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INTRODUCTION 
 

Biological aging is characterized by a progressive decline 

of physiological and metabolic functions across multiple 

organ systems. One of the key phenotypes of aging is the 

loss of skeletal muscle mass, a condition known as age-

associated muscle atrophy or sarcopenia [1–3]. This is 

usually accompanied by reduced strength, muscle quality 
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ABSTRACT 
 

Evidence from clinical trials and observational studies suggests that both progressive resistance exercise training 
(PRT) and metformin delay a variety of age-related morbidities. Previously, we completed a clinical trial testing the 
effects of 14 weeks of PRT + metformin (metPRT) compared to PRT with placebo (plaPRT) on muscle hypertrophy in 
older adults. We found that metformin blunted PRT-induced muscle hypertrophic response. To understand 
potential mechanisms underlying the inhibitory effect of metformin on PRT, we analyzed the muscle transcriptome 
in 23 metPRT and 24 plaPRT participants. PRT significantly increased expression of genes involved in extracellular 
matrix remodeling pathways, and downregulated RNA processing pathways in both groups, however, metformin 
attenuated the number of differentially expressed genes within these pathways compared to plaPRT. Pathway 
analysis showed that genes unique to metPRT modulated aging-relevant pathways, such as cellular senescence and 
autophagy. Differentially expressed genes from baseline biopsies in older adults compared to resting muscle from 
young volunteers were reduced following PRT in plaPRT and were further reduced in metPRT. We suggest that 
although metformin may blunt pathways induced by PRT to promote muscle hypertrophy, adjunctive metformin 
during PRT may have beneficial effects on aging-associated pathways in muscle from older adults. 

mailto:charlotte.peterson@uky.edu
mailto:nir.barzilai@einsteinmed.org
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 19853 AGING 

and mobility, increased risk of frailty and falls, lack of 

endurance and poor physical performance [4]. In the 

western population, >40% of adults over the age of 60 

have difficulties with daily activities such as walking or 

standing up from a chair etc. and >30% suffer from some 

kind of physical disability [5]. After the age of 60, 

striking changes occur in muscle physiology, 

corresponding to a decline in muscle mass and 

deterioration of muscle strength by ~2% each year [6]. 

The pathophysiology of age-related decline in muscle 

mass and function is multifactorial, including biological 

factors such as hormonal imbalance, neurodegeneration 

and motor neuron loss, increased inflammation and 

circulating cytokines, as well as environmental factors 

such as physical inactivity, inadequate nutritional intake 

and psychosocial factors [4, 5, 7]. Furthermore, age-

associated changes in muscle metabolism, such as 

mitochondrial dysfunction and insulin resistance, can 

have severe implications in muscle homeostasis and 

regeneration [8, 9]. We have shown that progressive 

resistance exercise training (PRT) induces meaningful 

increases in muscle strength, power, and functional 

mobility, however, the hypertrophic response is, on 

average, reduced in old compared to young, especially 

within men [10]. The hypertrophic response to PRT is 

also highly variable in older adults (reviewed in [11]). 

 

The use of pharmacological interventions to augment the 

effect of PRT on muscle hypertrophy in older adults has 

been proposed [12–15]. The biguanide metformin has 

been studied in the context of exercise capacity, quality 

of life and mood states, and metabolic adaptations, such 

as insulin production and clearance, oxidative stress and 

cardiometabolic health in older adults with prediabetes 

and Type II diabetes [16–18]. Metformin has been 

extensively used since the 1950s, as the first-line 

treatment against Type II diabetes and is one of the most 

commonly prescribed drugs in the world, either as a 

monotherapy or in combination with insulin or other  

anti-hyperglycemic agents [19]. Metformin directly 

inhibits mitochondrial enzymes including complex I [20], 

activates AMP-activated protein kinase (AMPK) [21], 

inhibits NF-B signaling and specifically blunts the 

secretion of proinflammatory cytokines in macrophages 

[22, 23]. Due to its role beyond anti-hyperglycemia  

in modulating several fundamental pathways disrupted 

during chronic diseases and aging, repurposing 

metformin to treat cardiovascular diseases, cognitive 

decline, cancers, neurodegenerative diseases and 

ultimately, aging as a whole, has been proposed [24–29]. 

 

Two studies have shown that short-term metformin 

treatment and exercise do not exhibit synergy, but work 

in an antagonistic manner, where metformin attenuates 

the insulin sensitizing effect of exercise [30, 31]. 

