i) The regression errors εi’s are i.i.d., with τth quantile zero and continuous, positive
density f (.) in a neighborhood of zero (see [31]).

(ii) Let W = diag(ω1, ω2, ..., ωn), where ωi for i = 1, 2, ..., n are known positive values
that satisfy max{ωi} = O(1).

(iii) There exists a positive definite matrix Σ: limn→∞
Σn

i=1ωix′ixi
n = Σ, where Σ11 and Σ22

denote the p0 × p0 and (p− p0)× (p− p0) top-left and right-bottom submatrices of
Σ, respectively.

We first give the following Theorem 1 (oracle property) for the i.i.d. error terms case
(W = In) before we consider the non i.i.d. error terms case which concerns this study.

Theorem 1. Consider a sample {(xi, yi), i = 1, ..., n} from model (12) satisfying conditions (i)
and (iii) (with W = In). If

√
nλn → 0 and n(γ+1)/2λn → ∞, then we have

(1) Sparsity: β̂2 = 0;

(2) Asymptotic normality:
√

n(β̂1 − β1)
d−→ N

(
0, τ(1−τ)Σ−1

11
f (0)2

)
.

In order to extend the conclusions of the i.i.d. error terms case to the non i.i.d. error
terms case, we invoke the following assumptions by [32]:

(K1) As n→ ∞ maxi=1,. . . ,n{x′ixi/n} → 0.

(K2) The random error terms εi’s are independent with Fi(t) = P(εi ≤ t) the distribution
function of εi. We assume Fi(.) is locally linear near zero (with a positive slope)
and Fi(0) = τ.
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(K3) Assume that, for each u, (1/n)∑n
i=1 ψni(u′, xi)→ ζ, where ζ(.) is a strictly convex

function taking values in [0, ∞) with ψni =
∫ t

0
√

n(Fi(s/
√

n)− Fi(0))ds denoting a
convex function for each n and i.

Corollary 1. Under assumptions (ii), (iii), and (K1), Theorem 1 holds provided the non i.i.d. error
terms satisfy (K2) and (K3).

Remark 1. The proofs of Theorem 1 and Corollary 1 are outlined in [13] (online supplement
materials).

4. Simulation Study

In this section, we perform a simulation study to investigate the finite-sample per-
formance of penalized WQR under the RIDGE, the LASSO, and the E-NET penalty (for
α = 0.5) functions in terms of the variable selection and regularization of the regression
parameters making use of Equations (9)–(11) and the robust MCD based weight (ωj) given
in Equation (7) in comparison to their unweighted versions. For brevity, we consider
τ = 0.5 (the LAD estimator) and τ = 0.25 RQ levels. We summarize the simulation results
in terms of the percentage of correctly estimated regression models, the average correct
zero coefficients (β3, β4, β6, β7, and β8) and the average incorrect zero coefficients along
with the median of the test error and its respective measure of dispersion,

MAD = 1.4826mediani=1,. . . ,n|εi −mediank=1,. . . ,n(εk)|,

where constant 1.4826 is a correction factor which makes the MAD consistent at Normal
distributions (see e.g., [29]). The simulation study is designed according to the following
scenarios with the predictor matrices of size n× p, p = 8 and n = 50, 100 (but we only
give results for n = 50 for brevity);

• D1− This predictor matrix is obtained from orthogonalization such that X′X = nI.
Using singular value decomposition (SVD), we solve W = UDV′, where wij ∼ N(0, 1)
for i = 1, ..., n and j = 1, ..., p; U and V are orthogonal with the diagonal entries of D
giving the singular (eigen) values of W. Then, X =

√
nU is such that X′X = nI due to

orthogonality of U.

• D2−has a collinearity inducing point which is D1, but with observation having the
largest Euclidean distance from the center of the design space moved 10 units in the
X-space.

• D3−has collinearity hiding point which is D1, but with observations having the
largest (second largest) Euclidean distance from the center of the design space moved
10 units in the X-space.

• D4−has a collinearity inducing point which is D1, but with observation having the
largest Euclidean distance from the center of the design space moved 100 units in the
X-space.

• D5−has collinearity hiding point which is D1, but with observations having the
largest (second largest) Euclidean distance from the center of the design space moved
100 units in the X-space.

