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Abstract: Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing
common receptor subunits. They regulate immune responses and, moreover, are involved in the
pathogenesis of a variety of human neoplasms. Three different receptors have been described for
IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can
also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II
(IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate
tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes
the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.

Keywords: interleukin-4; interleukin-13; interleukin-4 receptor; interleukin-13 receptor; gastrointesti-
nal cancer

1. Introduction

Gastric cancer (GC) and colon and rectal cancer (CRC) are common malignancies of
the digestive system [1,2]. Despite advances in earlier detection, multimodal treatment,
and surgical management, the prognosis of both entities is still unsatisfactory [3]. CRC is
the second leading cause of all tumor deaths in the United States [3], and stomach cancer
is the third leading death cause of cancer-related deaths worldwide [4]. Alternative or
additional treatment strategies especially for advanced tumor stages are desperately needed
to overcome drug resistance, enhance chemosensitivity, inhibit tumor cell proliferation,
and induce apoptosis in order to further improve outcome [1,2,5–9].

More and more evidence has been provided in recent years that interleukin-4 (IL-4),
interleukin-13 (IL-13), and their receptors play an important role in cancer cell proliferation
and other biological behaviors, such as migration and invasion enhancing the malignant
phenotype [10–12]. Moreover, IL-4/IL-13 and their receptors have been also associated
with apoptosis, chemosensitivity, and prognosis in various cancers [13–15]. IL-4 and IL-13
are also involved in the crosstalk with the tumor microenvironment (TME) by activating
tumor-associated macrophages and myeloid-derived suppressor cells, which have tumor
promoting functions [16,17]. Immune surveillance against established metastatic mam-
mary cancer is negatively regulated by IL-13 in mice [18]. The aim of this review was to
summarize the current information about the role of IL-4/IL-13 and their receptors in GC
and CRC.

2. Methods

A literature search in PubMed was carried out in April 2020 using “interleukin-4” or
“interleukin-13” or “interleukin-4 receptor” or “interleukin-13 receptor” in combination
with “gastric cancer” or “colon cancer” or “colorectal cancer” or “rectal cancer”, respectively.
A total number of 452 articles were retrieved. Duplicate articles were eliminated, and
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additional articles were identified through references cited in retrieved articles. Only
manuscripts and reviews in the English language were included in this review.

The articles about single nucleotide polymorphisms (SNPs) were searched in May 2020
using “interleukin-4” or “interleukin-13” or “interleukin-4 receptor” or “interleukin-13
receptor” and “polymorphism OR mutation OR variation” in combination with “colorectal
cancer” or “colon cancer” or “rectal cancer”. Sixty-four articles about SNPs of IL-4/IL-13
and their receptors in CRC were identified. A total of 67 articles about SNPs of IL-4/IL-
13 and their receptors in GC were retrieved using “interleukin-4” or “interleukin-13” or
“interleukin-4 receptor” or “interleukin-13 receptor” and “polymorphism OR mutation OR
variation” and “gastric cancer”. Our review included a total of 64 articles about SNPs of
IL-4/IL-13 and their receptors in GC or CRC.

3. Summary of the IL-4/-13 Signaling Pathway

IL-4, first described in 1981, is a secreted cytokine that, in its physiologic function, can
regulate antibody production, hematopoiesis, and inflammation, and is also involved in the
development of effector T-cell responses [19]. The closely related IL-13, first described in
1993, is a human lymphokine that can regulate inflammatory and immune responses [20].
IL-4 and IL-13 are essential for the induction and persistence of the type 2 immune re-
sponse, and they are associated with multiple atopic diseases, such as asthma and atopic
dermatitis [21]. IL-4 and IL-13 are mainly produced by immune cells, such as CD4-T-cells,
basophils, eosinophils, and natural killer T (NKT) cells [22].

The structure of IL-4 receptor (IL-4R), IL-13 receptor (IL-13R), and the positions of the
intracellular signaling molecules of them have been summarized in several articles [23–26].
There are three different kinds of IL-4 receptors (Figure 1). IL-4 binds to the IL-4Rα chain,
then recruits the IL-2Rγ-common (γc) chain (type I IL-4R) or the IL-13Rα1 chain (type
II IL-4R) to form a receptor complex that can initiate signal transduction [25]. The type
III IL-4R is formed by all the three chains [27]. IL-13 can also signal via three different
receptors (Figure 1). The type II IL-13R complex has the same components as the type
II IL-4R [28]. IL-13R type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1)
are expressed in non-hematopoietic cells, while type III (IL-4Rα/IL-13Rα1/γc) is only
expressed on the surface of hemocytes [27]. Overall, this results in a possible complex web
of IL-4– and IL-13–mediated signaling pathways [29].
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Figure 1. Receptor types and signal transduction of IL-4R and IL-13R. There are three different kinds of IL-4 receptors. IL-4
binds to the IL-4Rα chain, then recruits the IL-2Rγ-common (γc) chain (type I IL-4R) or the IL-13Rα1 chain (type II IL-4R) to
form a receptor complex that can initiate signal transduction. The type III IL-4R consists of all three chains. IL-13 also have
three different receptors. IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed
in solid tumors, while type III (IL-4Rα/IL-13Rα1/γc) is expressed in hemocytes only. IL-13 binds IL-13Rα1 with a low
affinity and complexes with the IL-4Rα (type II receptor). IL-13 binds to the IL-13Rα2 with a high affinity. IL-13 can bind to
a soluble IL-13Rα2 receptor, which has no downstream signaling, or bind to transmembrane IL-13Rα2 and activate AP-1.
Figure sketch adapted from reference [27].
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With regard to the IL-13Rα2 chain, IL-13 is not the sole ligand. For example, chitinase-
3-like protein 1 (CHI3L1) could bind to IL-13Rα2 and regulate oxidant injury, apoptosis,
and melanoma metastasis [30]. Transmembrane protein 219 and CD44 play an important
role in IL-13Rα2 mediated signaling which is induced by CHI3L1 [31,32].

