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ABSTRACT: A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free
energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate
reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated
on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the
need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules.
Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-
energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively.

■ INTRODUCTION

Dynamic biomolecules often undergo large-scale structural
changes and visit distinct conformational states during their
biological function.1 It is of great biological and pharmaceutical
interest to characterize their structures and conformational
transition pathways. Ideally, detailed free energy landscapes are
sought to understand the functional mechanisms of biomolecules
in a quantitative manner. However, due to large energy barriers,
conformational transitions of biomolecules usually take place on
time scales of milliseconds or even longer.1a,2 This has presented
a grand challenge for computational molecular dynamics (MD)
simulations that are limited to typically hundreds-of-nano-
seconds to tens-of-microseconds.3

To address this challenge, biasing simulation methods have
been found useful in enhanced sampling and free energy
calculation of the biomolecules. These methods include umbrella
sampling,4 conformational flooding,5 metadynamics,6 adaptive
biasing force (ABF) calculations,7 and orthogonal space
sampling,8 etc. During the simulations, a potential or force bias
is applied along certain reaction coordinates (or collective
variables) to facilitate the biomolecular conformational tran-
sitions across high-energy barriers. Typical reaction coordinates
include atom distances, torsional dihedrals, root-mean-square
deviation (RMSD) relative to a reference configuration,

eigenvectors generated from the principal component analysis,5b

and so on. The definition of the reaction coordinates, however,
often requires expert knowledge of the studied systems.
Furthermore, the predefined reaction coordinates largely place
constraints on the pathway and conformational space to be
sampled during the biasing simulations. It often leads to slow
convergence of the simulations when important reaction
coordinates are missed during the simulation setup.6b

Accelerated molecular dynamics (aMD) is an enhanced
sampling technique that works often by adding a non-negative
boost potential to smoothen the biomolecular potential energy
surface. The boost potential, ΔV, decreases the energy barriers
and thus accelerates transitions between the different low-energy
states.9 With this, aMD is able to sample distinct biomolecular
conformations and rare barrier-crossing events that are not
accessible to conventional MD (cMD) simulations. Unlike the
previously mentioned biasing simulation methods, aMD does
not require predefined reaction coordinate(s), which can be
advantageous for exploring the biomolecular conformational
space without a priori knowledge or restraints. aMD has been
successfully applied to a number of biological systems, 10 and
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hundreds-of-nanosecond aMD simulations have been shown to
capture millisecond-time-scale events in both globular and
membrane proteins.11

While aMD has been demonstrated to greatly enhance
conformational sampling of biomolecules, it suffers from large
energetic noise during reweighting.12 The boost potential
applied in aMD simulations is typically on the order of tens-to-
hundreds of kilocalories per mole, which is much greater in
magnitude and wider in distribution than that of other biasing
simulation methods that make use of predefined reaction
coordinates (e.g., several kilocalories per mole). It has been a
long-standing problem to accurately reweight aMD simulations
and recover the original free energy landscapes, especially for
large proteins.13 Our recent studies showed that when the boost
potential follows near-Gaussian distribution, cumulant expansion
to the second order provides improved reweighting of aMD
simulations compared with the previously used exponential
average and Maclaurin series expansion reweighting methods.14

The reweighted free energy profiles are in good agreement with
the long-time-scale cMD simulations as demonstrated on alanine
dipeptide and fast-folding proteins.15 However, such improve-
ment is limited to rather small systems (e.g., proteins with less
than ∼35 amino acid residues).15 In simulations of larger
systems, the boost potential exhibits significantly wider
distribution and does not allow for accurate reweighting.
Here, a Gaussian accelerated molecular dynamics (GaMD)

approach is presented to reduce the energetic noise for
simultaneous unstrained enhanced sampling and free energy
calculation of biomolecules, even for large proteins. GaMD
makes use of harmonic functions to construct the boost potential
that is adaptively added to the biomolecular potential energy
surface. A minimal set of simulation parameters is dynamically
adjusted to control the magnitude and distribution width of the
boost potential. As such, the resulting boost potential follows
Gaussian distribution and allows for accurate reweighting of the
simulations using cumulant expansion to the second order. In
this study, GaMD is demonstrated on unconstrained simulations
of the alanine dipeptide, chignolin folding, and ligand binding to
the T4-lysozyme.

■ METHODS
Gaussian Accelerated Molecular Dynamics. Gaussian

accelerated molecular dynamics enhances the conformational
sampling of biomolecules by adding a harmonic boost potential
to smoothen the system potential energy surface (Figure 1).
Consider a system with N atoms at positions ⇀r = {⇀r 1,...,⇀r N} .
When the system potential V(⇀r ) is lower than a threshold
energy, E, a boost potential is added as

Δ ⃑ = − ⃑ ⃑ <V r k E V r V r E( )
1
2

( ( )) , ( )2
(1)

where k is the harmonic force constant. The modified system
potential, V*(⇀r ) = V(⇀r ) + ΔV(⇀r ), is given by

* ⃑ = ⃑ + − ⃑ ⃑ <V r V r k E V r V r E( ) ( )
1
2

( ( )) , ( )2
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Otherwise, when the system potential is above the threshold
energy, i.e., V(⇀r ) ≥ E, the boost potential is set to zero and
V*(⇀r ) = V(⇀r ).
In order to smoothen the potential energy surface for

enhanced sampling, the boost potential needs to satisfy the
following criteria. First, for any two arbitrary potential values