• D6−has (m = 5) (n−m)× p correlated X1 and m× p leverage contaminated X2 sub

matrices of D6, i.e., X =

(
X1
X2

)
, where X1 ∼ N(µ1, V) with µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′

and vij = 0.5|j−i| (0.5 controls the degree of correlation), i, j = 1, 2, 3, 4, 5, 6, 7, 8, is the
(ij)th entry of the covariance matrix V), is the (n−m)× p correlated sub matrix of
D6; X2 ∼ N(µ2, I) with µ2 = (1, 1, 1, 1, 1, 1, 1, 1)′ is the m× p leverage contaminated
sub matrix of D6.
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The predictor matrices D1–D5 are constructed as in [33], while D6 is constructed as
in [20].

The regression coefficients with zero intercept, i.e., β0 = 0 are

• β1 = (3.5, 2, 0, 0, 2.5, 0, 0, 0)′, β2 = (2, 1, 0, 3, 1.5, 0, 1, 0)′.

We consider the following error term distribution scenarios;

• ε ∼ N(µ, σ2), with (µ, σ) choices (0, 1) and (0, 3).

• ε ∼ td with choices d = 1, 6.

The design matrix D1 is used as a baseline, and a schematic representation of D2–D5
departures from it is shown in Figure 1; D2 and D4 have a high leverage point that induces
collinearity while D3 and D5 each have a pair of high leverage points that hide collinearity,
viz., one for inducing the collinearity and the other for hiding it. On the other hand, D6
has both multicollinearity due the covariance structure, V of the sub matrix X1, and high
leverage points due to the mean shift in X2.

D1–D6 (see, e.g., the response variable Y = (Y1, Y2)
′ is generated as in [20], i.e.,

Y1 = X1
′β1 + σε, ε ∼ N(0, σ2); σ = 1, 3 and Y2 = X2

′β2;
Y1 = X1

′β1 + σε, ε ∼ td; σ = 0.5, 1 and Y2 = X2
′β2.

The number of simulation runs is 200 while the 100-fold cross-validations are em-
ployed to obtain the tuning parameters λ. Instead of using cross-validation error metrics
independent tuning data sets and testing data sets of size n and 100n were generated in
the exact way the training data sets were generated (see, e.g., [13]). This simulation study
explores these different scenarios in both QR and WQR variable selection procedures using
the R-add-on package hqreg. In this package, the regularization parameter lambda is fit
using a semismooth Newton coordinate descent algorithm. See [34] for details.

A schematic representation of collinearity influential points is given in Figure 1 below
showing the scatter plots representations of predictor matrices D2–D5. The extreme
observation in D2 and D4 creates collinearity while the second extreme observation D3 and
D5 obscures it. We only consider the Normal distribution at the well-behaved orthogonal
predictor matrix D1, and from thereon we only consider the t distribution as QR being
designed to handle distributions heavier than the Normal one which is handled best by the
LS.

4.1. Results

D1 SCENARIO
As a point of departure, we consider the well-behaved predictor matrix D1 under the

Normal distribution as contrasted with the D1 under the t distribution on 1 d. f . (implying
outliers). The results given in Table 1 are as expected. At D1 under the Normal distribution,
variable (model) selection performs best under the LASSO penalty followed by the E-NET
penalty across all models with no marked differences in the median and MAD test error
measures indicating the robustness of the QR-LASSO procedure under the t distribution.
This is further illustrated graphically in Figures 2 and 3 where the QR-LASSO procedure
correctly shrinks to zero the zero coefficients {β3, β4, β6, β7, β8 } more often than not.
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Figure 1. First Row Panel: Comprise Collinearity Influential Points that create collinearity in D2 and
D4; Second Row Panel: Comprise Collinearity Influential Points that hide collinearity in D3 and D5.

Table 1. Quantile regression at D1 (at quantile levels τ = 0.5 and 0.25) for n = 50.

