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We systemically identified tuberculosis (TB)-related DNA
methylation biomarkers and further constructed classifiers
for TB diagnosis. TB-related DNA methylation datasets were
searched through October 3, 2020. Limma and DMRcate
were employed to identify differentially methylated probes
(DMPs) and regions (DMRs). Machine learning methods
were used to construct classifiers. The performance of the clas-
sifiers was evaluated in discovery datasets and a prospective
independent cohort. Eighty-nine DMPs and 24 DMRs were
identified based on 67 TB patients and 45 healthy controls
from 4 datasets. Nine and three DMRs were selected by elastic
net regression and logistic regression, respectively. Among the
selected DMRs, two regions (chr3: 195635643–195636243 and
chr6: 29691631–29692475) were differentially methylated in
the independent cohort (p = 4.19 � 10�5 and 0.024, respec-
tively). Among the ten classifiers, the 3-DMR logistic regression
classifier exhibited the strongest performance. The sensitivity,
specificity, and area under the curve were, respectively,
79.1%, 84.4%, and 0.888 in the discovery datasets and 64.5%,
90.3%, and 0.838 in the independent cohort. The differential
diagnostic ability of this classifier was also assessed. Collec-
tively, these data showed that DNA methylation might be a
promising TB diagnostic biomarker. The 3-DMR logistic
regression classifier is a potential clinical tool for TB diagnosis,
and further validation is needed.
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INTRODUCTION
The complex nature ofMycobacterium tuberculosis (MTB) has greatly
contributed to the continuous effects of tuberculosis (TB), the world’s
top infectious killer, on human populations for thousands of years.1

Globally, in 2019, approximately 10 million people fell ill with TB,
and 1.4 million people died of TB.2 Luckily, TB is a preventable
and curable illness, and the key to thwarting the TB epidemic is early
diagnosis.3 The detection power of etiological tests (Xpert MTB/RIF,
culture, etc.) largely depends on sample quality.4 Traditional host im-
mune response assays (interferon-g [IFN-g] release assays, tubercu-
Molecular T
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lin tests, etc.) work mainly by measuring the products of the host im-
mune response. Most of these products are downstream molecules in
various biological pathways, suggesting that these molecules are regu-
lated by various factors.5 In addition to the limited performance of the
available detection methods, certain features of TB also increase the
difficulty of its clinical diagnosis. For example, incipient TB is charac-
terized by an indeterminate period of asymptomatic infection or
absence of typical clinical symptoms and imaging features, which
limit the effectiveness of TB diagnosis.6 Therefore, new and more
powerful detection tools are urgently needed. Current evidence has
indicated that the detection of non-sputum blood biomarkers of TB
is a preferred approach for clinical diagnosis and progression
surveillance.7,8

TB is an infectious disease whose pathogenesis involves dynamic in-
teractions among the host, MTB, and the environment. The circula-
tory system serves as a site for cellular communication and dynamic
exchange of various cellular factors and chemokines, and thus periph-
eral blood has been considered the preferred sample type for studying
and diagnosing infectious diseases.9 To date, peripheral blood bio-
markers of TB at the genomic, transcriptomic, epigenetic, and prote-
omic levels have received enormous attention, and numerous markers
have been identified.7,9–11 Of note, epigenetics can bridge the gaps be-
tween the host, MTB, and the environment.12,13 Therefore, epigenetic
biomarkers in the peripheral blood may have great potential in TB
diagnosis and progression surveillance.
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Figure 1. The flow chart of the study protocol

Abbreviations: TB, tuberculosis; DMPs, differentially methylated probes; DMRs, differentially methylated regions; HC, healthy control.
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DNA methylation, the most widely studied epigenetic modification,
refers to the formation of 5-methylcytosine through the transfer of
a methyl group to the carbon-5 position of the cytosine base by
DNA methyltransferase enzymes.14 DNA methylation is responsible
for regulating gene expression, chromatin structure, and alternative
splicing.15,16 In human somatic cells, methylation occurs in approxi-
mately 90% of the cytosines in CpG sites; most importantly, this ratio
varies among different tissue types, cell types, and disease states.15 As
the advantages of DNAmethylation include critical roles in biological
processes, disease/tissue/cell-type-specific patterns, and inherent sta-
bility, specific DNAmethylation profiles have been mapped for many
diseases, such as breast cancer, adiposity, and others.17,18 Some path-
ogens, such as human immunodeficiency virus and hepatitis B virus,
have been verified to alter the DNA methylation landscape of the
host;19,20 MTB has also been reported to have such activity. DiNardo
et al.21 found that the methylation level of mycobacterial immunity-
related genes was upregulated, leading to a downregulation of the host
immune response against MTB. These findings indicated that DNA
methylation is important in TB development and may serve as a
promising biomarker. However, systematic work to explore the value
of DNA methylation in TB has thus far been less common.