Altogether, IL-4R and IL-13R share two receptor chains (IL-4Rα and IL-13Rα1) and
can mediate common, but also diverse biological functions [27]. Both IL-4 and IL-13
phosphorylate and activate signal transducer and activator of transcription (STAT) 6 [27].
STAT3, STAT5, and STAT1 can also be activated, but to a lesser degree [23]. IL-4 can
signal through IRS-2 (generally expressed by hematopoietic cells) or IRS-1 (generally non-
hematopoietically expressed) [23]. As mentioned above, IL-13 could bind to the IL-13Rα2
chain, which has a very high affinity for IL-13. The downstream signaling involves AP-1
family members c-jun and Fra-2 [33]. IL-13Rα2 can inhibit downstream signals of IL-13R
and IL-4R through regulating STAT6 [34,35].

4. IL-13/IL-13R in Gastric Cancer

IL-13Rs are overexpressed in several human solid cancer cell lines [36,37]. Our group
demonstrated that IL-13R and IL-4R were expressed in pancreatic cancer cell lines, such
as PANC-1, MIAPaCa-2, and CAPAN-1 [38]. Their proliferation was inhibited by Pseu-
domonas exotoxin (PE) combined to IL-13 or IL-4, demonstrating the receptor’s func-
tionality [38]. IL-13Rα2 is expressed in HS766T and MIAPaCa-2 pancreatic cancer cells,
as well [36]. One recombinant chimeric protein IL-13PE was found highly cytotoxic to
GC cell line CRL1739, which also expressed the type II IL-4R receptor (Figure 1) binding
both IL-4 and IL-13 [39]. IL-13Rα2 is also expressed in GC cell lines MKN-45, AGS and
MGC308 [32,40].

Gabitass et al. evaluated plasma IL-13 and IL-4 levels in 131 patients (46 pancreatic
cancer, 25 GC, and 60 esophageal cancer) and 54 healthy controls [41]. IL-13 levels in
patients’ plasma were significantly higher in all the three cancer patients compared with
controls [41]. In another study, Lin et al. evaluated IL-13Rα2 expression in tissue microar-
rays of 507 GC patients [15]. They found the overexpression of the IL-13Rα2 chain in cancer
tissue was associated with poor prognosis after gastrectomy [15].

Chen and coworkers showed that CHI3L1 secreted by M2 macrophage could promote
the metastasis of GC cell lines MKN-45 and AGS by binding to the IL-13Rα2 chain [40].
The mechanism is mediated by activating the mitogen-activated protein kinase signaling
pathway, which upregulates the matrix metalloproteinase genes [40]. Geng et al. found
CD44v3 could bind to both CHI3L1 and IL-13Rα2 in GC cell lines AGS and MGC308 [32].
In this study, CHI3L1 expression was positively related to GC invasion depth and lymph
node status in 100 GC tissues from patients [32]. A summary of the results is shown in
Supplemental Table S1.

5. IL-4/IL-4R in Gastric Cancer

Human GC cell lines such as CRL1739 express IL-4R [42]. IL-4 inhibited proliferation of
HTB-135 GC cells by down-regulating G0-G1 cell cycle nuclear-regulating factors, including
retinoblastoma gene product, c-myc, and cyclin D1 [43]. IL-4 could cause G1 phase arrest
in the GC cell line CRL 1739 by binding to IL-4Rα and γc (type I IL-4R) [42]. IL-4 could also
inhibit the growth of GC cells and this effect was positively related with IL-4R expression
level of the respective cell lines [44]. The expression was detected by flow cytometry using
biotin-labeled IL-4. It remains unclear, however, what type of IL-4R causing inhibition of
GC cell growth was expressed (Figure 1).

Gabitass et al. found plasma IL-4 levels in 25 GC patients were significantly higher than
in 54 healthy controls [41]. Cárdenas et al. found serum IL-4 levels in 17 GC patients were
significantly elevated comparing with 30 healthy individuals by sandwich ELISA [45]. In
their study, elevated serum levels of IL-4 indicated a higher risk of mortality, but there is
no statistical association [45]. Orea and co-workers studied a total of 30 biopsies of GC by
immunohistochemistry [46]. They found a significantly higher expression of IL-4 in stages
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I and II than in stages III and IV, pointing to a possible growth inhibitory effect of IL-4 in
GC [46]. A summary of the effects of IL-4 and IL-13 in GC is shown in Supplemental Table S1.