Metformin has been shown to induce physiologically 

subtle decreases in peak aerobic capacity evidenced by a 

reduction in peak oxygen uptake, peak heart rate, peak 

ventilation, peak respiratory exchange ratio and exercise 

duration [32]. However, another study in prediabetic 

adults concluded that metformin in combination with 

aerobic and resistance exercise training lowered 

proinsulin concentrations and increased insulin clearance 

[33]. Recently, Konopka et al showed in older adults that 

metformin blunted aerobic exercise training-induced 

improvements in cardiorespiratory fitness, insulin 

sensitivity, and prevented the gain in muscle 

mitochondrial respiration capacity [34]. Thus, there may 

be a complex interplay between molecular mechanisms 

of exercise adaptations and pathways affected by 

metformin. 

 

We originally undertook the MASTERS Trial to test the 

hypothesis that metformin would act synergistically with 

PRT to reduce the number of exercise non-responders 

regularly observed among older adults by reducing 

muscle inflammation. However, in the MASTERS Trial, 

metformin plus PRT inhibited muscle growth after 14 

weeks of training [35]. In vitro, acute metformin 

treatment of human primary myotubes undergoing 

electrical pulse stimulation (exercise mimetic capable of 

inducing myotube hypertrophy) had a repressive effect 

on mTORC1 signaling, and upregulated AMPK 

phosphorylation [35]. Thus, metformin’s impairment of 

cardiorespiratory fitness and muscle mass gains in 

physically active older adults must be reconciled with 

benefits associated with health span. 

 

The purpose of this study was to profile the muscle 

transcriptome response to PRT with or without 

adjunctive metformin in the MASTERS Trial, to identify 

potential mechanisms contributing to the blunted 

hypertrophic response in older adults [35]. Previously, 

global gene expression studies of human skeletal muscle 

aging have identified mitochondrial dysfunction, 

extracellular matrix organization, complement activation 

and ribosomal pathways comprising a differentially 

expressed aging signature [36, 37]. Effects of PRT on 

this signature, with and without metformin, may identify 

new intervention targets that counteract sarcopenia, and 

provide information on potential metformin-exercise 

interactions in muscle that are relevant to repurposing 

metformin to treat aging and age-related disorders. 

 

RESULTS 
 

Global gene expression changes in skeletal muscle with 

placebo + progressive resistance training (plaPRT) or 

metformin + progressive resistance training (metPRT) 
 

Research participants were randomized in a double-blind 

fashion to placebo or metformin for 2 weeks followed by 
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14 weeks of PRT with continued drug treatment. Vastus 

lateralis biopsies were obtained at baseline (prior to drug 

treatment) and at 16 weeks (following 14 weeks of 

training) [35]. Fourteen weeks of placebo plus PRT 

(plaPRT) induced differential expression of 2048 genes 

(FDR-adj p-value < 0.01), with 1161 genes upregulated 

and 887 downregulated (Figure 1A). The combination of 

metformin and PRT (metPRT) resulted in differential 

expression of 1435 genes (FDR-adj p-value < 0.01), 

with 817 genes upregulated and 618 downregulated 

compared to baseline (Figure 1B). Principal component 

analysis (PCA) demonstrated a clear effect of PRT with 

a similar shift in the global gene expression profiles in 

both treatment groups (Figure 1C), with the Venn 

diagram illustrating an overlap of 918 genes (Figure 

1D). The correlation between fold changes of the  

918 common genes between the two groups was 0.97  

(p-value < 2.2e-16), with no genes showing any 

anticorrelation (Figure 1E). Eleven hundred thirty genes 

were exclusively altered in plaPRT, while 517 genes 

were changed only in metPRT. Gene lists are included in 

Supplementary Table 1. We found no significant change 

in inflammatory pathway gene expression with either 

plaPRT or metPRT, which argues against our original 

hypothesis that metformin and PRT reduce muscle 

inflammation. 

