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Experimental immune challenges 
reduce the quality of male 
antennae and female pheromone 
output
Hieu T. Pham1,2, Mark A. Elgar1, Emile van Lieshout1 & Kathryn B. McNamara1*

Sexual signalling is a key feature of reproductive investment, yet the effects of immune system 
activation on investment into chemical signalling, and especially signal receiver traits such as 
antennae, are poorly understood. We explore how upregulation of juvenile immunity affects male 
antennal functional morphology and female pheromone attractiveness in the gumleaf skeletonizer 
moth, Uraba lugens. We injected final-instar larvae with a high or low dose of an immune elicitor or 
a control solution and measured male antennal morphological traits, gonad investment and female 
pheromone attractiveness. Immune activation affected male and female signalling investment: 
immune challenged males had a lower density of antennal sensilla, and the pheromone of immune-
challenged females was less attractive to males than their unchallenged counterparts. Immune 
challenge affected female investment into ovary development but not in a linear, dose-dependent 
manner. While there was no effect of immune challenge on testes size, there was a trade-off between 
male pre- and post-copulatory investment: male antennal length was negatively correlated with 
testes size. Our study highlights the costs of elaborate antennae and pheromone production and 
demonstrates the capacity for honest signalling in species where the costs of pheromone production 
were presumed to be trivial.

Immune system maintenance and up-regulation is energetically  costly1–3, so organisms must allocate their finite 
resources between immune defence and other traits, such as  reproduction4–7. Theoretical and empirical research 
reveals phenotypic and evolutionary trade-offs between immune investment and a suite of pre-copulatory and 
post-copulatory sexual traits [for a review,  see5,8]. While immune activation has an impact on sexual signalling in 
both  acoustic9–11 and visual sensory  modalities12,13, the impact on chemical signalling is less well  understood14–18, 
despite being the dominant and ancestral modality of sexual  signalling19.

Studies documenting trade-offs between immunity and chemical signalling typically focus on the signaller’s 
 perspective14–18,20. Trade-offs between immune investment and chemical-receiving structures (antennae) have 
not been examined, despite the costs of maintaining these  structures21,22 and their obvious role in reproduction 
through mate location and reception of sensory information used in mate assessment. Antennae length and the 
number of sensilla (chemoreceptors) they bear are important determinants of chemical signalling  success23–25. 
In the Lepidoptera, female moths release minute quantities of sex-pheromone26,27, so selection may favour 
males with antennal morphology, including antennal length and sensilla numbers, that optimises odorant-
receptor  interactions24,28,29. For example, male gumleaf skeletonizer moths, U. lugens, with long antennae are 
better able to locate younger  females30 with a greater residual reproductive  value31, and male neriid flies Telo-
stylinus angusticollis with relatively longer antennae were more successful at acquiring  mates32. The functional 
morphology of antennal traits varies facultatively in response to diet or nutrient  limitation33, and to population 
 demography34. Since sensilla are costly and condition  dependent28, males may trade-off investment in these 
traits against immune function. Thus, the potential for infection by parasite and/or pathogens may provide a 
mechanism for maintaining the observed intra-specific variation in antennal investment, as occurs in other 
sexually selected  traits35.

Sex pheromones are commonly used by females to reveal their location to males, and the nature of these 
signals can influence both the number and quality of prospective mating  partners19,24. Historically, the costs of 
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producing sex pheromones was considered  trivial36–38, but accumulating evidence indicates that female phero-
mone quality and calling (pheromone-releasing behaviour) are condition  dependent20,39,40 and exhibit significant 
 plasticity41,42. Nevertheless, Barthel et al.16 provide rare evidence of a trade-off between female sex pheromone 
and immunity: the composition of sex pheromone produced by female tobacco budworm moths, Heliothis 
virescens, changed following injection with a pathogenic immune elicitor, with females experiencing reduced 
mating success.

