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Emotion recognition plays an important part in human-computer interaction (HCI).

Currently, the main challenge in electroencephalogram (EEG)-based emotion recognition

is the non-stationarity of EEG signals, which causes performance of the trained model

decreasing over time. In this paper, we propose a two-level domain adaptation neural

network (TDANN) to construct a transfer model for EEG-based emotion recognition.

Specifically, deep features from the topological graph, which preserve topological

information from EEG signals, are extracted using a deep neural network. These features

are then passed through TDANN for two-level domain confusion. The first level uses

the maximum mean discrepancy (MMD) to reduce the distribution discrepancy of

deep features between source domain and target domain, and the second uses the

domain adversarial neural network (DANN) to force the deep features closer to their

corresponding class centers. We evaluated the domain-transfer performance of the

model on both our self-built data set and the public data set SEED. In the cross-day

transfer experiment, the ability to accurately discriminate joy from other emotions was

high: sadness (84%), anger (87.04%), and fear (85.32%) on the self-built data set.

The accuracy reached 74.93% on the SEED data set. In the cross-subject transfer

experiment, the ability to accurately discriminate joy from other emotions was equally

high: sadness (83.79%), anger (84.13%), and fear (81.72%) on the self-built data

set. The average accuracy reached 87.9% on the SEED data set, which was higher

than WGAN-DA. The experimental results demonstrate that the proposed TDANN can

effectively handle the domain transfer problem in EEG-based emotion recognition.

Keywords: EEG, emotion recognition, topological graph feature, maximummean discrepancy, domain adversarial

network

INTRODUCTION

Emotion recognition plays an important role in the human-computer interaction system (Walter
et al., 2014). In addition, accurately identifying the patient’s emotions helps improve the quality
of medical care (Acharya et al., 2015). Currently, popular emotion detection can be divided into
two categories. One is based on non-physiological signals such as facial expressions (Gur et al.,
1992). The other is based on physiological signals such as electroencephalogram (EEG) signals
(Sourina et al., 2012). Facial expressions are prone to misinterpretation (Saxen et al., 2017), but
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EEG signals are directly extracted from the cerebral cortex
without damage, accurately reflecting the physiological
state of the human brain. Therefore, emotion recognition
technology based on EEG signals has received more extensive
research interest.

At present, researchers use a variety of traditional machine
learning methods to identify emotions via EEG, including
support vector machines (SVM) (Alarcao and Fonseca, 1949),
linear discriminant analysis (LDA) (Zong et al., 2016), K-
nearest neighbor (KNN) (Mehmood and Lee, 2015), and more.
Although these methods have achieved good performance in
EEG emotion recognition, there are still limitations. Due to
the individual differences and non-stationarity of EEG signals,
traditional machine learning methods have high requirements
for extracted features. However, most of the current methods for
extracting features from EEG signals are manual, and the results
are often not satisfactory.

Researchers have proposed a variety of shallow unsupervised
domain adaptation methods to solve the cross-subject
classification problem. The main idea of this shallow
unsupervised domain adaptation method is to learn shared
features by minimizing the distance of the distribution difference
between features from different domains. Algorithms for
measuring the distance between two distributions usually
include KL divergence, Wasserstein distance, Shannon entropy
distance, and maximum mean discrepancy (MMD) (Chai et al.,
2016). In recent years, the multiple kernel maximum mean
discrepancy (MK-MMD) (Hang et al., 2019) has shown a greater
advantage in domain adaptation. Pan et al. (2011) proposed a
domain adaptation method called Transfer Component Analysis
(TCA). The principle was to map two differently distributed
data points to a high-dimensional regenerative kernel Hilbert
space (RKHS) by learning a set of universal transfer mappings
between the source and target domains, and then minimize
the MMD in the RKHS to minimize the distribution distance
between the source and target domains. The Transformation
Parameter Transfer (TPT) method proposed by Sangineto
et al. (2014) first trained the classifier of each source domain,
then trained a regression function to learn the relationship
between the data distribution and the classifier parameters,
and finally used the target domain distribution and classifier
mapping to obtain the target classifier, thereby realizing
distribution transfer. The shallow domain adaptation method
has achieved remarkable results in cross-subject classification,
but its performance depends in large part on the quality of
the features and the classification performance of the classifier.
However, it is well-known that it is very difficult to design a
general classifier. If the extracted features are inaccurate, the
resulting model may lead to reduced classification performance,
that is, negative transfer.