V1(⇀r ) andV2(⇀r ) found on the original energy surface, ifV1(⇀r )
< V2(⇀r ), ΔV should be a monotonic function that does not
change the relative order of the biased potential values; i.e.,
V1*(⇀r ) < V2*(⇀r ). By replacing V*(⇀r ) with eq 2 and isolating E,
we then obtain
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k

1
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Second, if V1(⇀r ) < V2(⇀r ), the potential difference observed on
the smoothened energy surface should be smaller than that of the
original; i.e., V2*(⇀r ) − V1*(⇀r ) < V2(⇀r ) − V1(⇀r ). Similarly, by
replacing V*(⇀r ) with eq 2, we can derive
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1
2
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With Vmin ≤ V1(⇀r ) < V2(⇀r ) ≤ Vmax, we need to set the
threshold energy E in the following range by combining eqs 3 and
4:

≤ ≤ +V E V
k
1

max min (5)

where Vmin and Vmax are the system minimum and maximum
potential energies. To ensure that eq 5 is valid, Vmax ≤ Vmin + (1/
k) and k has to satisfy the following:

≤
−

k
V V

1

max min (6)

We define k≡ k0(1/(Vmax− Vmin)); then 0 < k0≤ 1. As illustrated
in Figure 1, k0 determines the magnitude of the applied boost
potential. With greater k0, higher boost potential is added to the
potential energy surface, which provides enhanced sampling of
biomolecules across decreased energy barriers.

Figure 1. Scheme illustration of Gaussian accelerated molecular
dynamics (GaMD). When the threshold energy is set to the maximum
potential (E = Vmax), the system potential energy surface is smoothened
by adding a harmonic boost potential that follows Gaussian distribution.
The coefficient k0 in the range of 0−1 determines the magnitude of the
applied boost potential. With greater k0, higher boost potential is added
to the original energy surface in conventional molecular dynamics
(cMD), which provides enhanced sampling of biomolecules across
decreased energy barriers.
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Third, the standard deviation of ΔV needs to be small enough
(i.e., narrow distribution) to ensure accurate reweighting using
cumulant expansion to the second order:14

σ σ σ σ= ∂Δ
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where Vav and σV are the average and standard deviation of the
system potential energies and σΔV is the standard deviation ofΔV
with σ0 as a user-specified upper limit (e.g., 10kBT) for accurate
reweighting.
Provided eq 5 gives the range of threshold energy E, when E is

set to the lower bound E = Vmax, we plug in E and k and obtain
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We define the right-hand side in eq 8 as k0′ = (σ0/σV)((Vmax −
Vmin)/(Vmax − Vav)). For efficient enhanced sampling with the
highest possible acceleration, k0 can then be set to its upper
bound as

σ
σ

= ′ =
−
−

⎛
⎝⎜

⎞
⎠⎟k k

V V
V V

min(1.0, ) min 1.0,
V

0 0
0 max min

max av (9)

The greater σΔV that is obtained from the original potential
energy surface (particularly for large biomolecules), the smaller
k0 may be applicable to allow for accurate reweighting.
Alternatively, when the threshold energy E is set to its upper
bound E = Vmin + (1/k) according to eq 5, we plug in E and k in
eq 7 and obtain
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We define the right-hand side in eq 10 as k0″ ≡ (1 − (σ0/σV))
((Vmax − Vmin)/(Vav − Vmin)). When k0″ ≤ 0 with σV ≤ σ0, k0 can
be theoretically set to any value between zero and 1, although k0
= 1 is applied in this case for the current implementation of
GaMD (See Appendix A). Note that a smaller k0 will give higher
threshold energy E, but smaller force constant k. When 0 < k0″ ≤
1, k0 can be set to either k0″ for the highest threshold energy E or
its upper bound 1.0 for the greatest force constant k. In this case
k0 = k0″ is applied in the current GaMD implementation. When k0″
> 1, we have to lower the threshold energy E to ensure that 0 < k0
≤ 1; e.g., E = Vmax for default k0 = 1.
Given E and k0, we can calculate the boost potential as

Δ ⃑ =
−
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2
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Similar to aMD, GaMD provides options to add only the total
potential boost ΔVP, only dihedral potential boost ΔVD, or the
dual potential boost (both ΔVP and ΔVD). The dual-boost
simulation generally provides higher acceleration than the other

two types of simulations for enhanced sampling.9b The
simulation parameters comprise of the threshold energy values
and the effective harmonic force constants, k0P and k0D for the
total and dihedral potential boost, respectively.
To characterize the extent to which ΔV follows Gaussian

distribution, its distribution anharmonicity, γ, is calculated as was
done previously:14

∫γ π σ= − = + Δ Δ ΔΔ Δ

∞
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2
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2
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whereΔV is dimensionless as divided by kBTwith kB and T being
the Boltzmann constant and system temperature, respectively,
and Smax = (1/2) ln(2πeσΔV

2) is the maximum entropy of ΔV.16
When γ is zero, ΔV follows exact Gaussian distribution with
sufficient sampling. Reweighting by approximating the exponen-
tial average term with cumulant expansion to the second order is
able to accurately recover the original free energy landscape
(Appendix B). As γ increases, the ΔV distribution becomes less
harmonic and the reweighted free energy profile obtained from
cumulant expansion to the second order deviates from the
original. As demonstrated on the alanine dipeptide, chignolin,
and T4-lysozyme in this study, a Gaussian distribution of the
boost potential is normally achieved in the GaMD simulations.
The anharmonicity of ΔV distribution serves as an indicator of
the enhanced sampling convergence and accuracy of the
reweighted free energy.

