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Editorial Editorial

One major question in studies on the 
ecology and evolution of infectious dis-
eases is whether enhanced host resistance 
will drive the evolution of more virulent 
parasites. To date, theory,1-4 laboratory 
studies,5-9 and field studies10,11 have all 
shown an association between increased 
host resistance and higher frequencies of 
virulent strains, suggesting that enhanced 
host immunity could have the undesirable 
side effect of favoring virulent pathogen 
genotypes during co-infection.9,12,13 There 
is also evidence, however, that selection 
through susceptible hosts could lead to 
pathogen genotypes that are more capable 
of infecting and causing disease in highly 
resistant host genotypes.14,15 What could 
account for the difference in results? In 
all of the vertebrate host–pathogen experi-
ments to date, evolved pathogen virulence 
has been evaluated in the same host gen-
otype as the evolution took place,8,9 and 
so one explanation is that the evolution 
of more broadly virulent pathogens in a 
vertebrate host–pathogen system could be 
limited by pathogen fitness trade-offs dur-
ing infection of hosts with different levels 
of genotypic resistance. In this issue of 
Virulence,16 Kubinak and Potts present an 
elegant set of experiments which test and 
support this hypothesis.

The gold standard for empirically 
studying pathogen adaptation is serial pas-
sage, which involves repeated transmis-
sion of a pathogen through a succession 
of hosts.17,18 Recently, Kubinak et al.19 seri-
ally passaged Friend virus (FV) through 
a single strain of inbred congenic mice 
to test how differences at MHC (major 
histocompatibility complex) loci could 
influence patterns of viral adaptation and 
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virulence evolution. Consistent with oth-
ers,8,9,18 the authors found that serial pas-
sage led to rapid increases in viral fitness 
and, consequently, more virulent disease. 
Importantly however, passage through 
one host genotype resulted in reduced 
fitness in another host genotype. This 
implies that pathogen adaption is host-
genotype specific, and supports models 
of antagonistic host–pathogen coevolu-
tion (also known as the Red Queen).20,21 
In this issue of Virulence,16 Kubinak and 
Potts expand on those previous studies by 
serially passaging FV through strains of 
mice genotypically distinct in resistance 
to the virus. They then infected each host 
genotype with each of the post-passage 
virus stocks, and tested overall pathogen 
virulence of the evolved lines compared 
to unpassaged stock. They found that 
viruses passaged through the most resis-
tant host genotype were more virulent to 
their respective host than viruses passaged 
through less resistant hosts, but that such 
pathogen specialization resulted in lower 
mean virulence across hosts of different 
genotypes. This suggests that evolving to 
evade a strong immune response in one 
host comes at the substantial cost of being 
less able to evade the immune response of 
other hosts.

The results of Kubinak and Potts show 
a trade-off between the host traits of resis-
tance and tolerance. Whereas resistance 
is defined by the ability of a host to limit 
parasite burden, tolerance is defined by 
the degree to which host health is affected 
by a given parasite burden: i.e., for a given 
pathogen load, more tolerant hosts suffer 
less than less tolerant ones.22 Intriguingly, 
the most resistant host genotype was, 

overall, the least tolerant. Since the most 
resistant host selected for the most special-
ized viruses, and resistance in this system 
is associated with more severe disease, the 
authors imply that, in the short-term, selec-
tion may favor less resistant and more tol-
erant host genotypes that suffer less from 
the fitness cost associated with mounting 
a stronger immune response. Next, the 
authors plan to characterize the nature of 
the immune response mounted by hosts 
that vary in levels of resistance and toler-
ance to look for differences in immuno-
pathological markers. Such experiments 
would be very valuable in providing fur-
ther evidence of antagonistic pleiotropic 
relationships between host resistance and 
tolerance mechanisms.22-24

How do the Kubinak and Potts results 
relate to previous studies on host resistance 
and the ecology and evolution of infec-
tious disease? Consistent with others,5,8,9 
they demonstrate that serial passage of FV 
through more resistant hosts selects for 
pathogen genotypes of greater virulence 
than those passaged through less resistant 
hosts, supporting claims that some types 
of vaccines or drugs may select for the 
evolution of more virulent pathogen geno-
types.4,9,25,26 However, their result that 
such pathogen specialization could reduce 
overall mean virulence is an important 
finding when we consider the spread and 
severity of disease associated with infec-
tious agents in natural populations. For 
example, the undesirable side effects of 
increased pathogen virulence due to selec-
tion by drugs or vaccines could be limited 
if there is enough variation in host resis-
tance in the population to limit the fitness 
of those pathogens. This finding is also 
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In agreement with the authors, the 
crucial next questions to ask are whether 
the observed effects are found using more 
host genotypes and different pathogens, 
and whether the effects occur in nature. 
For example, if we were to identify the key 
resistance genes that lead to specialization, 
could we breed for host resistance in a farm 
setting in a more intelligent way? By breed-
ing for multiple lines of highly resistant 
hosts, and housing these hosts together, 
can we prevent the evolution of hyperviru-
lent pathogens? Clearly, such data will lead 
to a better understanding of the overall 
implications of host resistance on the ecol-
ogy and evolution of infectious diseases.
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highly relevant for agricultural contexts, 
where populations of low host genetic 
diversity and selective breeding for disease 
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questions would address how variation in 
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resistance genes, acquired immunity, or 
selection by drugs and vaccines, and their 
interactions with each other, affect overall 
pathogen virulence using more host and 
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tion in a vertebrate host–pathogen system. 
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that antagonistic coevolution can play a 
major role in determining rates of molecu-
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variability in host resistance could result 
in fitness trade-offs for the pathogen.14 
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versa. Kubinak and Potts demonstrate the 
importance of considering this diversity.
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