6. IL-13/IL-13R in Colon and Rectal Cancer

Expressions of IL-13/IL-13R in CRC: Immunoblot analysis demonstrated a high expres-
sion of IL-13Rα2 in cultured metastatic colon cancer (CC) cell lines such as KM12SM, SW48,
and HT29 [13]. Overexpression of IL-13Rα2 was found in 66% of tumor samples from 80
CC patients [13]. In an immunohistochemical analysis of CRC patients at stage I–III, high
IL-13 and IL-13R expression was seen in 50% (181/359) and 42% (152/359) of the cancers,
respectively [47].

IL-13/IL-13R in CRC cell lines: IL-13 and IL-4 stimulated mucin 2 expression in CC
cell line LS174T, but not in CC cell line HT-29 through the mitogen-activated protein ki-
nase pathway [48]. IL-13 could inhibit the autophagic pathway in HT-29 cells via the
activation of the class I phosphatidylinositol 3-kinase (PI3K) [49]. The tumor suppressor
phosphatase and tensin homolog (PTEN) is expressed in HT-29 cells. Its overexpression
directed by an inducible promoter counteracted the IL-13 down-regulation of macroau-
tophagy, which is the most prevalent form of autophagy [50]. One recombinant chimeric
protein IL-13PE was cytotoxic to CC cell lines Colo201 and Colo205 [39]. Another study
revealed that IL-13 induced phosphorylation of Janus kinase (JAK) 2, JAK1, and Tyk2 in
CC cell lines HT-29 and WiDr [51]. In addition, both IL-13 and IL-4 could induce phospho-
rylation of STAT6 [51]. In human colonic epithelial cell lines, IL-13 and IL-4 upregulated
the expression of CD44 [52]. Bartolomé et al. demonstrated that family with sequence
similarity 120A (FAM120A) in the IL-13/IL-13Rα2 signaling pathway was an important
mediator of invasion and liver metastasis using CC cell lines such as SW620, KM12C, and
KM12SM, and nude mice that were inoculated with CC cells in the spleen [11]. KM12C and
KM12SM human CC cells only differ in their metastatic properties [53]. Bartolomé et al.
found that FAM120A could mediate the IL-13Rα2-induced activation of the FAK and
PI3K/AKT/mTOR pathways [11]. FAM120A could function as a scaffold protein for PI3K
to be phosphorylated by Src family kinases [11]. Propofol suppressed cell proliferation
and IL-13 induced epithelial–mesenchymal transition (EMT) in CRC cell lines RKO and
SW480 [54]. It could be demonstrated that propofol suppressed IL-13/STAT6 signaling by
upregulating STAT6 targeting miRNAs [54]. IL-13 promoted EMT and aggressiveness of
HT-29 and SW480 cells through IL-13Rα1/STAT6/ZEB1 pathway [55]. IL-13 was found
to induce the expression of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) via
IL-13Rα2 in CRC cell line SW480 and murine CRC cell line CT26 [56].

IL-13/IL-13R in CRC mouse models: Glycyrrhizic acid, an inhibitor of 11βHSD2, could
reduce liver metastasis of CT26 cells in nude mice [56]. Protein tyrosine phosphatase-1B
mediates IL-13-induced cancer cell proliferation, migration, and survival via Src activa-
tion [57]. IL-4 and IL-13 both up-regulated the expression of chemokine eotaxin-2 in CRC
cell lines LS174T and LOVO [58]. However, this effect was not seen in CRC cell lines
SW480 and COLO 205 [58]. More than a 10-fold increase of eotaxin-2 level was found in
tissue-derived supernatants from colorectal hepatic metastases compared with normal liver
in 23/25 patients [58].

Matsui et al. studied the roles of inflammatory cytokines in obesity-related colorectal
tumorigenesis [59]. Colorectal tumorigenesis was induced through intraperitoneal injection
of azoxymethane in C57BL mice and obesity diabetes model mice KK and KK-Ay [59].
The group found that the formation of CRC was more frequent in obese mice than wild
type mice [59]. Moreover, silencing IL-13Rα1 with small interfering RNA inhibited IL-13-
induced proliferation in the CC cell line HT29 via downregulating STAT6 activation [59].
Another study found that the development of lung metastases could be significantly
inhibited by an IL-13 inhibitor, but not by inhibition of IL-4 in a murine lung metastasis
model of CC [60]. High expression of IL-13Rα2 in the CC cell line KM12 was associated with
invasion and liver metastasis in nude mice [13]. The mechanism might be the activation of
the oncogenic signaling molecules such as PI3K and AKT by IL-13 [13]. High expression of
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IL-13Rα2 was also associated with higher tumor stages and poor outcome in human CRC
patients [13]. The IL-13Rα2 D1 peptide inhibited proliferation, migration, and invasion
in KM12SM and SW620 CC cells treated with IL-13 [61]. This peptide could block the
signaling through IL-13Rα2 and, at a lower level, IL-13Rα1 [61]. Nude mice treated
with the enantiomer D-D1 peptide had a significant longer survival time due to reduced
development of liver metastasis [61].