 

Pathway overrepresentation within differentially 

expressed genes (DEG) 
 

Both interventions modulated transcripts involved in 

anabolic cell signaling, extracellular matrix (ECM) 

organization, and RNA metabolism pathways, suggesting 

a conservation of these processes in response to PRT 

with metformin. The directionality of changes in gene 

expression demonstrate that ECM genes including 

collagen genes (COL1A1, COL3A1, COL4A1, COL6A2 

etc.), ECM-receptor interaction genes, focal adhesion 

 

 
 

Figure 1. Metformin blunts the global transcriptomic changes induced by PRT in human skeletal muscle. (A) Volcano plot of 
2048 DEG (q-value < 0.01) with plaPRT between 16 weeks and baseline; (B) Volcano plot of 1435 DEG (q-value < 0.01) with metPRT 
intervention between 16 weeks and baseline; (C) Principal component analysis on DEG shared between plaPRT (orange) and metPRT (green) 
compared to baseline (blue); (D) Venn diagram showing an overlap of DEG common between plaPRT and metPRT vs baseline; (E) Correlation 
plot between the fold changes of DEG common between plaPRT and metPRT. 
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genes, and those encoding matrix metallopeptidases 

(MMP2, MMP11, MMP14) and laminin subunits were 

upregulated in both groups in response to training. On the 

other hand, genes belonging to mRNA splicing, RNA 

metabolism and post-transcriptional processing pathways 

were mostly downregulated. These included several 

nuclear ribonucleoproteins, serine and arginine rich 

splicing factors, RNA polymerase II subunit C, as well as 

pre-mRNA processing factors (Figures 2A, 2B, and 

Supplementary Table 2). However, the number of DEG 

was higher for all pathways in plaPRT than metPRT 

(Figure 2C). 

 

Of the 517 genes that changed exclusively in the metPRT 

group, pathway analyses show overrepresentation of 

aging hallmarks including cellular senescence, and 

autophagy [38], as well as post-translational modification 

pathways, specifically neddylation and ubiquitination 

(Figure 2D and Supplementary Table 3). Our previous 

work with short-term metformin treatment alone showed 

improvement in aging-induced pathways through 

inhibition of mTORC1 regulated genes in skeletal muscle 

of older adults [39]; however, it is unclear how changes 

in gene expression observed here in metPRT might alter 

the older adult muscle phenotype. 

 

Reversal of the aging skeletal muscle transcriptome 

with PRT and metformin 

 

In lieu of our findings that metPRT appeared to affect 

pathways associated with aging, we performed RNA-

sequencing on skeletal muscle biopsies from 21 young

 

 
 

Figure 2. Pathway overrepresentation analyses on differentially expressed genes (DEG). (A) Pathways overrepresented in plaPRT-
induced DEG with the length of the bar representing the number of DEG (upregulated genes to the right and downregulated genes to the 
left); (B) Pathways overrepresented in metPRT-induced DEG; (C) Common pathways overrepresented between the plaPRT (orange) and 
metPRT (green) groups; (D) Pathways overrepresented in the 517 DEG within the metPRT group that do not overlap with the DEG for the 
plaPRT group. 
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individuals (mean age 24, 11 females, 10 males, 

Supplementary Table 4) under resting conditions and 

compared their transcriptome to that of week 0 baseline 

biopsies from the older adult trial participants. Our 

analysis revealed that 4654 DEG were present when 

comparing baseline biopsies (FDR-adj p-value < 0.01) 

with 2446 upregulated and 2208 downregulated  

(Figure 3A and Supplementary Table 5). Following 14 

weeks of PRT, the week 16 time point from plaPRT 

compared to young demonstrated a dramatic decrease in 

DEG that were previously observed at baseline (2898 

DEG), with 1089 new DEG apparent following 14 weeks 

of plaPRT (Figure 3B and Supplementary Table 5). 

MetPRT further reduced the number of DEG compared 

to young muscle to 2705, however, the number of 

unique DEG that were present after 14 weeks of PRT 

was also lower compared to placebo (837 DEG), 

consistent with our initial findings that metformin blunts 

the overall transcriptomic response to PRT (Figure 3B 

and Supplementary Table 5). Young vs old baseline 

DEG that were lost following PRT in both groups (1483) 

include RNA splicing and numerous genes involved  

in longevity-associated pathways (Figure 3C and 

Supplementary Table 6). After identifying DEG between 

young and old muscle at baseline that were no longer 

differentially expressed at week 16 in both plaPRT and 

metPRT, we identified 466 DEG that returned to young 

expression levels only in metPRT. Pathway 

overrepresentation analysis showed that these genes 

were largely involved in metabolism, particularly lipid 

metabolism (Supplementary Table 7). 

 

DISCUSSION 
 

In this study, we characterized the effect of metformin 

on the skeletal muscle transcriptomic response to PRT in 

older individuals from the MASTERS Trial [35].  