Correctly No. of Zeros Med (MAD)
Parameters Method Fitted Correct Incorrect Test Error Optimal λ

D
1

un
de

rt
he

N
or

m
al

D
is

tr
ib

ut
io

n σ = 1, τ = 0.25 QR-RIDGE 0 2.27 0 1.28(1.97) 0.12
QR-LASSO 67.5 4.56 0 0.71(1.20) 0.04
QR-E-NET 18.5 3.59 0 0.72(1.25) 0.04

σ = 1, τ = 0.5 QR-RIDGE 1.5 2.33 0 −0.03(1.99) 0.14
QR-LASSO 62 4.49 0 0.00(1.15) 0.05
QR-E-NET 24 3.6 0 0.01(1.19) 0.04

σ = 3, τ = 0.25 QR-RIDGE 9 3.07 0.03 2.70(4.32) 0.12
QR-LASSO 39.5 4.52 0.38 2.03(3.60) 0.04
QR-E-NET 30.5 4 0.2 2.18(3.69) 0.04

σ = 3, τ = 0.5 QR-RIDGE 2.5 2.37 0.01 −0.04(4.06) 0.12
QR-LASSO 40 4.57 0.32 0.01(3.45) 0.05
QR-E-NET 31 3.9 0.11 0.00(3.55) 0.04

D
1
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r
th

e
tD
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tr

ib
ut

io
n

d = 1, σ = 0.5, QR-RIDGE 3.00 2.33 0.02 2.17(3.21) 0.11
τ = 0.25 QR-LASSO 64.00 4.92 0.72 1.24(2.16) 0.04

QR-E-NET 36.50 4.42 0.62 1.44(2.41) 0.03
d = 1, σ = 0.5, QR-RIDGE 1.50 2.56 0.01 0.02(2.94) 0.13
τ = 0.5 QR-LASSO 64.50 4.94 0.67 0.02(1.72) 0.04

QR-E-NET 32.50 4.33 0.58 −0.01(1.94) 0.03
d = 1, σ = 1, QR-RIDGE 2.50 2.37 0.03 3.05(4.30) 0.11
τ = 0.25 QR-LASSO 30.50 4.95 1.57 2.44(3.80) 0.04

QR-E-NET 26.00 4.78 1.49 2.62(4.04) 0.03
d = 1, σ = 1, QR-RIDGE 3.50 2.49 0.02 0.02(4.15) 0.12
τ = 0.5 QR-LASSO 33.50 4.95 1.38 0.02(3.34) 0.04

QR-E-NET 25.50 4.66 1.27 0.02(3.58) 0.03



Entropy 2021, 23, 33 9 of 21
0
.5

1
.0

1
.5

RQ−RIDGE, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0
.2

0
.0

0
.2

0
.4

RQ−RIDGE, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

0
.0

0
.5

1
.0

1
.5

RQ−RIDGE, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0
.4

−
0

.2
0
.0

0
.2

RQ−RIDGE, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

RQ−LASSO, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0

.4
−

0
.2

0
.0

0
.2

RQ−LASSO, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

RQ−LASSO, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

RQ−LASSO, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

1
.0

1
.5

2
.0

2
.5

3
.0

RQ−E−NET, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

RQ−E−NET, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

RQ−E−NET, τ = 0.5

Nonzero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β1 β2 β5

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

RQ−E−NET, τ = 0.5

Zero Coefficients

C
o

e
ff

ic
ie

n
ts

 e
s
ti
m

a
te

s

β3 β4 β6 β7 β8

Figure 2. Box Plots at D1 for RQ: Left panel; under the Normal distribution with σ = 1, Right panel; Under the t-distribution
with σ = 1 and d = 1 , τ = 0.5.
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Figure 3. Box Plots at D1 for RQ: Left panel; under the Normal distribution with σ = 1, Right panel; under the t-distribution
with σ = 1 and d = 1, τ = 0.25.



Entropy 2021, 23, 33 11 of 21

Remark 2. The five zero coefficients correspond to the set {β3, β4, β6, β7, β8 }, hence the maximum
average of correctly/incorrectly selected (shrunk) coefficients is 5 while the set of correctly selected
models is given as a proportion, i.e., a %.

D2 AND D4 SCENARIOS
We consider the introduction of collinearity inducing points in both D2 and D4. The

RIDGE penalty performs the worst in every scenario in both penalized QR and penalized
WQR in model/variable selection. The model/variable selection pattern at D2 and D4
under both the t6 and t1 distributions is shown in Figure 4. The dominance of WQR-LASSO
followed by WQR-E-NET is clearly depicted. However, the performance of WQR-E-NET is
generally better under the t1 distribution than it is under the t6 distribution. In Figure 4
(lower panels), both the median absolute test error and its MAD measure (in the line graph)
show that generally the unweighted versions outperform the weighted ones.