Simulation Protocols. GaMD is currently implemented in
the GPU version of AMBER 1217 (see Appendix A for
implementation details). Simulations of the alanine dipeptide,
chignolin, and T4-lysozyme were performed using the AMBER
ff99SB force field on GPUs.18 The simulated systems were built
using the Xleap module of the AMBER package. Alanine
dipeptide and chignolin were constructed as described
previously.19 For T4-lysozyme, the ligand benzene was removed
from the X-ray crystal structure of the Leu99Ala mutant (Protein
Data Bank (PDB), 181L). Another four benzene molecules were
placed in the bulk solvent at least 40 Å away from the ligand-
binding site in the starting configuration. By solvating the
structures in a TIP3P20 water box that extends 8−10 Å from the
solute surface, the alanine dipeptide system contained 630 water
molecules, 2,211 waters for chignolin, and 9,011 waters for T4-
lysozyme. The total number of atoms in the three systems are
1,912; 6,773; and 29,692 for alanine dipeptide, chignolin, and
T4-lysozyme, respectively (Table 1).
Periodic boundary conditions were applied for all of the

simulation systems. Bonds containing hydrogen atoms were
restrained with the SHAKE algorithm,21 and a 2 fs time step was
used. Weak coupling to an external temperature and pressure
bath was used to control both temperature and pressure.22 The
electrostatic interactions were calculated using the PME (particle
mesh Ewald summation)23 with a cutoff of 8.0 Å for long-range
interactions.
The three systems were initially minimized for 2,000 steps

using the conjugate gradient minimization algorithm, and then

Table 1. Biomolecular Model Systems Simulated with GaMD in the Present Study (Nres and Natoms, Number of Residues and
System Atoms, Respectively; ΔVav and σΔV, Average, Standard Deviation of the Boost Potential, ΔV)

system Nres Natoms GaMD ΔVav (kcal/mol) σΔV (kcal/mol)

alanine dipeptide 2 1,912 30 ns × 3 10.9 2.9
chignolin 10 6,773 300 ns × 3 9.8 2.4
T4-lysozyme 162 29,692 800 ns × 4 36.3 4.7

1800 ns
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the solvent was equilibrated for 50 ps in an isothermal−isobaric
(NPT) ensemble with the solute atoms fixed. Another
minimization was performed with all atoms free, and the systems
were slowly heated to 300 K over 500 ps. Final system
equilibration was achieved by a 200 ps isothermal−isovolumetric
(NVT) and 400 ps NPT run to ensure that the water box of the
simulated systems had reached the appropriate density.
In the present study, the system threshold energy is set as E =

Vmax for all GaMD simulations. The maximum, minimum,
average, and standard deviation values of the system potential
(Vmax, Vmin, Vav, and σV) were obtained from an initial 2 ns NVT
simulation with no boost potential. For optimal acceleration, the
greatest σ0 and k0 were determined through short testing
simulations (e.g., 2 ns): with increasing σ0, either k0 calculated
using eq 9 reaches 1.0 (highest acceleration level) or σΔV reaches
10kBT (the upper limit of the ΔV distribution width for accurate
reweighting). Each GaMD simulation proceeds with a 2 ns
equilibration run, followed by production simulations.
Testing simulations were performed with either the “total

potential boost” or “dihedral potential boost” only to identify the
optimal σ0 and k0 acceleration parameters (Supporting
Information Tables S1−S3). Long-time dual-boost GaMD
simulations were then obtained for analysis, including three
independent 30 ns simulations of alanine dipeptide and three
independent 300 ns simulations of chignolin. For the T4-
lysozyme, five independent 800 ns simulations were initially
performed. Complete binding of benzene to the target ligand-

binding site was observed in one of the five simulations. Even
when the simulation was extended to 1,800 ns, benzene remained
tightly bound in the ligand-binding cavity. The simulation frames
were saved every 0.1 ps for analysis. A summary of the
simulations is listed in Table 1.

Simulation Analysis. Time courses of dihedral angles,
RMSD, radius of gyration (Rg), and residue distances in the
AMBER simulation trajectories were analyzed using the cpptraj
tool.24 Particularly, the backbone dihedral angles Φ and Ψ were
calculated for alanine dipeptide (Figure 2A). For chignolin, the
Rg and RMSD of simulation frames relative to the PDB native
structure (Figure 3A) were calculated for the protein Cα atoms
with the terminal residues Gly1 and Gly10 excluded. For ligand
binding to the T4-lysozyme (Figure 5A), the symmetry-
corrected RMSD of benzene was obtained by generating six
symmetrically imaged reference benzene configurations from the
181L crystal structure, calculating the RMSDs for the diffusing
benzene molecules in each frame after aligning the protein C-
terminal domain (residues 80−160) and then extracting the
minimum value of the calculated RMSDs. Moreover, the number
of protein atoms found within 5 Å of benzene (Ncontact, only
heavy atoms are considered) was calculated using pbwithin in
VMD that accounts for the periodic boundary conditions.25

The PyReweighting toolkit14 was used to reweight the GaMD
simulations for calculating the PMF profiles and to examine the
boost potential distributions. Two-dimensional (2D) PMF
profiles were computed for backbone dihedrals (Φ, Ψ) in