IL-13/IL-13R in CRC patients: Ingram et al. studied the role of type II IL-4R in transgenic
mouse models and human cases. They found reduced IL-4R increased CRC initiation
but reduced tumor progression and did not show any effects on mortality [62]. In an
immunohistochemical study including 359 CRC samples, patients who had high IL-13R
expression had less lymph node metastases [47]. High IL-13 expression was associated with
a longer survival time [47]. Saigusa et al. studied 241 patients with CRC and demonstrated
that serum IL-13 levels were significantly lower in patients with advanced stage, and low
IL-13 levels in the serum was significantly associated with poorer prognosis [63]. However,
in a study measuring IL-13 protein levels in fecal samples, 20 CRC patients presented
significantly higher IL-13 levels than 20 healthy controls [64].

A summary of the effects of IL-13/IL-13R in CRC cells are depicted in Supplemental
Table S2 and the effects of IL-13/IL-13R in CRC mouse models or patients are depicted in
Supplemental Table S3.

7. IL-4/IL-4R in Colon Cancer

Expressions of IL-4/IL-4R in colon cancer: Lahm et al. studied the expression of IL-4R in
7 CRC cell lines [65]. Fluorescent-activated cell sorting analysis showed that three cell lines
(WiDr, LS1034, HT29,) had a relatively higher expression of IL-4R, while the other four cell
lines (Co-115, LS513, SW1116, LS4llN) had lower expression [65]. Higher expression levels
of IL-4 and IL-13 were found in the serum or the tumor homogenates of a CT26 tumor-
bearing mouse model [66]. In an analysis of IL-4R expression in 44 CRC patients using
immunohistochemistry, positive labelling was obtained in 40/44 carcinomas [67]. In an
immunohistochemical study of CRC patients at stage I–III, high IL-4 and IL-4R expression
were detected in 33% (118/359) and 36% (129/359) of the samples, respectively [47].

IL-4/IL-4R in colon cancer cell lines Liu and colleagues found IL-4 and IL-13 increased
nicotinamide adenine dinucleotide phosphate oxidase 1-related proliferation in HT-29 and
DLD-1 human CC cells [12]. In their experiments, IL-4 promoted HT-29 cell proliferation
for a nearly 2-fold increase after four days of treatment [12]. Koller et al. found the
addition of IL-4 resulted in proliferation of HT-29 and HCT 116 CC cells [68]. In contrast,
Chang et al. demonstrated that IL-4 inhibited the proliferation of HT-29 and WiDr CC cells,
while it promoted cell proliferation of Burkitt’s lymphoma cell lines BL30 and BL41 [69].
Furthermore, Toi et al. found that IL-4 inhibited cell proliferation of HT-29 cells [70].
According to Topp et al. recombinant human IL- 4 had an antiproliferative effect on HTB
38 CC cells [71]. Additional studies also found discrepancies in the effect of IL-4 regarding
cell growth [65,72,73]. Interestingly, when evaluating cell proliferation Lahm et al. found
a significant inhibition of thymidine uptake in CC cell line LS411N by IL-4, but not by
using MTT assay [65]. The different effects of IL-4 on cell proliferation in CC cell lines are
summarized with regard to cell line, growth conditions and duration, ligand source and
concentration, and type of proliferation assay in Table 1.

IL-4 was identified to promote EMT in CRC cell lines HCT 116 and RKO via STAT6 [74].
Koller et al. found that IL-4Rα–the subunit of type II IL-4R in epithelial cells (Figure 1)–
expression promoted tumor growth in human CC cell lines HCT116, HT-29, DLD-1, SW480,
SW620, Caco2, and HCA7, while IL-4 could only decrease apoptosis in HCT116 cells [68].
IL-2, IL-12, and IFN-alpha enhanced antibody-dependent cellular cytotoxicity (ADCC)
against HT-29 cells and IL-4 could significantly suppress this effect [75]. Wersäll et al.
demonstrated that pretreatment with IL-4 enhanced the ADCC activity of peripheral
blood mononuclear cells (PBMCs), monocytes, and natural killer cells against SW948 CRC
cells [76]. Recombinant human IL-4 inhibited IL-2-dependent activation and proliferation
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of human NK cells [77]. Nieroda et al. found a significant enhancement in ADCC activity
against human CC lines LS174T and CBS after peripheral monocytes were pretreated
with human macrophage colony-stimulating factor [78]. IL-4 could further enhance the
ADCC activity on LS174T CC cells when tested with the peripheral monocytes from two
donors [78]. Flieger et al. found IL-4 could reduce the IL-2, IL-12, and IFN-alpha-induced
ADCC by flowcytometric cytotoxicity assay [79]. They used PKH-2 labeled HT-29 cells as
target cells and PKH-26 labeled human PBMCs as effector cells [79]. IL-4 sensitized SW620
cells to radiation through inhibition of NF-κB [80]. Flieger et al. demonstrated IL-4 can
decrease both epithelial cellular adhesion molecule and LewisY expression in HT-29 and
LoVo cells, but not in SW480 cells [81]. In LS174T CC cells, IL-4 induced down-regulation of
stem cell factor and its receptor c-kit, and inhibited proliferation induced by the factor [82].
The addition of IL-4 increased IL-8 release in CRC cell line HT115, but not in CRC cell lines
HRT18 and H29/6 [83].