D2 and D4 under the t Distribution on 6 and 1 degrees of freedom
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Figure 4. Performance at D2 and D4 under the t6 and t1 distributions with the RIDGE and E-NET on the LHS and RHS of
LASSO, respectively; Upper panel: Model/Variable selection showing the proportion of correct models and the average of
correct/incorrect βs selected; Lower panel: Prediction metrics.
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D3 AND D5 SCENARIO
We consider the introduction of collinearity hiding points in both D3 and D5. The per-

formances under the t6 and t1 distributions are shown graphically in Figure 5. In model/vari-
able selection, throughout all the scenarios, the weighted penalized versions outperform
the penalized unweighted versions under the LASSO and E-NET penalties. Amongst the
penalized weighted versions, WQR-RIDGE performs the worst while WQR-LASSO per-
forms better than WQR-E-NET. The prediction pattern under the t distributions exhibited
under D3 and D5 in Figure 5 (lower panel) are different to that exhibited at D2 and D4 in
that the MAD error measure is more erratic (but the absolute median error is less erratic) at
D3 and D5 but the absolute. In fact, the prediction picture of QR-LASSO and WQR-LASSO
at τ = 0.5 based on the absolute median error are similar at D3 and D5, whereas, at D2 and
D4, WQR-LASSO performs better with respect to this measure.

D3 and D5 under the t Distribution on 6 and 1 degrees of freedom
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Figure 5. Performance at D3 and D5 under the t6 and t1 distributions distributions with the RIDGE and E-NET on the LHS
and RHS, respectively; Upper panel: Model/Variable selection showing the proportion of correct models and the average of
correct/incorrect βs selected; Lower panel: Prediction metrics.
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D6 SCENARIO
The D6-scenario model/variable selection performance outcomes under the t distri-

bution is given in Figure 6. In Figure 6, the dominance of the LASSO penalty in both QR
and weighted QR is clearly depicted with WQR-LASSO far outperforming QR-LASSO in
model/variable selection. Overall, on average, the zero βs are most incorrectly selected
under the t1 distribution and at σ = 1. The prediction pattern under the t distribution
exhibited under D6 in Figure 6 (lower panel) is slightly poorer under the t1 distribution
compared to that exhibited under the t6 distribution.
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Figure 6. Performance at D6 under the t6 and t1 distributions with the RIDGE and E-NET on the LHS and RHS of LASSO,
respectively; Model/Variable selection showing the proportion of correct models and the average of correct/incorrect βs
selected; Lower panel: Prediction metrics.

5. Examples

In this section, we consider two data sets often used to illustrate the efficacy of robust
methodologies in mitigating against high leverage points in general as well as collinearity
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influential points in particular, viz. the [35] and the [36] data sets. In both data sets, the
response is generated based on the t1 error term distribution in line with testing the efficacy
of robust procedures like QR as in [20].

Remark 3. The LS procedure is adversely affected by both high leverage points and outliers in the
Y-space, hence it consistently gives the worst performance as expected. On the other hand, QR is
not affected by the latter data aberrations. Consequently, we mainly focus on the efficacy of penalized
WQR at quantile levels τ = 0.5 and τ = 0.25 in addressing the problem of high leverage points
with the intercept = F−1(τ) + β0 corresponding to 0 and −1 under the t1 error term distribution,
respectively.

5.1. Hawkins, Bradu, and Kass Data Set

We firstly consider the [35] which consists of 75 observations with three predictor
variables. The first 14 observations of the 75 observations are high leverage points with the
first 13 observations inducing the collinearity while the 14th observation greatly affects the
collinearity structure on its own although it is also a collinearity inducing point (see [37]).
Figure 7 shows the leverage structure for the predictor variables of this data set based on
the robust MCD based distance as well as the classical one. We give results for the full data
set and reduced data sets without observations 1–14.

The response variable is generated as Y2 = X′2β2 for the first 10 observations and
Y1 = X′1β1 + ε, ε ∼ t1 for the remainder of the data, where β2 = (2, 2, 0)′ and β1 = (1, 1, 0)′

such that Y = (Y1, Y2)
′

The results for the full data set are given in Table 2.

Table 2. Results for the full [35] data set.