Toward this end, we (1) summarized available datasets to systemati-
cally describe the DNAmethylation characteristics of TB and identify
potential biomarkers; (2) applied machine learning methods to
construct TB diagnostic classifiers by triaging a parsimonious list of
the most promising targets; and (3) performed validation studies in
an independent cohort to ensure that these molecules are robust as
TB-related biomarkers. This study aimed to establish TB-related
methylation profiles and facilitate TB diagnosis, as well as decipher
the underlying connection between TB and DNA methylation.
38 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
RESULTS
The flow chart of the study protocol is shown in Figure 1.
Different DNA methylation patterns in TB patients and healthy

controls

Altogether, 4 datasets, including 67 TB patients and 45 healthy con-
trols (HCs), met the inclusion criteria (Table 1). A total of 363,416
probes were retained for analysis after filtering and adjusting for batch
effects. In total, 89 differentially methylated probes (DMPs) were
found between TB patients and HCs (Figure 2A). Mapping of the
89 DMPs onto genomic features showed that the most probes tar-
geted intronic features (29%, 26/89), followed by exons (21%, 19/
89) and intergenic features (20%, 18/89) (Figure 2C). Among the
89 DMPs, 68.5% (61/89) sites were hypermethylated and 31.5%
(28/89) were hypomethylated in TB patients compared with HCs
(Figure 2E).

Further analysis was performed to identify ethnicity-specific and
sample type-specific DMPs (Figure S1).

We then shifted focus to the methylation regions with the strongest
prospective ability to regulate gene expression. Twenty-seven differ-
entially methylated regions (DMRs) covering 310 CpG sites were
identified (Figure 2B). Three regions were excluded because only
one CpG site was present in each region. Of the 24 DMRs, genomic
annotation showed that 42% (10/24) were located in exon regions,
and 25% (6/24) were located in 50 UTRs (Figure 2D). The locations
of DMRs exhibited a chromosomal bias, and nearly half of the
DMRs (10/24) were distributed on chromosome 6. Of all DMRs,
only one (chr3: 50336343–50337494) mapped to two genes



Table 1. The detailed information of included methylation arrays

GEO ID Platform

Characteristics of included subjects
Sample
numbers

Sample typeRace Mean age (years) Sex (male/female, %) HIV status TB HC

GSE118469 GPL13534 Asian >18 100 0 15 6 PBMC

GSE104287 GPL13534 Caucasian >18 62.5 0 32 16 PBMC and NK cell

GSE72338 GPL13534 African >18 63.2 0 17a 20 monocyte and neutrophil

GSE107917 GPL23976 Asian N/A N/A N/A 3 3 whole blood

GEO, Gene Expression Omnibus; HIV, human immunodeficiency virus; TB, tuberculosis; HC, healthy control; PBMC, peripheral blood mononuclear cell; N/A, not applicable; NK,
natural killer.
aOne sample (GSM1860484) was not included due to the filter conditions used in raw data procession.
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(HYAL3 and NAT6). According to the mean fold change (FC) of the
b value, TB patients showed significant hypermethylation compared
with HCs in 22 regions and hypomethylation in 2 regions (Table 2;
Figure 2F).

Principal-component analysis was conducted to explore the differ-
ence in 24 DMRs among ethnicity-specific and sample type-specific
subgroups (Figure S2).

Function enrichment of DMRs

Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis were per-
formed for 25 DMR-associated genes. GO analysis indicated that
DMR-associated genes contributed to many immune-related biolog-
ical functions, such as immune cell activation and regulation, cellular
response to IFN-g, and cytotoxicity (Figure S3A). KEGG analysis
suggested that these 25 genes mainly participated in antigen process-
ing and presentation and pathogen infection-related pathways (cyto-
megalovirus, papillomavirus, etc.) (Figure S3B). A protein-protein
interaction (PPI) network was built to visualize the interactions
among the proteins encoded by these 25 genes. HLA-F, ZBTB22,
SIN3A, and GABBR1 were considered hub genes in the constructed
network (Figure S3C).

Construction of diagnostic classifiers based on the validated

DMRs

Variables were selected by logistic regression and elastic net regres-
sion. A total of six machine learning methods were applied to
construct classifiers based on the selected variables.

Through binary univariate and multivariate logistic regression, three
DMRs (chr11: 65315205–65315625, chr3: 195635643–195636243,
and chr6: 29691631–29692475) were finally selected as classifiers
(Figures 3A and 3B). For these three DMRs, the logistic regression
classifier yielded a sensitivity of 79.1%, specificity of 84.4%, and
area under the curve (AUC) of 0.888 (95% confidence interval [CI]:
0.831–0.945) (Figures 3C and 3D). This classifier also showed a net
benefit in performance regardless of the risk threshold selected (Fig-
ure 3E). The highest AUC was 0.999 (95% CI: 0.997–1.000) for the
random tree classifier, followed by that for the extreme gradient
boosting (XGBoost) (AUC = 0.972; 95% CI: 0.948–0.995) and k-near-
est neighbor (KNN) (AUC = 0.945; 95% CI: 0.908–0.982) classifiers.
The lowest AUC was observed for the support vector machine (SVM)
classifier (AUC = 0.833; 95% CI: 0.758–0.907).