Therefore, researchers are more interested in deep domain
adaptation methods. Studies have found that deep neural
networks can learn more transferable features for domain
adaptation (Donahue et al., 2013; Yosinski et al., 2014). Ganin
et al. (2016) proposed a domain-adversarial training of neural
networks (DANN), an approach composed of two main parts.
First, the source and target domains were mapped to a

common subspace through shared parameters for alignment,
and then the source domain classification loss was minimized.
Domain classification loss of the source and target domains was
maximized to achieve domain confusion. The deep adaptation
network (DAN) (Hang et al., 2019) proposed by Long et al.
relied on multi-kernel MMD (MK-MMD) to adapt the source
domain and target domain after multiple fully connected layers
in the deep layer. In addition, Luo et al. (2018) proposed a
domain adaptation framework based on WGAN. There were
two main steps; the first was to pre-train the source domain,
and then the Wasserstein algorithm was used for adversarial
training to adapt the target domain to the source domain. Similar
to the WGAN framework, Jimenez-Guarneros and Gomez-Gil
(2020) proposed a custom domain adaptive method (CDA).
This method used adaptive batch normalization (AdaBN) (Li
et al., 2018) and MMD in two independent networks to reduce
the marginal and conditional distribution of the source and
target domains. Ma et al. (2019) proposed an adversarial domain
generalization framework called DResNet, which learned specific
biased weights for each source domain and unbiased weights
shared by all domains. Unlike the other methods mentioned
above, this method did not use any information about the
target domain. At present, most of the methods based on deep
domain adaptation put the distributed adaptation strategy on the
specific task layer of the deep network, which can better reduce
the domain difference. However, these deep domain adaptation
methods usually only use simple distributed adaptation methods,
which cannot confuse the source domain and target domain
well. In addition, most of the existing deep domain adaptation
methods are based on image classification, and there are few
domain adaptationmethods based on cross-subject EEG emotion
classification. For example, Zheng and Lu (2016) proposed a
framework of emotion transfer based on TPT, Luo et al. (2018)
proposed a domain adaptation method for EEG emotion based
on WGAN, Li Y. et al. (2019) proposed a domain adversarial
method for EEG emotion based on Bi-hemisphere, Li J. et al.
(2019) proposed amultisource transfermethod for EEG emotion,
Li et al. (2020) proposed a domain adaptation method for EEG
emotion based on latent representation similarity.

Clearly, even if a subject induces the same emotion at different
times, some external factors such as temperature and humidity
will cause physiological changes (Chueh et al., 2012). This will
cause changes in their EEG signals that are called cross-day
variability. At present, few researchers analyze and study this
problem. Although the tasks of cross-day transfer and cross-
subject transfer are the same, they both match the distribution of
source domain and target domain to eliminate the distribution
difference. But they have different characteristics to learn. The
challenge in cross-day transfer is to train a general classification
model for the same subject, which must extract the same EEG
features for the same emotional states across days. Cross-subject
transfer, on the other hand, trains a general classification model
for different subjects, and must extract the same EEG features
for the same emotional states across subjects. It is very difficult
to build a general model and extract high-quality features;
a deep neural network is better than traditional methods at
learning features.
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In this paper, we propose a two-level deep domain adversarial
network model based on a deep convolutional neural network
to recognize EEG emotion transfer. EEG features are mapped to
images, and the spatial topological information of EEG features is
simultaneously retained using the method presented by Bashivan
et al. (2015) andHwang et al. (2020). A deep convolutional neural
network can learnmore transferable features by learning the EEG
feature topological map. We use the AdaBN layer to standardize
the characteristics of the source and target domains, and then
use MMD to reduce the distribution difference between the
source and target domains to achieve the domainmatching effect.
Finally, through the adversarial domain adaptation network,
the distribution difference between the source and target
domains is further reduced dynamically to achieve complete
domain confusion. We verified the cross-day transfer and cross-
subject transfer.

The main contributions of this manuscript lie in the
following aspects:

1) A two-level domain adaptation neural network (TDANN)
was proposed to construct a transfer model for EEG-based
emotion recognition. Through the combination of MMD and
DANN, the source domain, and the target domain can adapt
to each other better.

2) Topology features were used to increase spatial information,
which can better describe the state of different emotions.
In addition, a convolutional network with adaptive standard
layer was proposed to extract effective emotion features from
topology graph.

3) A cross-subject and cross-day emotion EEG data set was
constructed to study the transfer models for EEG-based
emotion recognition. In this data set, each subject participated
in six sessions, which is the largest number of sessions in the
current public datasets for EEG-based emotion recognition.