Figure 2. (A) Scheme representation of backbone dihedrals Φ and Ψ in alanine dipeptide. (B) Distribution of the boost potential ΔV applied in the
GaMD simulation. (C) 2D potential of mean force (PMF) of backbone dihedrals (Φ,Ψ) calculated from three 30 nsGaMD simulations combined using
cumulant expansion to the second order. The low-energy wells are labeled corresponding to the right-handed α helix (αR), left-handed α helix (αL), β-
sheet (β), and polyproline II (PII) conformations. (D) Distribution anharmonicity of ΔV of frames found in each bin of the PMF profile.
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alanine dipeptide. A bin size of 6° is selected to balance between
reducing the anharmonicity and increasing the bin resolution as
discussed earlier.14 Two-dimensional PMF profiles were also
constructed using (RMSD, Rg) for chignolin with a bin size of
(1.0 Å, 1.0 Å). For benzene binding to the T4-lysozyme, 2D PMF
was constructed using (ligand RMSD, Ncontact) with a bin size of
(1.0 Å, 5). When the number of simulation frames within a bin is
lower than a certain limit (i.e., cutoff), the bin is not sufficiently
sampled and thus is excluded for reweighting. The cutoff can be
determined by iteratively increasing it until the minimum
position of the PMF profile does not change.14 The final cutoff
was set as 10, 50, and 1000 for reweighting of GaMD simulations
on alanine dipeptide, chignolin, and T4-lysozyme, respectively.

■ RESULTS

GaMD provides enhanced sampling of conformational tran-
sitions in alanine dipeptide, chignolin folding, and ligand binding
to the T4-lysozyme. Furthermore, the boost potential applied in
the present GaMD simulations follows Gaussian distribution,
which allows accurate reweighting using cumulant expansion to
the second order and recovery of the original biomolecular free
energy landscapes, even for proteins as large as the T4-lysozyme.
Notably, hundreds-of-nanoseconds GaMD simulations are able
to capture complete folding of chignolin and ligand binding of
benzene to the T4-lysozyme that take place on significantly
longer time scales.

Alanine Dipeptide. In order to balance between achieving
the highest acceleration (large ΔV) and ensuring accurate
reweighting (small enough standard deviation, σΔV), short
GaMD simulations (2 ns) were tested on alanine dipeptide to
search for optimal acceleration parameters. For the total
potential boost, when σ0P was adjusted from 1.0 to 2.0, the
resulting k0P calculated using eq 9 was increased from 0.21 to 1.0,
accompanied by increases of the ΔVP standard deviation from
1.03 to 1.75 kcal/mol and the ΔVP average from 2.36 to 3.85
kcal/mol (see Supporting Information Table S1a). After k0P
reached its maximum 1.0, slight changes were observed when σ0P
was further increased from 2.0 to 3.0. For the dihedral potential
boost, the calculated k0D reached 1.0 when σ0D was increased to
3.0 (Supporting Information Table S1b). Therefore, (σ0P,σ0D)
were set to (3.0, 3.0) for the production dual-boost GaMD
simulations of alanine dipeptide, which enables the highest
acceleration as well as accurate reweighting with both k0P and k0D
equal to 1.0 (Supporting Information Table S1c).
As shown in Figure 2B, the boost potential ΔV applied in

GaMD simulation of the alanine dipeptide follows Gaussian
distribution. Its distribution anharmonicity is small enough to be
1.69 × 10−3. The average and standard deviation of ΔV are 10.9
and 2.9 kcal/mol, respectively (Table 1). Figure 2C plots the 2D
PMF of backbone dihedrals (Φ, Ψ) that are obtained by
reweighting the three 30 ns GaMD simulations combined using
cumulant expansion to the second order. The reweighted PMF is
able to recover five energy minimum wells that are centered

Figure 3. Folding of chignolin captured in GaMD simulations: (A) comparison of simulation-folded chignolin (blue) with the PDB (1UAO) native
structure (red) that exhibits 0.2 Å RMSD, (B) distribution of the boost potentialΔV, (C) 2D (RMSD, Rg) PMF calculated by reweighting the three 300
ns GaMD simulations combined, and (D) the distribution anharmonicity of ΔV of frames found in each bin of the PMF profile.
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around (−162°, −12°) and (−72°, −12°) for the right-handed α
helix (αR), (48°, 18°) for the left-handed α helix (αL), (−156°,
162°) for the β-sheet, and (−66°, 156°) for the polyproline II
(PII) conformation. The corresponding minimum free energies
are estimated as 0, 1.40, 1.07, 2.94, and 4.27 kcal/mol,
respectively. This is in good agreement with the PMF results
of an exceptionally long 1000 ns cMD simulation as presented
earlier.14 Additionally, the distribution anharmonicity of ΔVof
frames clustered in each bin of the 2D PMF exhibits values
smaller than 0.10 in the low-energy regions (Figure 2D), which
suggests sufficient sampling for reweighting using cumulant
expansion to the second order. Greater anharmonicity is found in
high-energy regions (especially the energy barriers), for which
low boost potential is applied and less sampling is normally
achieved. Therefore, the anharmonicity of ΔV distribution
appears to be a good indicator for sufficiency of the enhanced
sampling and accuracy of the reweighted free energy.
Folding of Chignolin. For chignolin, short 2 ns testing