To avoid overfitting, the largest l at which the mean squared error
was within 1 standard error of the minimum (l = 0.068) was used
in the process of variable selection by elastic net regression (Fig-
ure 4A). In addition to the above three DMRs, six DMRs (chr15:
75743753–75744225, chr6: 30458519–30458601, chr6: 33244976–
33246390, chr6: 31627090–31627313, chr6: 33283789–33284168,
and chr6: 31937968–31938372) (Figure 4B) were selected by elastic
net regression. For these nine DMRs, the elastic net regression classi-
fier reached a sensitivity of 82.1%, specificity of 86.7%, and AUC of
0.918 (95% CI: 0.871–0.966) (Figure 4C). The highest AUCwas found
for the random tree classifier (AUC = 1.000, 95% CI: 1.000–1.000),
followed by the XGBoost (AUC = 0.997; 95% CI: 0.990–1.000) and
KNN (AUC = 0.919, 95% CI: 0.869–0.969) classifiers.

The optimal hyperparameters used in each classifier are provided in
Table S2.

Validation of DMRs by region-specific multiple sequencing

The methylation levels of the above nine DMRs were further tested.
Altogether, 62 samples from 31 TB patients and 31 HCs were
collected in a prospective clinical cohort.

The regions of chr3: 195635643–195636243 and chr6: 29691631–
29692475 were found to be differentially methylated (p = 4.19 �
10�5 and 0.024, respectively) (Figure 5A). However, no meaningful
findings were observed in the other seven regions (original data are
provided in Data S1).

Given that the data are generated in different ways (array and
sequencing), the cutoff value of the classifier based on microarray da-
tasets might not be suitable for sequencing data; therefore, new
thresholds generated by sequencing data were used. Among all the
classifiers constructed by different DMRs and modeling methods,
the 3-DMR logistic regression classifier exhibited the highest AUC
(0.838; 95% CI: 0.737–0.938). The specificity of this classifier
Molecular Therapy: Nucleic Acids Vol. 27 March 2022 39
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Figure 2. Differently methylated probes and differentially methylated regions between tuberculosis patients and healthy controls

(A and B) The Manhattan plot of all methylated probes and regions, respectively. The ordinate and abscissa represented the�log10 p value and chromosomes, respectively.

The different colors above the abscissa show the probe numbers in corresponding chromosomes and the horizontal line indicates the threshold value of p. (C and D) The

types of differentially methylated probe-related genes and differentially methylated region-related genes, respectively. ncRNA, non-coding RNA. (E and F) The heatmap of

differentially methylated probes and differentially methylated regions between tuberculosis patients and healthy controls, respectively. Themethod of correlation was used for

row clustering.
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increased to 90.3%, while the sensitivity declined slightly but still
reached 64.5% (Table 3; Figure 5B).

To facilitate the application of these findings to clinical practice, an
online classifier based on the 3-DMRs logistic regression was de-
signed at https://mengyuan.shinyapps.io/TB_DNAmethylation/.
For simplicity, in this online tool, region-related genes were em-
ployed to represent the corresponding DMRs. LTBP3, TNK2-AS1,
and HLA-F represent the regions of chr11: 65315205–65315625,
40 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
chr3: 195635643–195636243, and chr6: 29691631–29692475,
respectively.

Further evaluation of the 3-DMR logistic regression classifier in

different situations

Considering the serious consequences of TB spread, 35 TB patients
and 32 participants injected with Bacillus Calmette-Guerin (BCG)
were combined into the same group to decrease the likelihood of
missed diagnosis. However, differential diagnosis of TB patients

https://mengyuan.shinyapps.io/TB_DNAmethylation/


Table 2. Identified top different methylation regions between TB patients and HCs