We examine the trade-offs between immune investment and female chemical signalling and male sensory 
structures in the gumleaf skeletonizer moth, Uraba lugens, (Lepidoptera: Nolidae), a capital breeding species. 
The poor flight capacity of  females43 means their mating success depends largely on the attractiveness of their 
sex pheromone. Male reproductive success is primarily determined by their longevity and speed of locating 
receptive females because female re-mating rates are low (18.34%), and males mate once per night only (personal 
observation). Female pheromone investment is facultatively adjusted in response to population  density42 and 
 age44, and male U. lugens adjust their investment in pre-copulatory (antennae) and post-copulatory (testes size) 
sexually selected traits in response to population demography. For example, males reared at low population 
densities produce larger antennae, thereby improving their mate  detection30,34. Specifically, we address two ques-
tions: first, is there a dose-dependent impact of immune challenges on trade-offs between traits associated with 
pre- and post-copulatory sexual selection; and second, what is the impact of immune trade-offs on life-history 
traits, including body size and longevity?

Materials and methods
Insect culturing. Australian gumleaf skeletonizer moth, U. lugens, were collected as eggs from multiple 
egg batches and locations in Melbourne, Australia. Larvae were maintained under constant conditions (15L:9D 
light:dark; 22.5  °C; 70% humidity) in plastic containers (40–50 individuals per 1 L container) until the fifth 
instar, after which individuals were moved to a 1 L container (10 individuals/container). Containers were sup-
plied with fresh, mature leaves of Eucalyptus spp.

Immune assays. On the day of their final-instar moult (males: 9th instar; females: 10th instar), individuals 
were haphazardly collected from the stock population, weighed (to the nearest 0.1 mg) and allocated to one of 
three immune-challenge treatments: a ‘high’ dose of a non-pathogenic immune elicitor, a lipopolysaccharide 
(LPS) derived from Serratia marcescens (Sigma-Aldrich L6136); a ‘low’ dose of LPS; or a solution of an isotonic 
insect ringer (Sigma- Aldrich G8142) as a control. LPS allows quantification of the costs of immune responses, 
without the confounding effects of physiological sickness. LPS induces upregulation of a number of inverte-
brate immune effector systems, consequently reducing investment in a range of reproductive  traits45,46. LPS 
doses were modified from McNamara et al.45, scaled appropriately for species-and sex-specific body mass. We 
used sex‐specific mean weights of a cohort of final‐instar U. lugens to calculate the relative dose for this species 
(high dose = 0.08 μg of LPS/mg of larvae; low dose = 0.06 μg of LPS/mg). Accordingly, males were injected with 
either 3.80 µg or 2.66 µg and females with 5.99 µg or 4.19 µg of LPS, for high and low doses, respectively. LPS 
was dissolved in 1.5 µl of ringer and injected in the rear proleg using a Hamilton micro-syringe (7632-01) with 
a 33-gauge needle (7803-05). Control treatment individuals were injected with 1.5  µl of ringer. Larvae were 
maintained individually in 1L plastic containers and fed with Eucalyptus spp. leaves until pupation. Pupae were 
transferred to individual vials (40 × 60 mm, 120 ml) under standard laboratory conditions until adult eclosion.

Immune challenge, juvenile development, longevity and adult body size. In total, 263 females 
(control = 84, low-dose = 67, high-dose = 112) and 322 males (control = 95, low-dose = 132, high-dose = 95) were 
assessed daily for survival. Of those that survived, 92 females (control = 39, low-dose = 25, high-dose = 28) and 
115 males (control = 34, low-dose = 49, high-dose = 32) were assessed for adult body size (wing size) and longev-
ity (from adult eclosion until death). Wing length was measured as an index of body size  [following42].

Immune challenge and male pre- and post-copulatory reproductive investment. In a separate 
experiment, we assessed the effect of immune challenge on male pre- and post-copulatory reproductive invest-
ment, at two days following adult eclosion. Each male’s left antenna was removed and mounted on a 12.6 mm 
scanning electron microscopy (SEM) stub (Proscitech G040) and imaged on a FEI Quanta 200F SEM (spot 
size = 2.0; pressure = 0.80  mbar; voltage = 10.0  kV) (Bio21 Institute, The University of Melbourne, Australia). 
We measured antennal length (from tip to scape), flagellomere (segment) number and the density of trichodea 
sensilla, given their role in olfactory mate choice in the  Lepidoptera47 (see Supplementary materials for details) 
using  ImageJ48. The average sensilla density for each male, based on the sensilla density of the 1st (from the tip) 
and 35th flagellomeres, was calculated by dividing the total number of trichodea sensilla by the total area in μm2 
of those flagellomeres.