GaMD simulations showed that k0P reached the 1.0 maximum for
the highest total potential boost when σ0P was increased to 3.0
(Supporting Information Table S2a). For the dihedral potential
boost, the simulation crashed when σ0D was increased to 0.9 and
stable simulation was achieved only when σ0D was increased to
0.6 (Supporting Information Table S2b). Thus, (σ0P,σ0D) were
set to (3.0, 0.6) for the production dual-boost GaMD simulations
of chignolin (Supporting Information Table S2c). The resulting
boost potential follows Gaussian distribution and the calculated γ
= 9.22× 10−3 (Figure 3B). The average and standard deviation of
ΔV are 9.8 and 2.4 kcal/mol, respectively (Table 1).
Started from an extended conformation, GaMD simulations

were able to capture complete folding of chignolin into its native
structure (Supporting Information Movie S1). The RMSD
obtained between the simulation-folded chignolin and NMR
experimental native structure (PDB, 1UAO) reaches a minimum
of 0.2 Å (Figure 3A). Using the protein RMSD relative to the
PDB native structure and Rg, a 2D PMF profile was calculated by
reweighting the three 300 ns GaMD simulations combined
(Figure 3C). The reweighted PMF allows us to identify three
distinct low-energy conformational states: the folded (“F”),
unfolded (“U”), and an intermediate (“I”). The folded state
corresponds to the global energy minimum at (1.0 Å, 4.0 Å), the
unfolded state is 3.68 kcal/mol higher in a local-energy well
centered at (6.0 Å, 7.0 Å), and the intermediate in a 3.06 kcal/
mol free energy well centered at (4.0 Å, 5.5 Å). The energy
barrier for chignolin folding between the unfolded and folded

states is ∼4.0 kcal/mol, and ∼3.5 kcal/mol for transitions
between the intermediate and folded states (Figure 3C). In
comparison, when the three 300 ns GaMD simulations were
analyzed separately, the reweighted PMF profiles exhibit
significant differences (Supporting Information Figure S2).
Whereas the three folded, intermediate, and unfolded low-
energy states were captured in sim2, the unfolded and
intermediate states were not sufficiently sampled (no converged
low-energy wells) in sim1 and sim3, respectively. Improved
sampling was obtained by combining the three independent
GaMD simulations. Figure 3D plots the distribution anharmo-
nicity of ΔV for frames found in each bin of the 2D PMF as
shown in Figure 3C. The anharmonicity exhibits values smaller
than 0.05 in the simulation sampled conformational space,
suggesting that ΔV achieves sufficient sampling for reweighting
using cumulant expansion to the second order.
Compared with the native structure, the unfolded chignolin

exhibits an extended conformation without proper secondary
structure formed in the protein backbone as shown in Figure 4A.
The intermediate conformation observed during folding of
chignolin is characterized by hydrophobic interactions between
the Pro4 and Trp9 residue side chains and a turn at Thr8. Such
conformation was also observed in previous microsecond-time-
scale cMD simulations.26 In the simulation-derived folded state,
the protein residue side chains exhibit closely similar
conformations as in the NMR native structure (Figure 4C).
Residues Tyr2 and Pro4 form hydrophobic interactions between
their side chains. Hydrophilic residues Asp3, Glu5, Thr6, and
Thr8 expose side chains to the solvent.
Finally, a 2D free energy profile of chignolin was calculated

using the RMSD of the protein Cα atoms relative to the native
PDB structure and the backbone dihedral Ψ of residue Gly7
(Supporting Information Figure S3). The three independent 300
ns GaMD simulations were combined for the reweighting. This
allows for identification of a misfolded (“M”) low-energy state, in
addition to the F, I, and U states as observed in Figure 3C. TheM
conformation of chignolin shows ∼180° rotation of the C-
terminal strand about its long axis relative to the native PDB
structure. The free energy of the misfolded chignolin is found to
be 1.89 kcal/mol greater than that of the folded state. This is
consistent with previous findings that the misfolded chignolin
was observed with higher probability in simulations with the
AMBER ff99SB force field,27 which is used in the present study.

Benzene Binding to T4-Lysozyme. Short testing GaMD
simulations of the T4-lysozyme showed that k0P reached the 1.0

Figure 4. Structures of chignolin observed during GaMD simulations corresponding to the (A) unfolded (“U”), (B) intermediate (“I”), and (C) folded
(“F”) states (blue) aligned to the PDB native structure (red). Residues including Tyr2, Asp3, Pro4, Glu5, Thr6, Thr8, and Trp9 are represented by sticks.
Notably, Trp9 and Pro4 form hydrophobic interactions in the intermediate state.
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maximum for the highest total potential boost when σ0P was
increased to 3.0 (Supporting Information Table S3a). For the
dihedral potential boost, the simulation crashed when σ0D was
increased to 5.0 (Supporting Information Table S3b). Stable
simulation was achieved when σ0D was increased to 4.0 and the
calculated k0D was 0.35. With further testing for stable dual-boost
GaMD simulation, (σ0P,σ0D) were set to (3.0, 4.0) for the final
production simulations of the T4-lysozyme (Supporting
Information Table S3c).
GaMD captured complete binding of benzene to the deeply

buried ligand-binding cavity in the Leu99Ala T4-lysozyme within
∼100 ns in one of the five independent 800 ns simulations
(Supporting Information Movie S2). Benzene remained bound
in the ligand-binding site even when the simulation was extended
to 1,800 ns. By aligning the C-terminal domain (residues 80−
160) of the T4-lysozyme, the RMSD of the diffusing benzene
molecules relative to the bound pose in the 181L X-ray crystal
structure reaches a minimum of 0.1 Å (Figure 5A). The boost
potential applied during the 1,800 ns GaMD simulation follows
Gaussian distribution, and its γ = 1.39 × 10−3 (Figure 5B). The
average and standard deviation of ΔV are 36.5 and 4.7 kcal/mol,
respectively (Table 1). Although the ΔV average values exhibit
variations between five independent simulations, the ΔV
standard deviations are closely similar to each other provided
that (σ0P,σ0D) were set to (3.0, 4.0) (Supporting Information
Table S3c). Using the RMSD of benzene relative to the bound