Chromosome

Genetic positiona

Gene symbol CpG site number Mean beta fold change Adjusted p valueStart End

Chr1 160068509 160068681 IGSF8 6 1.22 � 10�2 1.06 � 10�8

Chr3b,c 195635643 195636243 TNK2-AS1 2 9.36 � 10�3 1.17 � 10�9

Chr3 50336343 50337494 HYAL3; NAT6 17 7.01 � 10�4 4.13 � 10�16

Chr6 33160067 33160976 COL11A2 19 4.60 � 10�3 3.96 � 10�18

Chr6c 30458519 30458601 HLA-E 3 �3.76 � 10�2 5.74 � 10�9

Chr6 44190729 44191600 SLC29A1 10 6.24 � 10�4 1.88 � 10�11

Chr6c 33244976 33246390 B3GALT4 37 1.19 � 10�2 7.05 � 10�20

Chr6c 31627090 31627313 C6orf47 6 1.04 � 10�2 6.81 � 10�9

Chr6c 33283789 33284168 ZBTB22 10 8.26 � 10�3 3.96 � 10�9

Chr6 29600108 29600468 GABBR1 10 2.66 � 10�3 3.30 � 10�9

Chr6c 31937968 31938372 DXO 6 4.98 � 10�3 7.91 � 10�10

Chr6b,c 29691631 29692475 HLA-F 21 �1.10 � 10�2 2.75 � 10�12

Chr6 30711586 30712559 IER3 23 5.67 � 10�5 3.03 � 10�11

Chr8 144328914 144329279 ZFP41 7 4.18 � 10�3 2.05 � 10�9

Chr11b,c 65315205 65315625 LTBP3 4 2.28 � 10�2 3.63 � 10�9

Chr11 2019930 2020560 H19 15 1.65 � 10�2 3.12 � 10�10

Chr11 66034896 66035392 KLC2 14 3.86 � 10�3 1.98 � 10�9

Chr12 133065912 133066762 FBRSL1 18 5.40 � 10�3 1.22 � 10�15

Chr15c 75743753 75744225 SIN3A 8 6.00 � 10�3 8.06 � 10�11

Chr16 11350112 11350371 SOCS1 6 6.65 � 10�3 1.28 � 10�10

Chr17 7210796 7211307 EIF5A 6 6.65 � 10�3 8.61 � 10�12

Chr19 55850629 55851365 KMT5C 12 3.31 � 10�3 2.55 � 10�13

Chr20 57426538 57427973 GNAS 38 1.59 � 10�2 2.88 � 10�21

Chr22 38851318 38852154 KCNJ4 9 1.06 � 10�2 1.26 � 10�16

aThe positions were obtained according to hg19, GRCh37 (Genome Reference Consortium Human Reference 37).
bThese three different methylation regions were selected by logistic regression into models.
cThese nine different methylation regions were selected by elastic net regression into models.
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and BCG recipients is needed. Although the 3-DMR logistic regres-
sion classifier exhibited moderate AUC (0.689; 95% CI: 0.563–
0.816), it could distinguish TB patients from BCG participants with
a specificity of 82.9%.

The differential diagnosis performance of the 3-DMR logistic regres-
sion classifier was also evaluated. The details of disease controls (DCs)
are shown in Table S3. The 3-DMR logistic regression classifier
showed a strong ability to distinguish TB from malaria (sensitivity,
61.2%; specificity, 87.5%; AUC = 0.778; 95%CI: 0.598–0.959) and sys-
temic inflammatory response syndrome (sensitivity, 100%; speci-
ficity, 94.0%; AUC = 0.955; 95% CI: 0.907–1.000). The sensitivity,
specificity, and AUC were 100%, 92.5%, and 0.965 (95% CI: 0.929–
1.000) when using this classifier to differentiate sepsis patients
(GEO: GSE138074) from TB patients, while they were 100%, 100%,
and 1.000 (95% CI: 1.000–1.000) when distinguishing sepsis patients
(GEO: GSE58651 or GEO: GSE155952) from TB patients. However,
this classifier failed to efficiently differentiate TB patients from pa-
tients with subclinical parasitemia (sensitivity, 100%; specificity,
41.8%; AUC = 0.631; 95% CI: 0.417–0.844).

The differential diagnosis ability of the 3-DMR logistic regression
classifier is shown in Figure 6.
DISCUSSION
This work represents a comprehensive analysis of TB-related DNA
methylation biomarkers. By integrating the available datasets, we
identified TB-related targets (89 DMPs and 24 DMRs). With respect
to the likelihood and degree of influencing gene expression, 24 DMRs
were treated as subsequent candidates. Logistic regression and elastic
net regression were used to select potential biomarkers for further
validation in an independent cohort. Based on the selected candi-
dates, six different methods were applied to construct classifiers,
and the 3-DMR logistic regression classifier outperformed the others.
The good performance of this classifier in both discovery and
Molecular Therapy: Nucleic Acids Vol. 27 March 2022 41
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Figure 3. The included variables, nomogram, and performance of the 3-DMR logistic regression classifier

(A) Customizing visualizations of included variables in 3-DMR logistic regression classifiers. The upper two plots are the genomic coordinates of the targeted differentially

methylated regions, followed by a line chart that shows the mean beta value of all probes in the corresponding region among tuberculosis patients (red line) and healthy

controls (green line). Next, the genomic annotations, including CpG island locations and DNAseI hypersensitive sites, were plotted. The data of CpG island locations and

DNAseI hypersensitive sites were obtained fromWu et al.22 and UCSCGenome Browser. Finally, RefSeq tracks were added. (B) Nomogram of the 3-DMR logistic regression

classifier. For simplicity, region-related genes were employed to represent the corresponding differentially methylated regions. LTBP3, TNK2-AS1, and HLA-F represent the

regions of chr11: 65315205–65315625, chr3: 195635643–195636243, and chr6: 29691631–29692475, respectively. (C) Calibration curve of the 3-DMR logistic regression

classifier. (D) Receiver operating characteristic of the 3-DMR logistic regression classifier. (E) Decision curve analysis curve of the 3-DMR logistic regression classifier. The

bold red curve shows the benefit net of this classifier at different risk thresholds, while the curves on both sides represent its 95% confidence interval.
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validation cohorts emphasize the tremendous potential of DNA
methylation as a TB diagnostic biomarker.