IL-4 could inhibit cell-cell adhesion without affecting cell proliferation in human CC
cell line Colo205 [84]. IL-4 and IL-13 inhibited CC cell-cell adhesion via downregulation
of E-cadherin and carcinoembryonic antigen molecules [84]. IL-4 was an inhibitor of
hepatocyte growth factor, which could regulate hepatocyte growth factor-induced cell
proliferation and other events like cell migration and invasive ability in CC [85]. JAK1 and
JAK2 were phosphorylated and activated after IL-4 addition in human CC cell lines HT-29
and WiDr [86]. IL-4 changed the expression of integrin and decreased the lung-colonizing
ability of HT-29 CC cells [87].

IL-4 and cancer stem cells in CC: Todaro et al. found that CC growth was determined by
stem-like cells, which were characterized by the expression of CD133 and were resistant to
chemotherapy due to the autocrine of IL-4 [14]. Anti-IL-4 antibodies inhibited the tumor
growth in human CC cell line Caco [88]. Moreover, neutralizing of IL-4 increased the
efficacy of chemotherapy and inhibited the CD133+ cell population by increasing their
tendency to undergo apoptosis. [88].

Li et al. identified different IL-4/Stat6 activities in CRC cell lines using electrophoretic
mobility shift assay [89]. They found HT-29 was an active Stat6 high phenotype and Caco-2
a defective Stat6 null phenotype [89]. HT-29 cells were resistant to apoptosis and showed
more aggressive metastasis compared with Caco-2 cells [89]. The mechanism involved
genes associated with apoptosis or metastasis, such as survivin and p53 [89].

IL-4/IL-4R in CRC mouse models: Addition of IL-4 improved muscle function and
lifespan of CC-bearing mice [90]. Over-expression of IL-12 could inhibit IL-4 and STAT6
in human CC stem cells and inhibit the survival of CC stem cells in vitro and their tu-
mor formation ability in mice [91]. IL-4 combined with CpG oligonucleotide activated
tumor-specific Th1-type immune responses and suppressed the tumor growth in a sub-
cutaneous tumor model of C57BL/6 (B6) mice [92]. An IL-4Rα aptamer-liposome-CpG
oligodeoxynucleotide delivery system was demonstrated to enhance anti-tumor activity
in CT26 tumor-bearing mice [93]. This system could deliver CpG into tumors and over-
come TME immunosuppression [93]. Expression of IL-4 in the mouse CC cell line colon
26 inhibited tumor growth by inducing local tumor killing and systemic immunity in
mice [94]. IL-4 gene transduced MC38 murine CRC cell line promoted a Th1-type response
and tumor-specific immune responses in B6 mice [95].

IL-4/IL-4R in CRC patients: Six independent studies evaluated IL-4 serum levels in CRC
patients. Five studies showed significantly higher levels of IL-4 in patients compared to
healthy controls [96–100]. Additionally, Berghella et al. found IL-4 levels in the serum to be
predictive for cancer staging and invasiveness [98]. Serum levels of IL-4 ≥ 431 pg/mL and
IL-7 ≥ 54 pg/mL were associated with a 95% possibility of stage IV cancer [98]. Moreover,
Zaloudik et al. provided evidence for a negative impact of increased IL-4 serum levels on
CD8+ cytotoxic T-cells [99]. However, Kim et al. could not detect any IL-4 expression in
serum, normal mucosa, or tumor tissue in 20 CRC patients with fluorescent bead-based
detection assay [101].
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Table 1. Effect of IL-4 on human colon cancer cell proliferation.

Cell Lines Medium Source Concentration Time Type of Assay Proliferation Reference

HT-29,
DLD-1 McCoy’s 5A + 10% FBS

R&D systems
(Minneapolis, MN,

USA)
50 ng/mL 1–4 days Cell counting ↑ [12]

HT-29, HCT 116 DMEM + 10% FCS Sigma (St Louis, MO,
USA) 0–50 ng/mL 24 h MTT assay ↑ [68]

HT-29,
WiDr

McCoy’s 5A + 10% FBS; DMEM+
10% FBS

Schering-Plow
Research Institute
(Kenilworth, NJ,

USA)

0–50 ng/mL for
HT-29, 0–100 ng/mL

for WiDr
3 days [3H]thymidine incorporation

assay
↓ [69]

HT-29,
WiDr

EMEM with amino acids, 25 mM
HEPES, and 0.5% FBS

Schering Corp.
(Kenilworth, NJ,

USA)
NA 3 days [3H]thymidine uptake

studies
↓ [86]