pose and the number of protein heavy atoms that are within 5 Å
of benzene (Ncontact), a 2D PMF profile was calculated by
reweighting the 1,800 ns GaMD simulation (Figure 5C). The
reweighted PMF allows us to identify three distinct low-energy
states: the unbound (“U”), intermediate (“I”), and bound (“B”)
states. The bound state corresponds to the global energy
minimum located at ∼(0 Å, 30), the unbound state in a local-
energy well centered at ∼(33 Å, 0), and the intermediate
centered at ∼(11 Å, 20). It is important to note that since the
complete binding of benzene to the target ligand-binding site was
observed only once, the calculated binding free energy between
the bound and unbound states is subject to the error of limited
sampling. Nevertheless, benzene visits the intermediate site
many times during the 1800 ns GaMD simulation with the ligand
RMSD decreased to ∼11 Å (Supporting Information Figure
S2A). Repeated sampling of the intermediate state was observed
in the other four 800 ns GaMD simulations as well (Supporting
Information Figure S2), for which a local-energy well appears
around (11.0 Å, 20) in the 2D PMF profiles (Supporting
Information Figure S3). The relative free energy between the
intermediate and unbound states is estimated to be 0.53 ± 0.46
kcal/mol from PMF profiles of the five GaMD simulations.
Furthermore, benzene was observed to bind another inter-
mediate 2 (“I2”) site that is located in the pocket formed by the
hinge αC helix and the αB helix from the N-terminal domain
(Supporting Information Figure S2). A corresponding local

Figure 5.Binding of benzene to the Leu99Ala T4-lysozyme simulated via GaMD: (A) comparison of simulation-derived complex structure that captures
benzene binding (blue) with 0.1 Å ligand RMSD relative to the 181L PDB structure (red), (B) distribution of the boost potential ΔV, (C) 2D (ligand
RMSD,Ncontact) PMF calculated by reweighting the 1,800 ns GaMD simulation, and (D) distribution anharmonicity ofΔV of frames found in each bin
of the free energy profile.
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energy well of the I2 state appears in the calculated 2D PMF
profiles. Figure 5D plots the ΔV distribution anharmonicity, γ,
for frames found in each bin of the 2D PMF. It exhibits relatively
large values in the high-energy regions (less sampling), notably
the energy barrier between the intermediate and bound states.
The ligand entry from the intermediate to the bound state is thus
suggested to be the rate-limiting step for benzene binding. In
comparison, γ exhibits values smaller than 0.01 in the energy well
regions, suggesting that ΔV achieves sufficient sampling for
reweighting using cumulant expansion to the second order.
A complete binding pathway of benzene that was observed in

the GaMD simulation is shown in Figure 6A. Benzene diffuses
from the bulk solvent to the protein surface formed by the αD and
αG helices and then to the target ligand-binding site in the protein
C-terminal domain. Figure 6B depicts the unbound pose of a
benzene molecule that is located far away from the ligand-
binding site in the 181L X-ray crystal structure. In the
intermediate state, benzene interacts with residues Lys83,
Pro86, and Val87 from the αD helix and the Thr115, Thr119,
and Gln122 residues from the αG helix (Figure 6C). In the bound
pose, benzene is superimposable with the ligand cocrystallized in
the 181L crystal structure. It forms hydrophobic interactions
with residues Ile78, Leu84, Tyr88, Val87, Leu91, Val111,
Leu118, and Leu121 in the deeply buried protein cavity (Figure
6D). Supporting Information Figure S5 shows a transient

snapshot observed during benzene binding between the
intermediate and bound poses. Benzene appears to slide into
the ligand-binding cavity, interacting with residues Gln81, Lys83,
Leu84, Val111, Phe114, Thr115, and Leu118 from the αD, αF,
and αG helices.

■ DISCUSSION
By adaptively adding a harmonic boost potential to smoothen the
system energy surface, GaMD provides both unconstrained
enhanced sampling and free energy calculation of biomolecules.
Important statistical properties of the system potential, such as
the average, maximum, minimum, and standard deviation values,
are used to calculate the simulation acceleration parameters,
particularly the threshold energy, E, and force constant, k0.
For alanine dipeptide, both k0P and k0D can be increased to the

1.0 maximum for the greatest possible boost of the total and
dihedral potential energies. The resulting standard deviation of
ΔV that follows Gaussian distribution is 2.9 kcal/mol, which
allows for accurate reweighting using cumulant expansion to the
second order. Notably, high-energy regions of the GaMD
sampled free energy surface (especially the energy barriers)
exhibit increased anharmonicity compared with the low-energy
wells (Figure 2D). Thus, the free energy barriers appear
unconverged and still suffer from insufficient sampling during
the three short 30 ns GaMD simulations. Nevertheless, the

Figure 6. (A) Pathway of benzene binding to the T4-lysozyme observed during the GaMD simulation. (B−D) The (B) unbound (“U”), (C)
intermediate (“I”), and (D) bound (“B”) poses of the protein−ligand complex (blue) with the protein C-terminal domain (residues 80−160) aligned to
the PDB native structure (red). The protein and benzene are represented by ribbons and spheres, respectively, and they are colored by blue for the
simulation structure while red for the PDB native structure, except that in A the simulated benzene is represented by lines and colored by simulation time
in a BWR color scale. Residues with heavy atoms found within 3 Å of benzene are represented by sticks.
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GaMD reweighted PMF profile is able to recover low-energy
states of the system that are in good agreement with those
observed in a 1000 ns cMD simulation.14