Over the past few decades, clinicians have expressed a preference for
obtaining the most direct evidence possible to diagnose diseases.
Therefore, tissues or body fluid from lesion sites are considered ideal
sample types; and, certainly, analyses based on these samples are re-
garded as reference methods. However, a high level of invasiveness,
challenging techniques, and limited applicable populations currently
constrain the use of such samples for disease diagnosis. In this
context, peripheral blood has emerged as a focus for researchers.
42 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
The peripheral blood is the environment in which various cytokines
and immune cells interact in infectious diseases. Therefore, the circu-
latory system can be treated as a source of markers for the host im-
mune response23 and offers information about when and how disease
progresses. The exploration of diagnostic biomarkers in the periph-
eral blood has encompassed genomics, transcriptomics, and epige-
netics studies. However, genomics and transcriptomics do not pro-
vide an appropriate balance between molecular stability and flexible
monitoring of disease progression. DNAmethylation perfectly offsets
the above two limitations. Thanks to technological developments,
many choices for detection methods are available, which also



Figure 4. Optimal hyperparameter selection, included variables and receiver operating characteristics of the 9-DMR elastic net regression classifier

(A) The cross-validation plot for the optimal l selection. The red dots represent the target mean squared error corresponding to each l. The left dotted line shows the value of l

when MSE was at its minimum, while the right dotted line shows the maximum value of l when MSE was within 1 standard error of the minimum. (B) Customizing visu-

alizations of included variables in 9-DMR elastic net regression classifier. The upper two plots are the genomic coordinates of the targeted differentially methylated regions,

followed by the line chart which shows the mean beta value of all probes in the corresponding region among tuberculosis patients (red line) and healthy controls (green line).

Next, the genomic annotations, including CpG island locations and DNAseI hypersensitive sites, were plotted. The data of CpG island locations and DNAseI hypersensitive

sites were obtained by the publication of Wu et al.22 and UCSCGenome Browser. Finally, RefSeq tracks were added. (C) The receiver operating characteristics of the 9-DMR

elastic net regression classifier.
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contributes greatly to the clinical application of DNA methylation
analysis. These advantages have prompted the deep exploration of
DNA methylation in infectious diseases.

To clarify how peripheral blood biomarkers are regulated and deter-
mine their functions in targeted disease, it is essential to demonstrate
their roles as biomarkers of disease progression. The association be-
tween DNA methylation and TB was reported as early as 1980.24

Although the question of whether the change in host genomic
methylation is caused by MTB itself or secondary to inflammation re-
mains unanswered, some progress has been made to decode the func-
tions of these changes in DNA methylation. By summarizing and
comparing the characteristics of different methylation sites before
and after host infection with MTB, scholars found that significantly
changed candidates were mainly located in promoter regions.
Methylation in the promoter region can lead to the failure of gene
transcription initiation and gene silencing the by hampering tran-
scription factor (TF) binding to specific motifs.25,26 Changes in
gene activity and expression will further affect a series of signaling
pathways and biological functions, including immune cell regulation,
cytokine regulation, IFN-g signaling pathways, and other TB-related
immune activities,21,27 consistent with the results of this study. As
mentioned above, methylation is able to interfere with TF binding,
while TFs are also capable of regulating methylation status. TF occu-
pancy theory suggests that TFs can modulate gene methylation levels
by competing with DNA methyltransferase binding at promoter se-
quences.26 Pacis et al.28 cultured MTB-infected human dendritic cells
and collected time-dependent data on DNA methylation, gene
expression, and chromatin accessibility patterns. The resulting data
verified that immune-related TFs could regulate methylation levels
by binding to cis-acting elements. Notably, not all TFs are negatively
regulated by DNA methylation, and positive correlations between
them have also been reported.29 Collectively, the existing data show
that DNAmethylation has crucial roles in the pathogenesis and devel-
opment of TB. Mapping TB-specific methylation and further select-
ing promising sites may open a new horizon for TB elimination to
some extent.