β

UNWEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.5

intercept 0.00 2.27 −2.27 2.39 −2.39 2.39 −2.39 2.39 −2.39
X1 2.00 1.39 0.61 1.45 0.55 1.45 0.55 1.45 0.55
X2 2.00 1.87 0.13 1.79 0.21 1.79 0.21 1.79 0.21
X3 0.00 −0.78 0.78 −0.74 0.74 −0.74 0.74 −0.74 0.74

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.25

intercept −1.00 1.09 −2.09 1.32 −2.32 1.32 −2.32 1.32 −2.32
X1 2.00 1.59 0.41 1.48 0.52 1.48 0.52 1.48 0.52
X2 2.00 1.94 0.06 1.80 0.20 1.80 0.20 1.80 0.20
X3 0.00 −0.88 0.88 −0.76 0.76 −0.76 0.76 −0.76 0.76

β

WEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.06 0.00

RQ
τ = 0.5

intercept 0.00 2.27 −2.27 0.11 −0.11 0.00 0.00 0.11 −0.11
X1 2.00 1.39 0.61 1.93 0.07 1.93 0.07 1.93 0.07
X2 2.00 1.87 0.13 2.01 −0.01 1.97 0.03 2.01 −0.01
X3 0.00 −0.78 0.78 −0.09 0.09 0.00 0.00 −0.09 0.09

λ 0.00 0.50 0.50 0.50

RQ
τ = 0.25

intercept −1.00 1.09 −2.09 0.18 −1.18 0.29 −1.29 0.29 −1.29
X1 2.00 1.59 0.41 0.35 1.65 0.00 2.00 0.00 2.00
X2 2.00 1.94 0.06 0.39 1.61 0.00 2.00 0.00 2.00
X3 0.00 −0.88 0.88 0.38 −0.38 0.00 0.00 0.00 0.00
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Figure 7. Tolerance ellipses and distance–distance plots for the [35] data set.

Similar poor performances of penalized QR at both τ-levels are exhibited across all
penalty functions. However, penalized WQR exhibits a drastic improvement at τ = 0.5
where penalized WQR is equivalent to unpenalized WQR under both the RIDGE and the
E-NET penalties as the λ = 0. At τ = 0.25, where λ 6= 0, WQR tends to be too “greedy”
under LASSO and E-NET penalties where all the parameters are shrunk to zero.

Results for the reduced [35] data set with a “clean” predictor matrix (without obser-
vations 1–14) are given in Table 3. As expected, both QR and WQR select unpenalized
models (models with tuning parameter λ = 0) except WQR at τ = 0.25. QR performs con-
siderably well at both τ levels and across penalty functions. However, there is a marginal
improvement in using penalized WQR at τ = 0.5 while, at τ = 0.25, the LASSO and E-NET
penalties are too “greedy”.
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Table 3. Results for [35]; without observations 1–14.

β

UNWEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.5

intercept 0.00 0.74 −0.74 0.50 −0.50 0.50 −0.50 0.50 −0.50
X1 2.00 1.86 0.14 1.84 0.16 1.84 0.16 1.84 0.16
X2 2.00 1.93 0.07 1.87 0.13 1.87 0.13 1.87 0.13
X3 0.00 −0.07 0.07 −0.03 0.03 −0.03 0.03 −0.03 0.03

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.25

intercept −1.00 0.69 −1.69 −0.09 −0.91 −0.09 0.09 −0.09 −0.91
X1 2.00 1.67 0.33 1.73 0.27 1.73 0.27 1.73 0.27
X2 2.00 1.90 0.10 1.95 0.05 1.95 0.05 1.95 0.05
X3 0.00 −0.08 0.08 −0.10 0.10 −0.10 0.10 −0.10 0.10

β

WEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.5

intercept 0.00 0.74 −0.74 0.27 −0.27 0.27 −0.27 0.27 −0.27
X1 2.00 1.86 0.14 1.86 0.14 1.86 0.14 1.86 0.14
X2 2.00 1.93 0.07 1.96 0.04 1.96 0.04 1.96 0.04
X3 0.00 −0.07 0.07 −0.06 0.06 −0.06 0.06 −0.06 0.06

λ 0.00 0.50 0.33 0.50

RQ
τ = 0.25

intercept −1.00 0.69 −1.69 1.74 −2.74 2.22 −3.22 2.20 −3.20
X1 2.00 1.67 0.33 0.30 1.70 0.00 2.00 0.00 2.00
X2 2.00 1.90 0.10 0.48 1.52 0.00 2.00 0.10 1.90
X3 0.00 −0.08 0.08 0.22 −0.22 0.00 0.00 0.00 0.00