Furthermore, GaMD is able to fold chignolin from an
extended conformation to the NMR native structure in three
independent 300 ns simulations. While k0P can be increased to
1.0 for the greatest total potential boost, k0D can reach only 0.15−
0.17 for stable simulation. Nevertheless, this seems to provide
sufficient sampling of the chignolin-folding process. Among the
three independent simulations, although the folded, intermedi-
ate, and unfolded low-energy states are captured in sim2, the
unfolded and intermediate states are not sufficiently sampled in
sim1 and sim3, respectively (Supporting Information Figure S2).
More sufficient sampling is obtained by combining the three
GaMD simulations. All three folded, intermediate, and unfolded
states are identified from the resulting reweighted free energy
profiles. Particularly, the intermediate conformation was also
observed in earlier microsecond-time-scale cMD simulations.26

GaMD appears to achieve better convergence than the previous
aMD simulations that were not able to distinguish between the
intermediate and unfolded states within the same simulation
time.28

Finally, GaMD captured complete binding of benzene to the
ligand-binding site of the T4-lysozyme. In one of the five
independent simulations, benzene diffused into the deeply
buried ligand-binding cavity within∼100 ns and remained bound
even when the simulation was extended to 1800 ns. Similar to
chignolin, while k0P can be increased to the 1.0 maximum for the
greatest total potential boost in the T4-lysozyme simulations, k0D
can reach only 0.33−0.35 for the greatest dihedral boost. The
resulting ΔV standard deviation is ∼4.7 kcal/mol in the final
dual-boost GaMD simulations. Such narrow distribution of ΔV
ensures accurate reweighting using cumulant expansion to the
second order. Distinct low-energy unbound, intermediate, and
bound states were identified from the reweighted PMF profiles.
The atomistic GaMD simulation also elucidates a highly detailed
binding pathway of benzene that diffuses from the bulk solvent to
an intermediate site located on the protein surface formed by the
αD and αG helices and then slides into the target ligand-binding
cavity through a channel formed by the αD, αF, and αG helices.
The free energy difference between the intermediate and
unbound states was found to be small at 0.53 ± 0.46 kcal/mol
as estimated from the five independent GaMD simulations.
Benzene repeatedly visits the intermediate site on the protein
surface. In comparison, the ligand entry from protein surface to
the deeply buried protein cavity appears to be the rate-limiting
step for complete benzene binding. It is important to note that
the complete ligand binding was not observed in the four 800 ns
GaMD simulations, suggesting that the present GaMD
simulations still suffer from insufficient sampling of the ligand
entry process and the reweighted free energy profiles remain
unconverged (Figure 5C and Supporting Information Figure
S5). This is also indicated by the increased anharmonicity
corresponding to the free energy barrier between the
intermediate and bound states as shown in Figure 5D.
Nevertheless, our GaMD simulation captured a binding pathway
of benzene to the T4-lysozyme. The ligand entry site is indeed
adjacent to the mobile αF helix (residues 108−113), which has
been suggested earlier29 based on the finding that the αF helix
exhibits increased B-factors in the Leu99Ala complex structures
compared to the apo structures.30

Here, GaMD is compared with the original aMD, particularly
on the performance of smoothening the potential energy surface

and energetic reweighting. Supporting Information Table S4
summarizes the statistical properties of the boost potential and
the original and modified potential energies as obtained from
aMD and GaMD simulations of the alanine dipeptide, chignolin,
and T4-lysozyme, with reference to the cMD simulations.
Specifically, dual-boost aMD simulations of the alanine dipeptide
and chignolin obtained from our previous study14 were used for
comparison. For the T4-lysozyme, restarting from the initial
configuration of GaMD simulations, a 200 ns dual-boost aMD
simulation was performed using the following acceleration
parameters: Edihed = Vdihed_av + 4Nres, αdihed = 4Nres/5, Etotal =
Vtotal_av + 0.2Natoms, and αtotal = 0.2Natoms, where Vdihed_av and
Vtotal_av are the average dihedral and total potential energies
calculated from a short 10 ns cMD simulation. As shown in
Supporting Information Table S4, although higher average boost
potentials are applied in GaMD simulations of the three systems
than in the aMD simulations, the boost potentials exhibit smaller
standard deviations (i.e., narrower distribution) in the GaMD
simulations, except for the alanine dipeptide. Furthermore,
anharmonicity of the boost potential distribution is significantly
reduced in the GaMD simulations. Relative to cMD, both aMD
and GaMD simulations mostly exhibit smaller standard
deviations in the modified dihedral and total potential energies.
Notably for the T4-lysozyme, standard deviations of the
modified potential energies are significantly smaller in the
GaMD simulations than in aMD. Thus, the potential energy
surfaces appear more smoothened in GaMD enhanced sampling
of the T4-lysozyme. Provided the narrower distribution and
lower anharmonicity of the boost potential (Supporting
Information Table S4), GaMD allows for more accurate
approximation of exponential average reweighting factor using
cumulant expansion to the second order and thus improved free
energy calculation, especially for the T4-lysozyme.
In the present simulations of ligand binding to the T4-

lysozyme, complete binding of benzene was observed only once,
largely because the target ligand-binding site is deeply buried in
the protein. However, benzene binding to the intermediate site
on the protein surface formed by the αD and αG helices was
captured many times, which provides better statistics for free
energy calculation. It has been suggested that a PMF-based
approach is appropriate to calculate binding free energy for
ligands (especially the charged) that bind to the protein
surface.31 Systems of this type for future applications of GaMD
might include binding of benzamidine to trypsin32 and allosteric
modulators to the protein surface of the G-protein coupled
receptors.33