The understanding of how DNA methylation functions increases its
potential as a promising biomarker. Over time, a number of TB-spe-
cific DNA methylation biomarkers, from the global DNA methyl-
ation level to detailed methylated sites or regions, have been reported.
Maruthai et al.30 took the global DNA methylation level as a TB-spe-
cific biomarker and reported an AUC of 0.81. Their group also
Molecular Therapy: Nucleic Acids Vol. 27 March 2022 43
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focused on the VDR promoter methylation level and the median
DNA methylation level of Alu repetitive elements and found that
these two indicators exhibited good performance for diagnosing pedi-
atric TB (AUC = 0.977 and 0.969, respectively).31,32 However, these
results were obtained from relatively small cohorts (76 and 68 chil-
dren). The team of Das and Chen reported some differentially meth-
ylated sites in TLR2, SNX26, and other genes but did not analyze the
diagnostic values of these sites.33–35 Wang et al.36 demonstrated
meaningfully methylated sites in key genes in the vitamin Dmetabolic
pathway and further assessed the diagnostic capacity of these genes by
calculating the cumulative methylation level of CpG sites on these
genes via four different methods. The AUCs of candidate genes varied
from 0.578 to 0.794. Esterhuyse et al.9 incorporated different CpG
sites by machine learning to distinguish active TB from latent TB
infection and obtained a model with an AUC of 0.74. However, these
methylation data were generated from only monocytes and granulo-
cytes, which might restrict the applicability of the model. The high
AUCs of these candidate loci underscores the potential of DNA
methylation as a TB diagnostic biomarker. However, these bio-
markers were identified in relatively small cohorts or specific cell
types. Moreover, current studies tend to use a single CpG site or
CpG sites in a single gene as a biomarker, which implies limited diag-
nostic power and generalizability. Comprehensive and systematic
work is particularly necessary to avoid the above problems and
further develop the diagnostic potential of DNA methylation. There-
fore, we first combined all available datasets to properly expand the
sample size, cover more ethnic populations, and target more sample
types (whole blood, peripheral blood mononuclear cells, etc.).
Through rigorous data analysis, the high population coverage and
many different sample types ensure the wide applicability of bio-
markers. Compared with CpG sites, methylated regions are more
likely to regulate gene expression to a greater extent and thus were
chosen as biomarkers in this work. In addition, each single biomarker
has its own limitations, which will be particularly magnified in com-
plex and changeable clinical settings. Constructing models to incor-
porate different biomarkers can resolve these questions effectively
andmaximize the underrated power of TB-specific DNAmethylation
biomarkers. We tested various combinations of variable selection
methods and modeling methods to build different classifiers, which
offered us a better opportunity to select a high-performing classifier.
Such efforts were finally realized in the 3-DMR logistic regression
classifier, which exhibited superior performance in both the discovery
and validation cohorts. Fewer included variables, excellent capacity,
strong generalizability, and availability as a convenient online tool
enable this classifier to be used in real clinical applications.

Understanding why this 3-DMR logistic regression classifier pos-
sesses such capacity and differential diagnostic ability is crucial to
its optimal utilization. The regions of chr3: 195635643–195636243
and chr6: 29691631–29692475 occupied a dominant position in
this classifier. The region of chr3: 195635643–195636243 is at the po-
sition of TNK2-AS1. TNK2-AS1 is closely related to cell proliferation,
invasion and apoptosis in cancer.37,38 TNK2-AS1 acts as a microRNA
sponge and, to date, miR-4319 andmiR-150-5p have been reported as



Figure 5. Themethylation levels of three differentiallymethylated regions and the performance of the 3-DMR logistic regression classifier in an independent

cohort

(A) A violin plot of the methylation levels of three differentially methylated regions in an independent cohort. TB, tuberculosis; HC, healthy control. (B) The receiver operating

characteristics of the 3-DMR logistic regression classifier in an independent cohort.
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targets of TNK2-AS1.38,39 Our previous study suggested that miR-
150-5p was a promising biomarker for TB diagnosis,40 and mounting
evidence demonstrates that miR-150-5p contributes greatly to im-
mune cell differentiation and the capacity of effector CD8+ T cells
to kill infected cells.41 Herein, we hypothesized that the interaction
betweenMTB and the host influences TNK2-AS1 expression by regu-
lating its methylation level, while altered TNK2-AS1 expression trig-
gers a series of downstream pathways through a ceRNA mechanism.

The region of chr6: 29691631–29692475 is located within the pro-
moter region of HLA-F. In the late 1980s, Geraghty et al.42 first re-
ported HLA-F as a nonclassical class I antigen in the human leukocyte
antigen (HLA) family. Due to their prominent role in antigen presen-
tation and immune regulation, many members of the HLA family
have received ongoing attention from researchers,43 but HLA-F has
been less well studied. However, the current evidence suggests that
HLA-F is an underappreciated player in immune regulation.44

Changes in HLA-F at the genome, transcription, or epigenetic level
can fuel a series of immune alterations and are thus involved in can-
cer, infection, autoimmunity, and other disorders.45 In our work, TB
patients exhibited decreased methylation levels in the promoter re-
gion of HLA-F, also indicating elevated HLA-F mRNA expression.
Increased HLA-FmRNA expression had positive impacts on its inter-
action with immune receptors (KIR3DL1, KIR3DS1, etc.), cytokine
production (CCL4, IFN-g, etc.), and antigen presentation, which
have already been verified in other infectious diseases. Lunemann
et al.46 documented that through binding to KIR3DS1, increased
HLA-F promoted natural killer cell cytolysis and cytokine production
and thus suppressed hepatitis C virus replication. This was also
observed in HIV-1 infection.47 Based on the above, we speculated
that the host responded to MTB infection by downregulating the
methylation level of the promoter region in HLA-F, elevating HLA-
F mRNA expression and then promoting immune cell activation to
kill the bacteria. The CpG sites in the HLA-F promoter region may
serve as promising targets to enhance host immunity and achieve pre-
cise MTB clearance.