Testes were removed and placed on a glass slide and photographed using a Sony camera (ILCE-QX1) mounted 
on an Olympus microscope (SZX16) at × 5 magnification. The area of the testes was measured using the trace 
function (and standardised using a calibration slide) using  ImageJ48. All male and female morphological meas-
urements were obtained blind to the experimental treatment.

Immune challenge and female reproductive investment. In a separate experiment, we assessed the 
effect of immune challenge on female mate attraction investment and fecundity, by measuring female phero-
monal attractiveness and ovary mass.

The effect of immune challenge on female pheromone quality was evaluated using a Perspex y-maze olfac-
tometer (for details, see Fig. S2; Supplementary materials). A standardised, continuous air flow from a single 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3578  | https://doi.org/10.1038/s41598-022-07100-y

www.nature.com/scientificreports/

source was introduced into each chamber located at the end of each arm of the Y-maze and on to the receiving 
male. The chamber containing the female was sealed with a fine mesh, preventing tactile and visual communica-
tion with the male; thus, males assessed female attractiveness according to her pheromone only. A single female 
(LD or HD) was placed in one container and a single control female was placed in the other container and left 
to acclimate for 1 h. Both females were ≤ 48 h post eclosion. Once both females commenced calling, a virgin, 
stock (non-experimental) male (≤ 36 h post eclosion) was introduced into the central arm of the Y-maze, and 
was deemed to have responded when he either walked or flew toward the airflow, travelling at least 5 cm into 
one of the arms of the y-maze and remaining there for more than 1 min. Males that did not initiate movement 
within 30 min were replaced with another male. Males were given 60 min to make a choice or were excluded. 
Males were used once only. Trials were conducted during the middle of the scotophase, with an overhead red 
light used for illumination. The location of the treatment and control females was alternated between trials to 
minimise potential positional bias.

Immediately following completion of the trial, females were frozen at − 20 °C. Ovary mass was used as an 
index of fecundity. Ovaries were dissected out, all extraneous tissue carefully removed, and weighed using a 
microbalance (Mettler Toledo XS205). Wing length was also measured (as above).

Statistical analysis. Statistical analyses were conducted, and all figures created, in RStudio (v. 1.2.5042)49. 
The effect of immune-challenge treatment on survival was explored using a Generalized Linear Model with a 
binomial error distribution. The effect of immune challenge treatment on adult longevity and wing size were 
explored using General Linear Models.

Male testes size and antennal morphology were examined using Principal Components Regression. Antennal 
length, antennal segment number, sensilla density, and testes size were incorporated into a Principal Compo-
nents Analysis. The PCs were then used as dependent variables in General Linear Models, with male body size 
as a covariate.

Male olfactory preference trials were analysed in R using a Generalized Linear Mixed Model with a binomial 
error distribution (GLMM—package ‘lme4’) (Bates et al. 2015). All treatment females were used twice, each time 
with a different control female. Thus, female identity was included as a random effect. We examined the likelihood 
that males would choose the female in the left chamber of the Y-maze, with the treatment of the left-chamber 
female and her relative weight as predictor variables.

Ovary mass is strongly predicted by adult body mass  (F1,73 = 34.58, p < 0.0001). Thus, we used residual ovary 
mass as the response variable in a General Linear Model to explore the impact of immune treatment on female 
gonad investment.

The significance of any differences between treatment means after ANOVA modelling was established by 
determining whether the 95% confidence intervals overlapped with zero. Model coefficients and their standard 
errors are provided for continuous variables to show the directional relationships.