5.2. Hocking and Pendleton Data Set

While the [35] set is an example of high leverage points that are collinearity inducing
points, the [36] data set is an example of high leverage points that are collinearity hiding
points. This data set has 26 observations with three predictor variables, X1, X2, and X3,
whereby X3 is created as a linear combination of X1 and X2. The response variable is
generated as Y1 = X′1β1 + ε, ε ∼ t1 for the first 22 observations and Y2 = X′2β2 for the
remainder of the data, where β1 = (3,−2, 0)′ and β2 = (1, 1, 0)′ such that Y = (Y1, Y2)

′.
Figure 8 shows the leverage structure for the predictor variables of this data set based

on the robust MCD based distance as well as the classical one. We give results for the full
data set and a reduced data set (without the collinearity hiding observation 24).

The results for the full data set are given in Table 4. Under penalized unweighted RQ,
β is reasonably best estimated at τ = 0.25 while, under penalized, WQR, it is reasonably
best estimated at τ = 0.5 across all penalty functions. Under penalized WQR, the model
with tuning parameter λ = 0 is selected indicating that unpenalized WQR exhibits the
optimal model. There is an improvement in adopting unpenalized WQR compared to
penalized QR at both τ-levels. However, the best parameter estimation is exhibited under
unpenalized WQR at τ = 0.5.
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Figure 8. Tolerance Ellipses and Distance-Distance Plots for the [36] data set.

The results for the reduced data set without observation 24 are given in Table 5, leaving
only one mild leverage point, observation 8. Cross validation results have consistently
chosen unpenalized QR and unpenalized WQR models as the optimal models except for
QR-LASSO, QR-E-NET, and WRQ-LASSO at τ = 0.5, where λ 6= 0. The best results are
exhibited under unpenalized WQR at τ = 0.5 followed by unpenalized WQR at τ = 0.25.
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Table 4. Results for the full [36] data set.

β

UNWEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.11 0.06 0.11

RQ
τ = 0.5

intercept 0.00 25.09 −25.09 24.34 −24.34 27.63 −27.63 23.63 −23.63
X1 3.00 1.55 1.45 0.86 2.14 1.28 1.72 1.06 1.94
X2 −2.00 −2.30 0.30 −0.86 −1.14 −2.12 0.12 −1.21 −0.79
X3 0.00 −0.66 0.66 0.17 −0.17 −0.49 0.49 0.00 0.00

λ 0.00 0.00 0.06 0.06

RQ
τ = 0.25

intercept −1.00 23.53 −24.53 25.26 −26.26 30.32 −31.32 33.13 −34.13
X1 3.00 1.19 1.81 1.09 1.91 0.56 2.44 0.30 2.70
X2 −2.00 −1.96 −0.04 −1.98 −0.02 −1.70 −0.30 −1.53 −0.47
X3 0.00 −0.15 0.15 −0.16 0.16 0.00 0.00 0.02 −0.02

β

WEIGHTED

NONE-BIASED WQR-RIDGE WQR-LASSO WQR-E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

RQ
τ = 0.5

intercept 0.00 25.09 −25.09 0.36 −0.36 0.36 −0.36 0.36 −0.36
X1 3.00 1.55 1.45 2.94 0.06 2.94 0.06 2.94 0.06
X2 −2.00 −2.30 0.30 −2.08 0.08 −2.08 0.08 −2.08 0.08
X3 0.00 −0.66 0.66 0.01 −0.01 0.01 −0.01 0.01 −0.01

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.25

intercept −1.00 23.53 −24.53 −0.08 −0.92 −0.08 −0.92 7.62 −8.62
X1 3.00 1.19 1.81 2.95 0.05 2.95 0.05 2.95 0.05
X2 −2.00 −1.96 −0.04 −2.47 0.47 −2.47 0.47 −2.47 0.47
X3 0.00 −0.15 0.15 −0.03 0.03 −0.03 0.03 −0.03 0.03

Table 5. Results for [36] data set without observation 24.