Our results indicate that PRT induces substantial 

transcriptional changes in skeletal muscle with 

upregulation of genes involved in extracellular matrix 

(ECM) remodeling and downregulation of mRNA 

processing genes being the most affected. We also 

provide evidence that metformin alters skeletal muscle 

adaptations to PRT at the transcriptomic level, consistent 

with a decrease in physiological gains in response to 

PRT in lean body mass, and thigh muscle mass and area, 

as we have previously reported in this cohort [35]. 

Recently, the complex interaction between metformin 

and aerobic exercise training was described, showing 

that metformin also blunts improvements in 

physiological functions and mitochondrial adaptations 

otherwise promoted by aerobic exercise training in older 

adults [34]. Similarly, the present findings suggest that 

the key molecular cues underlying adaptations to PRT 

are attenuated by metformin. Nevertheless, we 

discovered gene sets differentially regulated by the 

combination of PRT and metformin that may promote 

health benefits separate from PRT-induced muscle 

hypertrophy. 

 

Skeletal muscle ECM is crucial to force transmission, 

structural integrity and muscle stem cell dynamics  

[40, 41], and ECM remodeling is critical for muscle 

fiber growth [42]. A large number of genes associated 

with pathways involved in ECM composition and 

reorganization were upregulated in both plaPRT and 

metPRT groups, but to a lesser magnitude in metPRT, 

potentially contributing to the reduced growth response. 

Resistance exercise training in middle aged adults  

has been shown to upregulate collagens and 

metallopeptidases [43]. In particular, MMP2 plays an 

integral role in skeletal muscle hypertrophy by 

remodeling the ECM [44]. We found significant up-

regulation of MMP2 mRNA in response to PRT in both 

groups, suggesting that metformin may not interfere 

with this specific effect of PRT that may contribute to 

muscle remodeling. 

 

Genes belonging to mRNA splicing and post-

transcriptional processing pathways were mostly 

downregulated in both groups. Aging is accompanied 

by a dysregulation in the splicing machinery including a 

rise in splicing factors, especially the heterogeneous 

nuclear ribonucleoproteins (hnRNPs) [45, 46]. We 

observed a systematic suppression of multiple hnRNPs 

and mRNAs encoding RNA processing and splicing 

factors, with down regulation of RNA processing 

pathways more prominent in plaPRT. Several studies 

have demonstrated that alternative splicing is highly 

enriched in energetically demanding tissues such as 

muscle and brain [47]. Upregulation of alternative 

splicing in skeletal muscle with aging may activate 

damage-response mechanisms at a time when energy 

becomes scarce [46]. Physical activity in older adults 

was shown to offset the changes in splicing machinery 

[48] and although the functional relevance has yet to be 

established, this effect may reduce the number of genes 

that are differentially spliced and the number of splicing 

errors that produce non-functional proteins that tend to 

increase with age [49]. 

 

To our knowledge only one other study has performed 

transcriptome analysis using microarrays to compare the 

effects of PRT in healthy older subjects to that of young 

resting skeletal muscle [50]. This seminal study 

illustrated that 596 genes were differentially expressed at 

baseline between young and old. Following 6 months of 

resistance exercise training a total of 179 of the 596 were 

no longer significantly different to that of young. 

Although our DEG lists are much larger, which is likely 

due to the greater number of older subjects at baseline 

between studies (65 vs 25), as well as our end point 
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Figure 3. PRT reverts aging transcriptome towards that of young resting muscle and the effects of metformin are additive. 
(A) Volcano plot of 4654 DEG (q-value < 0.01) between young and old muscle at baseline; (B) Number of DEG observed when comparing 
young baseline skeletal muscle to old baseline skeletal muscle (4654 DEG) and young baseline to old 16 weeks with either plaPRT (3987 DEG) 
or metPRT (3542 DEG). Dark blue represents DEG common to throughout all time points and yellow represents those unique to week 16 time 
point in either plaPRT or metPRT; (C) Pathways overrepresented from those genes common to both groups following 14-weeks of PRT that 
were no different from young. 
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(26 plaPRT and 24 metPRT vs 14), we did find 

commonalities between gene lists including cell cycle 

inhibitors p21 and p15, as well as many metabolism 

related genes. Melov S et al. gene ontology analysis 

demonstrated that metabolic and mitochondrial function 

were largely impacted by aging and that resistance 

exercise training had a significant effect on reversing 

these age-related deficits [50]. Presently, we observed a 

similar response with PRT in both cohorts; however, 

adjunctive metformin further reduced the number of 

DEG between young and old, which appeared largely due 

to metformin’s effects on genes related to metabolism; 