Colo205 RPMI-1640 + 10% FCS, 2 mM
glutamine, PS and 5 × 10–5 M 2-ME

Pharmingen (San
Diego, CA, USA) 1–100 U/mL 1–6 days Trypan blue

viability cell counting NS [84]

HT-29 DMEM/F-12 + 2 mM L-glutamine
(serum-free) Biermann 100 U/mL 48 h [3H]thymidine incorporation

assay
NS [87]

SW620 RPMI 1640 + 10% FBS and
antibiotics penicillin/streptomycin

Sigma (St. Louis, MO,
USA) 1–100 ng/mL 6 h

Colorimetric method using
the CellTiter 96 AQueous

One Solution Assay
NS [80]

HT-29 DMEM + 1% FBS Immunex Corp.
(Seattle, WA, USA)

1–20 nM (about
14–280 ng/mL) 1–5 days Cell counting, MTT assay ↓ [70]

SW1222,
HT-29

RPMI 1640 + 10% FCS + sodium
bicarbonate 2 g/L, sodium pyruvate

2 mM, PS and L-glutamine 1 mM

Genzyme (West
Malling, UK) 1–100 U/mL 48 h Liquid scintillation counting

using [3H]-TdR ↓ [72]

HT-29, WiDr,
SW1116, Co-115,

LS411N, LS513 and
LS1034 cells

1:1 mixture of DMEM and Ham’s
F-12 + HEPES (10 mM), L-glutamine

(2 mM), PS +1%FBS

Genzyme
(Cambridge, MA,

USA)

multiple
concentrations

including 100 U/mL
(1 ng/mL)

6 days
MTT assay and

incorporation of tritiated
thymidine.

In HT29, WiDr,
LS411N, LS513,

LS1034 cells, ↓; in
CO-115 and SW1116,

NS.

[65]

LS513 The same as the above line Schering Plough
(Dardilly, France)

0–10 nM (about
0–140 ng/mL) 6 days Liquid scintillation counting

using [3H]-TdR ↓ [73]

HTB 38 NA Immunex Corp.
(Seattle, WA, USA) 0.01–10 ng/mL 10 days Human tumor cloning assay ↓ [71]

↓: increase; ↓: decrease; RPMI-1640: Roswell Park Memorial Institute 1640 medium; DMEM: Dulbecco’s Modified Eagle Medium; EMEM: Eagle’s minimum essential medium; MTT: 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazoliumbromid; FCS: fetal calf serum; FBS: fetal bovine serum; PS: 1% penicillin–streptomycin or penicillin 100 U/mL and streptomycin 100 µg/mL; 2-Me: 2-Mercaptoethanol; HEPES:
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); F12: Nutrient mixture F-12; NS: not significant; NA: not available, the information is not provided in the article.
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In an immunohistochemical study including 359 CRC samples, patients who had high
expression of IL-4 and IL-4R showed less lymph node metastases [47]. Mechanistically,
IL-4 was shown to increase the expression of survivin (an apoptosis inhibitor) by activating
STAT6 in primary CC cells derived from surgical specimens [102]. Tumor-cell-derived IL-4
also mediated apoptosis resistance in primary human CC cells and the human CC cell line
T84 [103]. IL-4 autocrine increased growth and survival of primary human CC cells [103].

Following the cancer-stem-cell model, Kim et al. isolated CD133(+) and CD133(-)
cancer cells from four CRC patients by MagSweeper and did whole-transcriptome analy-
sis [104]. In their study, the expression of IL-4 gene was significantly higher in CD133(+)
cells than in CD133(-) CRC cells [104]. Furthermore, cancer-initiating cells isolated from
CRC patients showed weak immunogenicity in vitro because of their membrane-bound
IL-4 [105]. However, IL-4 originated from tumor infiltrating lymphocytes was associated
with better prognosis [106]. This was immunohistochemically assessed in 49 primary CC
and 20 metastases [106].

Correale et al. studied 41 metastatic CRC patients and found that patients with
higher serum IL-4 levels had a longer overall survival when they receive the anticancer
vaccine of thymidylate synthase poly-epitope-peptide [107]. Evans et al. recruited 80
CRC patients prior to treatment and 38 matched controls [108]. No significant differ-
ence was found between IL-4 production in patients and controls, which were measured
from the supernatants of activated PBMCs [108]. In CRC patients, long-term n-3 and
n-6 essential fatty acids ingestion reduced total serum IL-4 by 69% (p = 0.025) after six
months [109]. Three months after stop taking essential fatty acids, cytokine levels returned
to pre-supplementation values [109].

Besides Table 1, which describes effects of IL-4 on cell proliferation, Supplemental
Tables S2 and S3 summarize all the findings about the effects of IL-4 and IL-13 in CRC.