Results
The effect of immune challenge on survival, longevity and adult wing size. We examined the 
effect of LPS dose and larval body mass on the likelihood of survival until adult eclosion. Low LPS treatment 
(LD) females had lower survival to eclosion compared with control females, as did high LPS treatment (HD) 
females compared with LD females (Table 1; Fig. 1). Male survival was not affected by the immune challenge 
treatment, but increased significantly with larval mass (Table 1, Fig. 1).

For analyses of adult longevity, we examined the effect of LPS dose and wing size separately for males and 
females. Adult female longevity was greater for immune challenged than control females (Table 1; Fig. 2) but 
was not affected by adult wing size (Table 1). Adult male longevity increased with adult wing size (Table 1) and 
was greater for HD compared with LD males (Table 1; Fig. 2).

For adult wing size, we explored the effect of LPS dose and the mass of the larva at the time of injection (lar-
val mass) separately for males and females. Adult wing size was measured for 92 females (control = 39; LD = 28, 
HD = 25). LD females were smaller than control females, but no other differences were detected (Table 1). Body 
size was not affected by larval mass (mean ± standard error adult wing length (mm); control = 10.60 ± 0.09; 
LD = 10.25 ± 0.09; HD = 10.41 ± 0.08; Table 1). Wing size was measured for 92 males (control = 34; LD = 49, 
HD = 32). Male wing size was not affected by the immune challenge treatment but increased with larval mass 
(mean ± standard error adult wing length (mm); control = 7.81 ± 0.06; LD = 7.81 ± 0.06; HD = 7.71 ± 0.07; Table 1).

Table 1.  Models examining the impact of immune challenge treatment on survival, wing size, and adult 
longevity. For analyses of the likelihood of survival until adult eclosion and wing size, larval body mass was 
used as a covariate. For analysis of adult longevity, wing size was used as a covariate.

Sex Factor

Model

Survival Wing size Longevity

Males
Treatment χ2

2 = 3.93 p = 0.14 χ2
2 = 0.39 p = 0.82 χ2

2 = 9.93 p = 0.01

Body size χ2
1 = 23.94 p < 0.0001 χ2

1 = 5.48 p = 0.02 χ2
1 = 3.89 p = 0.048

Females
Treatment χ2

2 = 37.18 p < 0.0001 χ2
2 = 7.68 p = 0.02 χ2

2 = 10.32 p = 0.006

Body size χ2
1 = 0.56 p = 0.45 χ2

1 = 3.18 p = 0.07 χ2
1 = 0.27 p = 0.60
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Immune challenge and male pre- and post-copulatory reproductive investment. PCA of male 
antennal traits and testes size returned two axes of variation (PCs) with eigenvalues > 1.0, which collectively 
explained 67% of the variation in the recorded traits (Table 2). PC1 was positively weighted by variables describ-
ing the length of the antenna (total length and number of flagellomeres) and negatively by male testes size, 
indicating a trade-off between these pre- and post-copulatory traits (partial correlation between testes size and 
antennae length (controlling for wing size): r = − 0.32 n = 76, p = 0.005). PC2 was weighted positively by the den-
sity of sensilla (Table 2).

PC1, which describes male antennal length and testes size, was not affected by the dose of immune elicitor 
 (F2,74 = 0.56, p = 0.57; Fig. 3), but increased with male wing size  (F1,74 = 4.42, p = 0.04).

PC2, which describes sensilla density, significantly differed between HD and LD males compared with control 
males  (F2,74 = 3.18, p = 0.047; Fig. 3). The principal component loadings reveal that this was due to males from 

Female
Male

P
ro

po
rt

io
n 

su
rv

iv
al

LPS treatment

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control Low High

A 

B B B 

C

a 
a

a
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the immune challenge treatments having lower sensilla density. Furthermore, PC2 decreased with male wing 
size  (F1,74 = 14.35, p = 0.0003).

Immune challenge and female reproductive investment. Eighteen males made a successful choice 
between HD and control females, with males preferring the pheromone of control females (control = 12; 
HD = 6; χ2

1 = 6.08, p = 0.01), and for heavier females (χ2
1 = 7.34, β = 24.88 (9.32), p = 0.01). Eighteen males made 

a successful choice between LD and control females, but showed no preference according to treatment (con-
trol = 11; low dose = 7; χ2

1 = 1.16, p = 0.28) or body mass (χ2
1 = 0.78, β = 1.12 (1.26), p = 0.37).