pathway overrepresentation indicated a return to young 

gene expression patterns related to lipid metabolism 

preferentially in metPRT. In our primary findings  

of the trial, we reported an increase in AMPK/ACC 

phosphorylation in metPRT, that may affect lipogenesis 

[35]. The known inhibition of complex I by metformin 

[20] coupled with the increased energy demand of PRT 

may have led to compensatory activation of pathways 

involved in lipid metabolism that were previously 

dysregulated with age at baseline. However, it should be 

noted that outcomes of the MASTERS Trial showed that 

the PRT-induced decrease in low density muscle (which 

contains more intramyocellular lipid than normal density 

muscle) was similar between groups, whereas plaPRT 

gained significantly more normal density muscle area 

than metPRT [35]. Thus, the combined effects of 

metformin and exercise on muscle density and lipid 

content require further study. 

 

A few limitations reduce the scope of our interpretation 

of the data, including the time between the last bout of 

exercise and tissue collection (3 days). It is possible that 

metformin inhibited mTOR signaling acutely after each 

exercise bout, impairing growth, but did not affect the 

new homeostasis following training. Although we 

reported down-regulation of mTOR-associated pathways 

in muscle following 6 weeks of metformin alone in a 

crossover study design in older adults [51], chronic 

effects of metformin on mTOR regulated pathways were 

less apparent within the context of exercise training. 

Another limitation acknowledged in our primary 

outcomes paper is the lack of a sedentary control group 

given metformin for 16 weeks. We attempted to 

extrapolate metformin-specific effects, but without a 

sedentary group, it is not possible to assess effects due to 

metformin or the combined effects of PRT + metformin 

on gene expression. 

 

In conclusion, the blunted transcriptomic response to 

PRT in the presence of metformin is consistent with the 

blunted muscle hypertrophic growth response reported in 

the primary outcome of the MASTERS Trial [35]. 

However, specific effects of adjunctive metformin on the 

muscle transcriptomic response to PRT, separate from 

those related to muscle remodeling, may alter age-

associated deficits in muscle metabolism to improve 

function. Metformin and PRT have beneficial effects on 

health that extend well-beyond skeletal muscle that 

should be considered, but a metformin-exercise 

interaction in muscle must be defined in more detail to 

inform recommending metformin for healthy, physically 

active older adults. 

 

MATERIALS AND METHODS 
 

Study design, participants and interventions 
 

The Metformin to Augment Strength Training Effective 

Response in Seniors (MASTERS) Trial is a randomized, 

controlled, double blind trial comparing the effects of 

metformin versus placebo during a 14 week progressive 

resistance exercise training (PRT) intervention in healthy 

men and women ≥ 65 years of age. Participants were 

recruited at University of Kentucky and University of 

Alabama at Birmingham, UAB. The detailed study 

design [52] and participant characteristics [35] have 

been published previously. 

 

Participants were randomized to receive either placebo 

or metformin for the duration of the trial. Subjects 

underwent a two week drug or placebo wash-in period 

prior to beginning PRT. Those who were randomized to 

metformin were titrated up to the target dose by taking 1 

tablet per day (850 mg) for 7 days, followed by 2 tablets 

per day (1700 mg) for the remainder of the trial. 

 

All study subjects underwent 14 weeks of PRT, 

supervised by trained personnel. We employed a variable 

intensity prescription across the three training days each 

week (high/low/high) based on the results of our previous 

dose-response trial which showed this prescription 

optimized strength and muscle mass gains in older adults 

[53]. Vastus lateralis muscle biopsies were obtained prior 

to drug initiation, after the 2 week wash-in period and 3 

days after the final bout of training. Primary outcomes of 

the trial, muscle size and strength, have been reported 

[35]. Vastus lateralis muscle biopsies from young 

individuals matched for body mass index (Supplementary 

Table 4) were obtained through the Center for Muscle 

Biology at the University of Kentucky. 

 

Library preparation 

 

Total RNA was isolated from baseline muscle biopsies 

in 37 plaPRT and 28 metPRT participants and from 16-

week post-training muscle biopsies from 26 plaPRT and 

24 metPRT participants (average age 71 years old). Of 

these, 24 plaPRT and 23 metPRT participants had 

biopsies at both timepoints. Additionally, total RNA was 

isolated from muscle biopsies in 21 young healthy 
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donors (average age 24 years old). Approximately 35 mg 

of muscle was subjected to bead homogenization in 

Qiazol (Qiagen, Valencia, CA) and RNA purified using 

miRNeasy Mini Kits (Qiagen) and stored at -80° C. 