β

UNWEIGHTED

NONE-BIASED RIDGE LASSO E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.22 0.08

RQ
τ = 0.5

intercept 0.00 −59.31 59.31 −56.47 56.47 40.67 −40.67 8.77 −8.77
X1 3.00 5.78 −2.78 5.65 −2.65 0.00 3.00 2.09 0.91
X2 −2.00 −0.22 −1.78 −0.32 −1.68 −1.18 −0.82 −1.37 −0.63
X3 0.00 2.13 −2.13 2.05 −2.05 0.00 0.00 0.30 −0.30

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.25

intercept −1.00 −56.16 55.16 −59.60 58.60 −59.61 58.61 −59.61 58.61
X1 3.00 5.67 −2.67 5.80 −2.80 5.80 −2.80 5.80 −2.80
X2 −2.00 −0.61 −1.39 −0.48 −1.52 −0.48 −1.52 −0.48 −1.52
X3 0.00 1.96 −1.96 2.13 −2.13 2.13 −2.13 2.13 −2.13

β

WEIGHTED

NONE-BIASED WQR-RIDGE WQR-LASSO WQR-E-NET
β̂ Bias β̂ Bias β̂ Bias β̂ Bias

λ 0.00 0.00 0.06 0.00

RQ
τ = 0.5

intercept 0.00 −59.31 59.31 0.12 −0.12 −0.24 0.24 0.12 −0.12
X1 3.00 5.78 −2.78 2.88 0.12 2.77 0.23 2.88 0.12
X2 −2.00 −0.22 −1.78 −1.88 −0.12 −1.44 −0.56 −1.88 −0.12
X3 0.00 2.13 −2.13 0.07 −0.07 0.20 −0.20 0.07 −0.07

λ 0.00 0.00 0.00 0.00

RQ
τ = 0.25

intercept −1.00 −56.16 55.16 −0.37 −0.63 −0.37 −0.63 −0.37 −0.63
X1 3.00 5.67 −2.67 3.02 −0.02 3.02 −0.02 3.02 −0.02
X2 −2.00 −0.61 −1.39 −2.59 0.59 −2.59 0.59 −2.59 0.59
X3 0.00 1.96 −1.96 −0.12 0.12 −0.12 0.12 −0.12 0.12
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6. Conclusions

This paper suggested a penalized WQR procedure making use of robust weights
based on the computationally intensive high breakdown MCD method rather than the
well-known classical Mahalanobis distance or any other LS based weights as in [20] which
are amenable to outliers. As penalty functions, the RIDGE, LASSO, and E-NET penalties
were used yielding the procedures WQR-RIDGE, WQR-LASSO, and the WQR-E-NET,
respectively. The efficacy of these procedures as a remedy to high leverage points and
collinearity influential points were investigated via simulations and applications to well-
known data sets from the literature.

Simulation studies show that generally penalized versions of robustly WQR performs
better than their unweighted counterparts, with the WQR-LASSO generally performing
the best although marginally so at D2 and D4 under the Normal distribution. However,
there are few exceptions; at D2 and D4 under the Normal distribution, with respect to
model/variable selection, WQR-LASSO and WQR-E-NET alternately dominate each other
while, with respect to prediction, penalized QR performs better than penalized WQR. The
occasional dominance of the WQR-E-NET over WQR-LASSO is expected (see, e.g., [11]).

Applications to well-known data sets from the literature show that, in some cases,
applying the MCD based robust weight is adequate, i.e., WQR (tuning parameter λ = 0)
performs better than penalized WQR. The best performance is mostly at a quantile level
τ = 0.5 while WQR-LASSO and WQR-E-NET are too “greedy” at τ = 0.25, shrinking all
parameters to zero. Thus, overall, simulations and applications to the [35] and the [36]
data sets show an improvement in variable selection and regularization due to the robust
weighting formulation.

Author Contributions: Conceptualization, E.R.; Methodology, E.R. and I.M.; Software, E.R. and I.M.;
Supervision, E.R.; Validation, E.R.; Writing—original draft, E.R. and I.M. All authors have read and
agreed to the submitted version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and the two referees for carefully
reading the manuscript and for the comments which greatly improved the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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QR Quantile Regression
RQ Regression Quantile
QY|X(τ) Regression Quantile at quantile level 0 < τ < 1
WQR Weighted Quantile Regression
LAD Least Absolute Deviation
LP Linear Programming
LASSO Least Absolute Shrinkage and Selection Operator
E-NET Elastic Net
SCAD Smoothly Clipped Absolute Deviation
CQR Composite Quantile Regression
MCD Minimum Covariance Determinant
SVD Singular value Decomposition
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