8. SNPs in IL-4/13 and Their Receptors in Gastric and Colon Cancer

By definition, a short nucleotide polymorphism has a minor allele frequency of more
than 1% in at least one population [110]. SNPs play an important role in mendelian diseases
and studies focused on their role on more complex disease like cancer in recent years [111].
In a matched case-control study, patients with aerodigestive tract cancers were investigated
for frequency of the G2463A polymorphism of the myeloperoxidase gene [112]. The
2463G/A transition strongly reduced mRNA expression of myeloperoxidase and reduced
cancer risk [112]. The mechanism is that the polymorphic site is located in an Alu element
and leads to the loss of a transcription factor binding site [113]. A SNP in the KRAS 3′

untranslated region that binds to let-7 microRNA increased the risk of non-small cell lung
cancer [114]. Genetic association studies about SNPs in cancers can be divided into two
categories, susceptibility study and outcome study. [115].

There are a lot of articles about SNPs of IL-4/IL-13 or their receptors and association
with gastric (summary in Supplemental Table S4 [45,116–142]) or colorectal (summary in
Supplemental Table S5 [62,137,143–162]) cancer. Some of them revealed certain kinds of
SNPs may serve as a risk factor or prognostic marker for each disease [150]. For example,
in Swedish CRC patients, Shamoun et al. found IL-13 SNP rs1800925 is a risk factor while
IL-4 SNP rs2243250 may serve as a prognostic marker especially in stage III CRC [150].
Some authors did not find any significant associations between SNPs of IL-4/IL-13 or their
receptors and GC or CRC [163,164]. In addition, the results of available meta-analysis and
previous systemic analysis were separately summarized in Table 2 [163–174].

Many reports about SNPs in gastric and CC that have been published were summa-
rized in Table 2, Tables S4 and S5. However so far, no SNP of IL-4/IL-13 or their receptors
managed to enter clinical routine diagnostics or even influence treatment of gastric or
colorectal cancer. Perhaps further studies are needed in order to be relevant for clinical
applications.
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Table 2. Meta-analysis or combined studies about polymorphisms of IL-4/IL-13 and their receptors in gastric cancer (GC) and colon and rectal cancer (CRC).

First Author (Year) Number of Studies/Articles SNPs Result

Zongjing Xie (2019) [163] 18 polymorphisms in IL-4 No significant association was found between
polymorphisms in IL-4 and GC in combined analyses.

Jie Zhang (2013) [164] 8 studies about GC, 3 studies about CRC IL-4 -590C>T (rs2243250) No significant association was found in GC and CRC.

Young Ae Cho (2017) [165] 27 IL-4: rs2243250, rs2070874; IL-13: rs1800925,
rs20541; IL-4R: rs1805010, rs1801275.

The IL-4 rs2070874 T allele was associated with an
increased risk of gastrointestinal cancer. The IL-4R

rs1801275 heterozygote was associated with a reduced
risk of gastrointestinal cancer.

Sun Z (2014) [166] 7 IL-4 -590C>T (rs2243250)
IL-4 -590C>T polymorphism was associated with a

lower GC risk under dominant model and allelic model
in Caucasians.

Tie Wang (2016) [167] 9 IL-4 -590C>T (rs2243250) IL-4 -590C>T polymorphism was not associated with
the susceptibility of GC.

Zhang C (2016) [168] 11 IL-4 -590C>T (rs2243250) IL-4 rs2243250 polymorphism was not associated with
GC susceptibility.

Jia Y (2017) [169]
7 studies about GC, 4 studies about CRC for

rs2243250; 2 studies about GC for rs2070874; 2
studies about GC for rs79071878.

IL-4: rs2243250, rs2070874, rs79071878 rs2243250 polymorphism was found to be associated
with an increased risk of GC.

Liu Y (2018) [170]
3 studies about GC for rs2227284; 2 studies

about GC for rs2243248; 16 studies about GC
for rs2243250;

IL-4 -33T>C (rs2227284); IL-4 -1098T>G
(rs2243248); IL-4 -590C>T (rs2243250)

IL-4 rs2243250 polymorphisms was associated with
elevated GC risk in Asians.

Loh M (2009) [171] 203 225 polymorphisms across 95 genes, including
IL-4 -590C>T

IL-4 -590C>T displayed conflicting effects between
Asian and Caucasian populations in GC.

Mitsushige Sugimoto (2010) [172] 5 IL-4 -590C>T
The risk of gastric non-cardia cancer development was

significantly associated with IL-4-590 T allele
carrier status.

Huanlei Wu (2014) [173] 5 IL-4 -524C>T IL-4 -524C>T polymorphism was not associated with
an increased CRC susceptibility.

GC: gastric cancer; CRC: colon and rectal cancer; SNPs: single nucleotide polymorphisms.
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9. Discussion and Outlook

Multiple studies have focused on the effects of IL-4 and -13 in several epithelial
cancers [175,176]. In CC, most of the results showed anti-proliferative effects. However,
as summarized in Table 1, the effect of IL-4 on proliferation in CC cells is varying and
may depend on multiple factors, among them cell line intrinsic differences. These results
also point out that IL-4/IL-13 and their receptors can activate different signaling pathways
and thus may have different biological functions in different types of human cancer cells.
This knowledge is important when using neutralizing or blocking antibodies. Ito et al.
found that addition of an IL-4 neutralizing antibody enhanced anti-tumor immunity and
inhibited tumor growth in a mouse subcutaneous tumor model of murine CC cell line
CT26 [177]. However, one has to keep in mind that systemic modulation of IL-4 as well
as IL-13 signaling can also cause severe side-effects like a propensity towards helminth
infections or acute gastric mucosal injury [178,179].