RNA content, integrity and purity were determined with 

a Nanodrop 2000 spectrophotometer (Thermo Fisher, 

Waltham, MA) and the 2100 Bioanalyzer (Agilent, 

Santa Clara, CA). A minimum RNA Integrity Number 

(RIN) of 6.5 was set for all samples. 

 

Sequencing, preprocessing and alignment 
 

Total RNA was sequenced at Novogene Corporation, 

Chula Vista, CA on an Illumina HiSeq 4000 system, 

using a standard paired-end 150 bp (PE150) dual 

indexing protocol. The two sets of samples (University 

of Kentucky and University of Alabama), each 

containing samples from all timepoints of both placebo 

and metformin arm as well as young, were sequenced in 

different batches that were corrected for in the 

downstream analyses. Raw fastq sequence reads were 

passed through quality control using FastQC (0.11.4) 

[54] and the QC results were compiled for all samples 

using MultiQC (1.7) [55]. Due to adapter contamination, 

the raw fastq files were trimmed for adapter sequences, 

filtered for low quality reads and too short reads, using 

the default parameters in fastp (0.19.4) - an all-in-one 

preprocessing tool for fastq files [56]. After checking for 

QC using the same steps as before, RNA-Sequencing by 

Expectation Maximization- RSEM (1.3.0) in conjunction 

with the STAR aligner (2.6.1b) was used to align  

the raw reads to the GRCh38 primary assembly  

build of the reference human genome, with transcript 

annotations (gencode.v29.annotation.gtf) downloaded 

from GENCODE [57–59]. 

 

Differential gene expression analysis 
 

All statistical analysis for the gene expression data 

were carried out using the R statistical software (R-

3.6.0). The raw counts were filtered for low expression 

using a counts-per-million (cpm) threshold of 0.6 

(10/minimum library size) in at least 24 (number of 

samples in the smallest group of comparison). Since the 

principal component analyses revealed a distinct 

sequencing batch effect, the raw count data was 

corrected for it using batch as a covariate in the 

generalized linear model in limma (3.4.0) [60]. The 

corrected data using the removeBatchEffect function in 

limma was deemed to have minimal sequencing batch 

effects after a visual inspection of PCA and used for all 

downstream analyses. Raw data were normalized using 

the trimmed mean of M-values (TMM) normalization. 

To minimize heteroscedasticity from the count data and 

incorporate precision weights to account for the mean-

variance relationship, the voom function was applied on 

the normalized data [60]. A linear model was fit on the 

voom-normalized data, while adjusting for the study 

arm (placebo vs metformin) and biopsy time (baseline, 

14 weeks of PRT with treatment and young). Due to 

the paired nature of the study, the participant id was 

used as a blocking variable. Differential gene 

expression was measured using an Empirical Bayes 

statistic in limma for the following comparisons –

plaPRT vs Baseline, metPRT vs Baseline, Young vs 

Old Baseline, Young vs plaPRT (16 weeks), and 

Young vs metPRT (16 weeks). The raw P-values were 

adjusted for multiple comparisons using the Benjamini-

Hochberg correction. The adjusted P-value threshold of 

0.01 was used to characterize statistically significant 

differentially expressed genes (DEG). 

 

Pathway overrepresentation analysis 
 

Genes that were deemed to be differentially expressed 

with statistical significance (FDR-adj P-value < 0.01), 

were exported to ConsensusPathdb (http://cpdb.molgen. 

mpg.de/CPDB) database [61]. The pathways interrogated 

were Reactome, KEGG, Biocarta, Wikipathways and 

PharmGKB. A hypergeometric test was run and 

pathways with a gene overlap threshold of 10% of all 

input genes and the p-value cutoff of 0.01 were included 

in the output. Duplicated pathways were excluded from 

the output. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 5, 6. 

 

Supplementary Table 1. List of Differentially Expressed Genes between 16 weeks of intervention (plaPRT- 16 weeks 
vs Baseline; metPRT- 16 weeks vs Baseline). 

 

Supplementary Table 2. List of pathways identified to be overrepresented in the Differentially Expressed Genes 
between 16 weeks of plaPRT and baseline (plaPRT Pathways); and 16 weeks of metPRT and baseline (metPRT 
Pathways). 

 

Supplementary Table 3. List of aging-associated pathways identified to be overrepresented in the Differentially 
Expressed Genes unique to 16 weeks of metPRT (and not plaPRT) vs baseline. 