Seventy-five females were assessed for ovary mass (low dose = 22, high dose = 24; control = 29). Female ovary 
mass increased with female mass  (F1,73 = 34.58, β = 1.81 (0.31), p < 0.0001). Thus, female residual ovary mass 
(regressed on adult body mass) was used to explore the impact of immune challenge on female gonadic invest-
ment. Residual ovary mass differed significantly only between HD and LD females  (F2,72 = 3.30, p = 0.04; Fig. 4).

Discussion
Our experiments demonstrate that immune investment impacts pre- and post-copulatory reproductive invest-
ment and life-history traits in both male and female gumleaf skeletonizer moths, but not in a consistently dose-
dependent manner. In particular, our novel results demonstrate that chemical communication is costly for both 
males and females: immune trade-offs affect male sensory structures, highlighting the costs of elaborate anten-
nae, and the attractiveness of the female pheromone (following a high-dose immune elicitor) declines following 
immune challenge. Females adjust pheromone production in response to physiological stressors, consistent with 
the view that pheromone production is costly and therefore a reliable signal. These trade-offs in both male and 
female sexual signalling are balanced by additional changes in life-history and reproductive traits.

Juvenile immune challenge in U. lugens has a significant impact on male mate searching, affecting investment 
into functional antennal morphology and the time available to find receptive females (male adult lifespan). Cur-
rent evidence for the costs associated with mate detection through olfactory sensory modalities is largely non-
experimental or indirect: a positive correlation between male antennal and body size has been documented across 
species of  lepidoptera28, and more generally studies indicate that antennal sensilla require significant and costly 
neural  innervation21,50. The lower density of antennal sensilla of immune-challenged males, not accompanied by 

Table 2.  Summary of fit and loadings of PCA and mean ± standard errors (SE) for male antennal morphology 
and testes size for males from different immune challenge treatments.

Mean ± SE

Control Low dose High dose PC1 PC2

Eigenvalue 1.63 1.05

% variance explained 40.85 26.26

n 26 27 23

Antennal length (mm) 5.27 ± 0.04 5.23 ± 0.04 5.33 ± 0.05 0.60 −0.23

Antennae segments 49.61 ± 0.50 49.11 ± 0.29 49.57 ± 0.54 0.62 0.27

Sensilla density (μm−2) 5.29 ± 0.09 ×  10–3 5.01 ± 0.12 ×  10–3 5.01 ± 0.09 ×  10–3 −0.20 0.87

Testes size  (mm2) 0.26 ± 0.01 0.27 ± 0.01 0.27 ± 0.01 −0.46 −0.33
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compensatory changes in antennal length, suggests that the capacity for pheromone detection is weaker in these 
 males51, thereby compromising their mate searching  success28,52. Our results demonstrate that male chemorecep-
tor density is costly, consistent with the view that releasing minute quantities of pheromone is a female strategy 
to attract high-quality  males28,53. Furthermore, we show that increased investment into immunity, generated by 
parasitic or pathogenic infection, can provide a mechanism for variation in male sensory structures, which are 
under strong selection. Indeed, such trade-offs may persist into the next generation, as has been demonstrated 
for other reproductive  traits54.

Honest signals are assumed to be costly, and the sex pheromone of U. lugens is likely to function as an hon-
est signal of female quality: our results demonstrate a cost to pheromone production that are consistent with 
previous studies demonstrating that females adjust their pheromone investment according to the socio-sexual 
 environment42. The historical assumption that female pheromone production, particularly in lepidopterans, 
is not costly because only minute chemical titres are released is recently challenged by evidence of condition 
dependent pheromone  production39,41. Our study provides more compelling empirical support for this view by 
demonstrating clear trade-offs between immunity and female sexual signalling (see  also16) that translates into 
attractiveness to males. Pheromone production in the Lepidoptera is low because of constraints on biosynthesis, 
storage and gland  structure55. We were unable to replicate the published methodology for chemical quantifica-
tion of the contents of female pheromone glands in U. lugens56, but the observed patterns of male attraction may 
derive from qualitative and/or quantitative differences in the pheromone profile.