Chimeric proteins composed of IL-13 or IL-4 with PE were invented to target human
cancer cells expressing the corresponding receptors [39,180]. These chimeric proteins were
found effective on different kinds of cancer cell lines, such as pancreatic cancer, CC, and
GC cell lines [180–182]. Human glioma cells were extremely sensitive, too [183].

A Phase 2 study was conducted on patients who had recurrent glioblastoma mul-
tiforme (GBM) [184]. The patients received circularly permuted IL-4PE first, and then
surgical resection [184]. A Phase 3 clinical trial was carried out to compare intraparenchy-
mal IL-13PE administration with an FDA-approved drug called Gliadel wafers for recurrent
GBM [185]. It was found that the time-to-progression was significantly longer with IL-13PE
compared to Gliadel wafers [185].

A hybrid peptide named IL-4Rα-lytic peptide could bind to IL-4Rα on pancreatic
cancer cells and the lytic peptide could kill the cancer cells in vitro and in vivo [186]. IL-4R-
targeted liposomal doxorubicin could be used to deliver drug to the human GBM 8401 cells
in a mouse model [187]. Recombinant adenovirus, which expressed IL-13 on its surface,
transferred genes to IL-13Rα2-expressing malignant glioma cells more effectively [188].
An IL-13Rα2 antibody could bind to glioma cells, inhibit tumor growth, and improve
the survival time in a glioma xenograft mouse model [189]. IL-13Rα2-targeted cancer
vaccines also showed effects in malignant gliomas in children, such as peptide-based
cancer vaccine [190–192]. However, no articles about a similar vaccine were found for
patients with GC or CC.

Chimeric antigen receptor T cells expressing IL-13 can kill target cells and have
been studied in GBMs. For treating human glioma xenografts in rats, single intracranial
injections of IL-13 “designer T cell” into tumor sites significantly increased survival [193].
However, as the researchers demonstrated, systemic administration of IL-13 “designer
T cell” might be complicated by reaction against normal tissues which also express IL-
13Rα1 [193]. Using a mouse model in which tumors show a growth-regression-recurrence
pattern, Terabe et al. demonstrated NKT cells and IL-13, which signals through the IL-4R-
STAT6 pathway, played an important role in escaping tumor immunosurveillance [194].
By using an IL-13 inhibitor (sIL-13Rα2–Fc), they found that IL-13 is essential for the tumor
recurrence, while IL-4 is not [194].

Extracellular matrix and stromal cells constitute the main structure of the TME [195].
Different types of immune and non-immune cells are found in TME and with various
cytokines they secrete, these drive a chronic inflammatory and immunosuppressive intra-
tumoral environment [196]. Among the immune cells in the TME, macrophages are very
abundant and can be found at all tumor stages, generally playing a pro-tumoral role [197].
Th2 (T helper type 2) cells could block T cell-induced tumor rejection by producing Th2
cytokines including IL-4 and IL-13, which can induce the formation of immunosuppressive
type 2-polarized macrophages [198]. Reducing M2-type macrophages, increasing M1-type
macrophages and switching M2 macrophages into M1 phenotype in tumors could inhibit
tumor growth and metastases [199,200].
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Future studies could focus on the down-stream signaling of IL-4R and IL-13R in
different tumors. Since treatment of GBM using IL-4 and IL-13 immunotoxins is advanced
compared to other tumors, more efforts should be taken to test these treatment options also
in advanced gastrointestinal cancers.

10. Conclusions

IL-4 and IL-13 as well as their receptors are expressed in and play important roles
for the progression of several different kinds of cancers. Results with regard to biological
functions may vary among different cell lines or even the same cell line and tumor types,
so cytokine treatment would have to be individually designed for each patient. Clinical
trials have already proven that IL-4 and IL-13 immunotoxins are effective for GBM treat-
ment. One possibility to include these agents soon into clinical treatment may be regional
intraarterial treatment of liver metastases showing high receptor expression. With further
research, it is maybe also possible to include new treatment strategies targeting the IL-4/13
signaling system in more patients including primary and metastasized GC and CC.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/2/727/s1, Table S1: Effects of IL-4/IL-13 in GC, Table S2: Effects of IL-4/IL-13 in CRC
cells, Table S3: Effects of IL-4/IL-13 in CRC mouse models or patients, Table S4: Polymorphisms of
IL-4/IL-13 and their receptors in GC, Table S5: Polymorphisms of IL-4/IL-13 and their receptors
in CRC.
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ADCC Antibody-dependent cellular cytotoxicity
PBMCs Peripheral blood mononuclear cells
GBM Glioblastoma multiforme
PE Pseudomonas exotoxin
TME Tumor microenvironment
Th2 T helper type 2
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