Pathways p-value q-value Source Overlap with Differentially Expressed Genes 

Cellular senescence 1.48E-05 0.0009203 KEGG MAPK14; NFATC3; E2F1; RHEB; GADD45A; LIN37; CCNE1; SERPINE1; 

RRAS; TGFB3; PIK3R3; VDAC1; ITPR1; RAF1; MAPKAPK2 

Platelet activation, 

signaling and 

aggregation 

0.00012627 0.00391438 Reactome MAPK14; TGFB3; ITPR1; RAC1; GNB4; MAGED2; VAV2; SERPINE1; 

HABP4; FERMT3; GNA14; PIK3R3; LAMP2; VTI1B; ITIH3; TOR4A; 

RAF1; ITIH4 

Autophagy 0.00043644 0.00901974 KEGG RAB7A; RHEB; SUPT20H; ATG16L1; RRAS; BAD; PIK3R3; LAMP2; 

ATG9A; ITPR1; RAF1 

Platelet 

degranulation 

0.00173465 0.01596422 Reactome TGFB3; MAGED2; ITIH4; HABP4; FERMT3; LAMP2; VTI1B; ITIH3; 

TOR4A; SERPINE1 

Response to 

elevated platelet 

cytosolic Ca2+ 

0.00230046 0.01782854 Reactome TGFB3; MAGED2; ITIH4; HABP4; FERMT3; LAMP2; VTI1B; ITIH3; 

TOR4A; SERPINE1 

Antigen processing: 

Ubiquitination and 

Proteasome 

degradation 

0.00316855 0.01965693 Reactome KBTBD7; ASB11; UBE2K; ZNRF1; ASB4; LONRF1; ASB5; TRIM32; 

RNF41; FBXO31; CUL5; UBE2S; RLIM; UBE2R2; FBXL22 

Post-translational 

protein modification 

0.0041917 0.02088671 Reactome ASB11; RAD23B; EEF1A1; CD59; SPON1; PSMD2; RIPK1; ADAMTS13; 

HIST2H2BE; FOXO4; VDAC1; DCTN1; SAR1B; CCDC8; KBTBD7; 

RAB34; TTLL3; ASB4; ASB5; XRCC4; PSMA2; GMDS; COPS3; C3; CUL5; 

TOMM70; NUS1; RAB7A; ST3GAL5; NUP98; UBE2R2; SPARCL1; USP30; 

F10; ST6GALNAC4; INO80B; EEF1AKMT2; TRAPPC9; UBE2K; WDTC1; 

ST8SIA2; ARCN1; TRAPPC6A; ADRB2; FBXO31; RNF128; NEU4; RFT1; 

UBE2S; FEM1A; FBXL22 

Neddylation 0.00721409 0.02981822 Reactome KBTBD7; ASB11; WDTC1; ASB4; ASB5; COPS3; PSMD2; PSMA2; 

FBXO31; CUL5; CCDC8; FBXL22; FEM1A 
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Supplementary Table 4. Age and sex of young individuals used in this study. 

Study_ID Age Sex 
CMB-001 23.0 Female 
CMB-018 27.2 Female 
CMB-020 21.6 Male 
CMB-024 28.3 Female 
CMB-056 29.7 Male 
CMB-065 24.0 Male 
CMB-071 25.3 Female 
CMB-073 20.7 Female 
CMB-079 26.0 Male 
CMB-082 24.8 Female 
CMB-083 23.5 Male 
CMB-087 21.4 Female 
CMB-090 22.5 Female 
CMB-091 23.5 Male 
CMB-099 24.3 Female 
CMB-101 25.8 Male 
CMB-106 24.3 Male 
CMB-107 19.8 Female 
CMB-112 21.3 Female 
CMB-116 23.9 Male 
CMB-123 27.2 Male 

 

Supplementary Table 5. List of Differentially Expressed Genes between young vs old baseline and young vs 
intervention (plaPRT- 16 weeks vs Young; metPRT- 16 weeks vs Young). 

 

Supplementary Table 6. List of pathways derived from genes common to both groups following 14-weeks of PRT that 
were no longer different from young. 

 

Supplementary Table 7. List of pathways derived from genes unique to young vs metPRT- 16 weeks that are not 
differentially expressed compared to young vs baseline. 