Aside from its diagnostic ability, generalizability, detection time, cost,
and feasibility in economically poor areas must also be considered in
the transition of this classifier to clinical practice. In terms of gener-
alizability, data generated from different sample types and ethnicities
were included to increase the generalizability of the classifiers. The
limited sample size in subgroups of different ethnicities restricted
the reliability of related findings, whereas relevant results were pre-
sented in this paper to provide potential clues. For sample type sub-
groups, principal-component analysis indicated that 24 regions in 5
subgroups exhibited similar methylation patterns. This suggests
that the 3-DMR logistic regression classifier has the potential to be
used in these five sample types. The excellent performance of the 3-
DMR logistic regression classifier in whole blood samples from an in-
dependent cohort supports the above speculation. Although different
blood cells have their own epigenetic patterns, they are all found in the
circulation and thus may be stimulated by the same factors and
communicate frequently with each other, leading to similarities in
their epigenetic patterns.48,49 In terms of cost and detection time,
the use of whole blood as samples allows a shorter detection time
and lowers costs because it does not require complex cell sorting,
gradient density centrifugation, or other sample processes. However,
sample processing accounts for a limited part of the total detection
time and costs, while detection assays greatly influence detection
time and cost. Assays based on bisulfite conversion, restriction en-
zymes, and affinity enrichment are currently applied to analyze
specific methylated regions and, among these, bisulfite conversion
is the most widely used.50 Polymerase chain reaction (PCR),
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Figure 6. Receiver operating characteristic curves of the 3-DMR logistic regression classifier when distinguishing tuberculosis patients from other disease

controls

(A) The receiver operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing tuberculosis patients from malaria cases. (B) The receiver

operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing cases with systemic inflammatory response syndrome from tuberculosis

patients. (C) The receiver operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing sepsis patients (GEO: GSE138074) from tuberculosis

patients. (D) The receiver operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing sepsis patients (GEO: GSE58651) from tuberculosis

patients. (E) The receiver operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing sepsis patients (GEO: GSE155952) from tuberculosis

patients. (F) The receiver operating characteristic curve of the 3-DMR logistic regression classifier when distinguishing tuberculosis patients from patients with subclinical

parasitemia.
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microarrays, and sequencing are utilized to read methylation infor-
mation after bisulfite conversion.51 PCR is suitable for primary health
facilities due to its low cost, short detection time, and simple opera-
tion; however, limited sensitivity and poor ability for methylated re-
gion detection should also be taken seriously. Microarrays and
sequencing overcome the above shortcomings of PCR but at the
expense of high costs and rigorous laboratory conditions. When
choosing different detection methods, it should be considered that
these methods had different sensitivities and thus different captured
efficiencies of CpG sites in targeted regions, which was also observed
in this study. Unfortunately, we have not proposed a standardized
process to address this problem. In addition, the differential diag-
nostic ability of the targeted classifier was evaluated in relatively small
populations, and more reliable evidence is needed. Herein, much
work remains to be done before applying a novel diagnostic pattern
in clinical practice.

Collectively, the available evidence suggests that DNA methylation
might be a kind of biomarker for TB diagnosis. Among all classifiers
46 Molecular Therapy: Nucleic Acids Vol. 27 March 2022
tested here, the 3-DMR logistic regression classifier presented excellent
performance inboth thediscovery andvalidationdatasets.This classifier
might provide insights into howDNAmethylation biomarkers could fit
into future TB diagnosis and allow TB patients to be shielded from dis-
ease progress by timely diagnosis. Further decoding the profile of DNA
methylation could offer crucial hints related to TB development, a
research direction that requires an increased emphasis on TB.

MATERIALS AND METHODS
Data preparation

DNA methylation array datasets were searched in the NCBI Gene
Expression Omnibus database (GEO) and European Bioinformatics
Institute ArrayExpress from their inception to October 3, 2020. The
search terms used were (“tuberculosis” OR “TB”) AND (“methyl-
ation” OR “methylate”), with restrictions on species (Homo sapiens)
and sample type (peripheral blood or its components). Considering
the influence of complex body interactions onmethylation patterns,52

datasets generated based on in vitro infection cell models, such as
GEO: GSE83379, were excluded. Datasets without raw IDAT or
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CEL files, such as GEO: GSE50835, were also excluded. The search
strategy for DCs is described in Data S1.

Two authors (Lyu and Zhou) were responsible for reviewing the
eligible datasets and extracting the design information of each
included dataset. The extracted content included the demographic
characteristics of the subjects (age, sex, race, etc.), number and type
of samples, detection platform used, etc. Any discrepancy was
resolved by discussion.

Raw data processing

To decrease the impact of using different probe filtering conditions
and data processing methods, the raw files for the included datasets
were downloaded and processed in the same way. The Minfi
v.1.30.0 package53 was applied to handle the data. The p value of
the probe was calculated to assess the reliability of the probe signal,
and a probe was filtered out if its p value was more than 0.01 in
any sample.53 Samples with poor quality, such as GEO:
GSM1860483, were excluded according to the mean p values of all
probes for each sample. In addition, probes with single-nucleotide
polymorphisms at CpG sites or on sex chromosomes were excluded.
Preprocessing, background noise reduction, and normalization were
also performed.

DMP and DMR analysis

The batch effects among different datasets were adjusted by the sva
v.3.32.1 package.54 Both beta and M values were calculated to assess
the methylation level of each CpG site in each sample. Based on the
M value matrix,55 the Limma package v.3.40.656 was used to assess
DMPs with the standard of |FC| > 1.5 and p < 0.05.