Immune challenges appear to have a more consistent negative effect on post-copulatory reproductive invest-
ment in males than females in diverse species: there is a reduction in the  size57,  viability46, and  number45 of 
male spermatophores, but the response by females is less clear, with  lower58,59,  similar45, or higher reproductive 
 output60 recorded. Immune-challenged male U. lugens did not appear to reduce their investment into testes 
size, which may be unsurprising in this monandrous  [sensu61] species: sperm competitive strategies are likely to 
be less important, given their low mating  frequency44 arising from limited mating opportunities. On the other 
hand, inferences about immunity trade-offs with female egg production in U. lugens are less clear: females that 
received a high dose of LPS had a greater ovary mass than LD females, but not control females. This is surprising 
because egg production is a highly resource-dependent trait, and trade-offs arising from immune challenges may 
be especially pronounced in capital breeders, such as U. lugens, where individuals acquire all their resources for 
reproduction in the juvenile stage. Perhaps immunity-fecundity trade-offs are shaped by both mating system 
and the type of immune elicitor used.

Conventional theory predicts trade-offs between precopulatory traits (ornaments and armaments) and 
between post-copulatory traits (testes and ejaculates)62, although empirical investigations have focused primar-
ily on male ornaments and  armaments63. Early sperm competition models noted trade-offs between ejaculates 
and mate searching  investment64, and while negative relationships between testes size and mate searching ability 
have been  reported65,66, the potential for trade-offs between testes and organs of sense has rarely been explored, 
despite their primary function in mate searching and mating success. One study failed to find a trade-off between 
antennal investment and testes size in the monandrous painted apple moth, Teia anartoides67, but the present 
experiments revealed a clear trade-off between male mate searching investment (antennal length) and testes size 
in the similarly monandrous U. lugens, regardless of experimental treatment.
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The high reproductive costs paid by males in this mating system, evidenced by their lengthy matings (> 1.5 h; 
personal observation) and low mating  frequency44, may affect the trajectory of development in immune-chal-
lenged individuals. Like most Lepidoptera, U. lugens mate once per day only, so mating frequency is tightly linked 
to longevity. The reduced investment into mate-detecting sensory structures by immune-challenged males may 
be balanced by increased longevity, as HD males had greater longevity than LD males, albeit not different from 
control males. Female U. lugens also increased longevity following immune challenge, but this was balanced by 
a greater mortality at the pre-adult stage (for both doses of immune elicitor) and lower reproductive output (for 
HD females). That female, but not male, mortality increased after receiving LPS suggests a sexual dimorphism 
in immunity in this species, with females having a lower immunity. While this pattern contradicts that predicted 
by traditional Bateman gradients of  immunity68, it may reflect the significant male reproductive investment in 
this moth species and others with comparable life-histories16. Clearly, a greater understanding of the degree 
of dimorphism in constitutive and expressed immunity is needed, and especially in how it affects those traits 
associated with mate discovery.

Our results also demonstrate inconsistent behavioural and morphological responses to the dose of immune 
elicitor used. Hormesis is a phenomenon where individuals respond more strongly to low, compared with high 
doses, of a biological  stressor69,70, including LPS. While hormesis may explain why LD, but not HD, females 
had lower survival and smaller body sizes than Control females, it offers a less satisfactory explanation for why 
some traits (male longevity and ovary mass) differed between treatments, but not with the Controls. Perhaps a 
broader range of LPS doses, and quantification of male and female immune response to the different doses may 
clarify these inconsistent trait responses.

In conclusion, we reveal that the functional morphology of male antennae and, therefore, their capacity 
to locate mates is altered by an immune challenge. We also demonstrate that immune stressors reduce female 
pheromone quality and attractiveness. thereby highlighting the costs and condition dependence of male and 
female sexual signalling and thus a mechanism for variation in reproductive traits that are likely to be under 
strong selection.
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