Pathways p-value q-value Source Genes Identified as unique to metPRT  

Synthesis of UDP-N-

acetyl-glucosamine 

0.00047005 0.1240602 Reactome RENBP; GNPNAT1; NAGK 

Metabolism of lipids 0.00066041 0.1240602 Reactome ACP6; RAB4A; SCP2; OSBPL1A; NCOR1; 

ACER2; GPAM; TECR; LPCAT4; SIN3B; 

HSD17B7; HMGCS1; RAB5A; OSBPL9; 
GDE1; OSBPL2; TBL1X; PLA2G4F; 

PLA2G4E; HACD3; HACD2; FAAH; SC5D; 

JMJD7-PLA2G4B; PPP1CB; DECR2; 

PLEKHA8 

Cohesin Loading onto 

Chromatin 

0.00097637 0.1240602 Reactome SMC1A; WAPL; PDS5A 

Acyl chain 

remodelling of PS 

0.00121528 0.1240602 Reactome JMJD7-PLA2G4B; LPCAT4; PLA2G4F; 

PLA2G4E 

Establishment of Sister 

Chromatid Cohesion 

0.0013218 0.1240602 Reactome SMC1A; WAPL; PDS5A 

Hydrolysis of LPC 0.0013218 0.1240602 Reactome JMJD7-PLA2G4B; PLA2G4F; PLA2G4E 

Metabolism 0.00208963 0.16465348 Reactome OSBPL9; ATIC; RPL9; ATP5S; ACP6; SCP2; 

GAPDH; UROS; OSBPL1A; NDUFAF7; 

GSR; SLC25A19; ASS1; SLC25A12; NCOR1; 

PANK1; GPAM; RAB4A; NT5E; TECR; 

MOCS2; LPCAT4; GBE1; HMGCS1; 

NUP210; LDHA; HSD17B7; ACER2; 

RAB5A; AUH; NUDT3; NUDT5; ETFDH; 

PHKA2; PLCD4; NUP50; PHGDH; GDE1; 



 

www.aging-us.com 19866 AGING 

OSBPL2; TBL1X; EEF1E1; PLA2G4F; 

PLA2G4E; HACD3; HACD2; FAAH; SC5D; 

JMJD7-PLA2G4B; SIN3B; DHODH; 

PPP1CB; COX15; NAPRT; SQOR; DECR2; 

XYLB; PLEKHA8; CPS1; COQ2 

Biosynthesis of 

unsaturated fatty  
acids - Homo sapiens 

(human) 

0.00225553 0.16465348 KEGG HACD3; HACD2; SCP2; TECR 

Acyl chain 

remodelling of PC 

0.00258868 0.16624452 Reactome JMJD7-PLA2G4B; LPCAT4; PLA2G4F; 

PLA2G4E 

Mitotic 

Telophase/Cytokinesis 

0.00278339 0.16624452 Reactome SMC1A; WAPL; PDS5A 

Acyl chain 

remodelling of PE 

0.00335325 0.17313497 Reactome JMJD7-PLA2G4B; LPCAT4; PLA2G4F; 

PLA2G4E 

ERBB2 Regulates Cell 

Motility 

0.00342581 0.17313497 Reactome BTC; MEMO1; EGF 

Metabolism of steroids 0.0052267 0.21827294 Reactome HMGCS1; GPAM; OSBPL1A; SCP2; SC5D; 

OSBPL9; OSBPL2; HSD17B7 

Cardiac Hypertrophic 

Response 

0.00530898 0.21827294 Wikipathways NFKB1; MTOR; EGF; MAP2K5; MAP2K4 

Synthesis of bile acids 

and bile salts 

0.00531563 0.21827294 Reactome OSBPL2; OSBPL1A; OSBPL9; SCP2 

TGF-beta Receptor 

Signaling 

0.00574218 0.22191846 Wikipathways CTNNB1; SMAD5; NOG; EGF; NFKB1 

HSP90 chaperone 

cycle for steroid 

hormone receptors 

(SHR) 

0.00685897 0.23717586 Reactome HSPA2; NR3C1; FKBP5 

Acyl chain 

remodelling of PG 

0.00685897 0.23717586 Reactome JMJD7-PLA2G4B; LPCAT4; PLA2G4F 

Activation of gene 

expression by SREBF 

(SREBP) 

0.00794609 0.24669174 Wikipathways SC5D; GPAM; HMGCS1 

Regulation of lipid 

metabolism by 

Peroxisome 

proliferator-activated 

receptor alpha 

(PPARalpha) 

0.00794609 0.24669174 Reactome TBL1X; SIN3B; NCOR1 

Synthesis of PA 0.00950069 0.24669174 Reactome JMJD7-PLA2G4B; LPCAT4; GPAM; ACP6 

 