For DMRs, the DMRcate package v.1.20.057 was employed to identify
methylated regions and perform differential methylation analysis.
Methylated regions were identified based on a Gaussian kernel, and
DMRs were found by tunable kernel smoothing of the differential
methylation signal.57 The region methylation level was assessed on
the basis of the mean beta value of all CpG sites in the corresponding
region. Based on 363,416 probes, methylated regions with a false dis-
covery rate < 0.05 were regarded as meaningful regions. The differen-
tial analysis was also performed in different ethnicities and sample
types. DMR annotation was carried out by an online tool, wANNO-
VAR: http://wannovar.wglab.org.

Functional analysis

GO enrichment analysis and KEGG pathway enrichment analysis
were performed for DMR-related genes. A PPI network was con-
structed to identify the hub genes among DMR-associated genes by
an online tool, STRING: https://string-db.org/. The node score sug-
gested the importance of this node in the whole PPI network. The in-
teractions of the combined score were set at 0.4.

Diagnostic classifier development

Incorporating DMRs into classifiers might open the door to new
methods for clinical diagnosis of TB. Logistic regression and elastic
net regression were used to select classifier variables and construct
classifiers. All DMRs underwent binary univariate and multivariable
logistic regression. DMRs with p < 0.05 in the final multivariable lo-
gistic regression were incorporated. For elastic net regression, the key
parameter l was selected by K-fold cross-validation. In addition to
the above two methods, SVM, KNN, random tree, and XGBoost
were also used to construct classifiers, and optimal hyperparameters
of these modeling methods were chosen by grid search or cross-vali-
dation. Grid search was realized by GridSearchCV, which evaluates
and compares all scores by adjusting a series of parameter values
and outputs the optimal values of the parameters that generated the
highest score. Cross-validation divides all data into K parts, calculates
the average verification accuracy, and selects the optimal parameter
when the verification accuracy reached the best value. The Youden in-
dex was calculated to determine suitable cutoff values. Sensitivity,
specificity, and AUC were used to assess the diagnostic capacity of
the classifiers. Receiver operating characteristic curves were plotted
to visually present classifier performance.

Validation cohort recruitment and sample preparation

A total of 62 Chinese participants admitted toWest China Hospital of
Sichuan University between January 2019 and October 2020 were
enrolled. TB patients met the following criteria: (1) diagnosed with
TB according to the Diagnostic Criteria for Tuberculosis (WS 288-
2008);58 (2) age older than 18 years; and (3) free of other lung diseases
(lung cancer, chronic obstructive pulmonary disease, etc.), liver dis-
eases (hepatitis, hepatocellular carcinoma, etc.), metabolic diseases
(diabetes mellitus, hyperlipidemia, etc.), and autoimmune diseases.
Pregnant women were excluded unless specifically indicated. HCs
with negative results on TB-related examinations and no history of
TB were recruited. The TB and HC groups were age and sex matched.
All participants signed written informed consents.

EDTA-treated whole blood (3.0 mL) was collected from each subject,
and genomic DNA was extracted (Kuang Yuan Diagnostics Q1001,
China) according to the manufacturer’s protocol. DNA purity was
measured by spectrometry at 260/280 nm. The extracted DNA was
stored at �80�C.

The protocol of this study was approved by the Clinical Trials and
Biomedical Ethics Committee of West China Hospital, Sichuan Uni-
versity (registration number in the Chinese Clinical Trial Registry:
ChiCTR1900028670).

Region-specific multiple sequencing and data analysis

To verify DMRs found in array analysis and test classifier perfor-
mance and generalization, region-specific multiple sequencing was
performed. Ultrasound was used to fragment the genomic double-
stranded DNA into pieces of 300 bp. After purification with 2�
magnetic beads, DNA was bisulfite-treated with an EZ DNAMethyl-
ation-Gold Kit (Zymo Research D5005, USA). Bisulfite-converted
DNA samples further underwent phosphorylation modification by
T4 polynucleotide kinase (Thermo Scientific EK0031, USA) and the
addition of 50 adapters. Bisulfite-specific PCR was conducted to
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amplify regions of interest (primers used in this step are listed in Ta-
ble S1) using EpiTaq HS (TaKaRa R110A, Japan). Then, Taq (TaKaRa
R001WZ, Japan) was used for a second PCR to add sample barcodes
and sequencing adapters. PCR amplicons were visualized by gel elec-
trophoresis, purified by 1.2�magnetic beads and sequenced on an Il-
lumina Sequencer.

Raw data were subjected to quality control and read trimming. Bis-
mark was applied to align trimmed reads to the reference genome
sequence and calculate the percentage of 5-methylated cytosine (5-
mC). According to DMRfinder, the methylation degree of each region
was assessed by the following formula: methylation fraction of a re-
gion = sum of methylated counts at CpG sites within a region/sum
of methylated and unmethylated counts at CpG sites within a region.
Differences between TB patients and HCs were evaluated by Limma
package v.3.40.6.
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