In comparison with many enhanced sampling methods such as
umbrella sampling,4 conformational flooding,5 metadynamics,6

ABF calculations,7 and orthogonal space sampling,8 GaMD has
the advantage of no need to set predefined reaction coordinates.
Metadynamics, in particular, is another potential biasing
technique that has been widely used to map the free energy
landscapes of biomolecules such as protein conformational
changes34 and protein−ligand binding.6b,35 By monitoring the
energy surface of biomolecules during the simulation, metady-
namics keeps adding small Gaussians of potential energies to the
low-energy regions. This will eventually fill the low-energy wells
and achieve uniform sampling of the free energy surface along
selected reaction coordinates. The usage of predefined
coordinates greatly reduces the complexity of biomolecular
simulation problems and facilitates the free energy calculations
(e.g., significantly lower energetic noise compared with aMD
simulations). However, it is key to select proper reaction
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coordinates, which often requires expert knowledge of the
studied systems. Construction of biomolecular reaction coor-
dinates or collective variables has thus been one of the main
objectives in metadynamics studies.6a When important reaction
coordinates are missed during the simulation setup, metady-
namics simulations may suffer from slow convergence problems
as discussed earlier. Furthermore, the predefined reaction
coordinates tend to place constraints on the sampled space and
pathways. It seems difficult to identify certain intermediate states
during the protein-folding and ligand-binding pathways, e.g.,
intermediate 2 as observed during the binding of benzene to the
T4-lysozyme. In comparison, aMD simulations are not con-
strained by reaction coordinates, but this also leads to much
higher energetic noise and presents grand challenge for accurate
reweighting to recover the original free energy landscapes of
biomolecules.12 Although cumulant expansion to the second
order was shown to improve aMD reweighting when the boost
potential follows near Gaussian distribution,14 such improved
reweighting is still limited to small systems such as protein with
≤35 residues.15 Here, by constructing boost potential using a
harmonic function that follows Gaussian distribution, GaMD
enables rigorous energetic reweighting through cumulant
expansion to the second order, even for simulations of larger
proteins (e.g., T4-lysozyme). With this, GaMD achieves
simultaneous unconstrained enhanced sampling and free energy
calculations.
However, several cautions also result from this study. First,

while the present GaMD simulations seem to provide sufficient
sampling of the low-energy regions, they appear to remain
unconverged in sampling of the high-energy barriers. This is
particularly true for the ligand entry step in the GaMD simulation
of benzene binding to the T4-lysozyme. It is worth recalling that
the threshold energy for adding the boost potential is set to its
lower bound in the present GaMD simulations. It is subject to
future investigation into whether using the upper bound of the
threshold energy will facilitate sampling of the high-energy
barriers in GaMD simulations. Second, based on a potential
biasing approach, GaMD mainly accelerates transitions across
enthalpic energy barriers. Improvement for its application to
systems with high entropic barriers is still in need. On this regard,
GaMD can be potentially combined with the parallel temper-
ing36 and replica exchange37 algorithms for further enhanced
sampling. Particularly, the combination of parallel tempering and
metadynamics (PT-MetaD)34a has been shown to facilitate
enhanced sampling of biomolecules over entropic barriers.
In summary, without the need to set predefined reaction

coordinates, GaMD is generally applicable to a wide range of
biomolecular systems as demonstrated on protein folding and
ligand binding in this study. For systems of increasing size, the
upper limit of the ΔV standard deviation, σ0 can be adjusted
dynamically to ensure that the distribution width of the applied
boost potential is narrow enough for accurate energetic
reweighting using cumulant expansion to the second order.
Therefore, GaMD provides both unconstrained enhanced
sampling and free energy calculation for biomolecular simu-
lations.

■ APPENDIX A: IMPLEMENTATION ALGORITHM OF
GAUSSIAN ACCELERATED MOLECULAR
DYNAMICS

Gaussian accelerated molecular dynamics (GaMD) is currently
implemented in the GPU version of AMBER 12,17 but should be
transferable to AMBER 14 and other molecular dynamics

programs as well. GaMD provides enhanced sampling of
biomolecules by adding a harmonic boost potential to smoothen
the system potential energy surface. Following is a list of the
input parameters for a GaMD simulation:

The GaMD algorithm is summarized as the following:

■ APPENDIX B: ENERGETIC REWEIGHTING WITH
CUMULANT EXPANSION TO THE SECOND ORDER

For simulations of a biomolecular system, the probability
distribution along a selected reaction coordinate A(r) is written
as p*(A), where r denotes the atomic positions {r1,...,rN}. Given
the boost potential ΔV(r) of each frame, p*(A) can be

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00436
J. Chem. Theory Comput. 2015, 11, 3584−3595

3593

http://dx.doi.org/10.1021/acs.jctc.5b00436


reweighted to recover the canonical ensemble distribution, p(A),
as
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where M is the number of bins, β = kBT and ⟨eβΔV(r)⟩j is the
ensemble-averaged Boltzmann factor of ΔV(r) for simulation
frames found in the jth bin. In order to reduce the energetic
noise, the ensemble-averaged reweighting factor can be
approximated using cumulant expansion:38
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As shown earlier, when the boost potential follows near-Gaussian
distribution, cumulant expansion to the second order provides
the more accurate reweighting compared with the exponential
average and Maclaurin series expansion methods.14 Finally, the
reweighted free energy is calculated as F(Aj) = −(1/β) ln p(Aj).
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