EXPERIMENTAL SETUP

Since there is no data set big enough for research on the cross-day
transfer model for EEG-based emotion recognition, we designed
an experiment to build an EEG data set for emotion recognition.
Each subject’s EEG signals under different emotion states were
collected three times with a 1 week interval, and the sequence was
repeated again after 1 month.

Stimuli and Experimental Procedure
Thirty-six video clips of joy, sadness, anger, and fear were chosen
for the experiment from the Chinese affective video system (Xu
et al., 2010) and from a self-built emotional material library.
The self-built library was a standardized multi-sensory emotional
stimulation material library built on the basis of psychological
methods and composed of various comedy, love, crime, war,
documentary, and horror films with a clear picture and good
sound. In order to induce a single type of emotion accurately, the
length ofmovie clips was set to 50–335 s and the emotion induced
by each video reached the highest intensity at the end.

The experiment was performed in three parts, namely,
Experiments A, B, and C. The details of the movie clips used in

each part are listed in Table 1. See Figure 1 for an overview of the
experimental procedure.

The order of the three parts was random, and the time interval
between them was 1 week. In each part, four categories of
movie clips (total of 12 movie clips) were randomly presented
to the participants in 12 trials, and each trial involved the
following steps:

1. 10-s display of the current trial number to inform the
participants of their progress

2. 5 s of baseline signal collection (fixation cross)
3. Display of the movie clips
4. 10-s self-assessment for arousal and valence (based on self-

assessment manikins)
5. 5min break between different emotional types of video clips.

EEG Recording and Preprocessing
The Beck Anxiety Inventory (Fydrich et al., 1992), Hamilton
Anxiety Rating Scale (Shear et al., 2010), and Hamilton
Depression Scale (Hamilton, 2004) were administered to exclude
individuals with anxiety, depression, or physical abnormalities
and those under sedatives and psychotropic drugs. The
participants included 16 college students (eight males and eight
females) with an average age of 23.13 years (range = 19–27, SD
= r 2.37). All participants were right-handed, with normal or
corrected vision and hearing.

EEG signals were recorded with a gtec.HIamp system. The
sampling rate was 512Hz, a band-pass filter in the range of 0.1–
100Hz was utilized to filter EEG signals, and a notch filter with a
frequency of 50Hz was used. The layout of 62 electrodes followed
the international 10–20 system. The Fz electrode was used for
reference calculation. Thus, the number of effective electrodes
was 61.

First, we selected the subjects’ EEG data based on their self-
evaluated valence. The threshold was set to 5. If a participant’s
valence for happy videos exceeded five points, and videos
with sadness, anger, and fear were <5, we believed that
the participant’s emotions were accurately induced, and the
participant’s signal was retained; otherwise the participant’s signal
was deleted. We also excluded subjects with poor EEG signal
quality, for example large EMG artifacts or EEG signal drift.
In the end, we eliminated 4 subjects and retained 12 subjects
with better signals. Then, we selected the last 50 s of the EEG
signal from each video clip for analysis. In the video material,
the shortest video length is 50 s. In order to make the sample
balanced, we intercepted the data corresponding to all videos in
the last 50 s. The EEG signals were passed through a 2-s time
window and overlapped by 50%. After segmentation, each video
segment had a total of 49 samples, and each participant had a total
of 588 samples. There were 3,528 samples over 6 days.

Before extracting features, the data was preprocessed. First,
the channels with poor data were recompressed and averaged
with the surrounding channels. Next, the blind source analysis
algorithm FastICA (Hyvärinen, 1999) was used to remove EOG
artifacts. We used FastICA to decompose the original EEG
signal into multiple ICs, identifying IC with occasional large
amplitude as eye-movement artifact and removed it. Third,
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TABLE 1 | Brief description of the movie clips used in the emotion experiment.

No. Label Experiment A Experiment B Experiment C

Movie Name Length (sec) Movie Name Length(sec) Movie Name Length (sec)

1 Joy More Haste Less Speed 109 The Eagle Shooting Heroes (1) 228 Lost on Journey 281

2 Joy A Big Potato 142 A World Without Thieves 191 Home with Kids 187

3 Joy Flirting Scholar 112 Chaplin Comedy 244 The Eagle Shooting Heroes (2) 53

4 Sadness My Brothers and Sisters 146 Dearest (1) 182 Man Phoning in the Snow 142

5 Sadness Mother Love Me Once Again 137 Tangshan Earthquake; 335 Echoes of the Rainbow 241

6 Sadness Warm Spring 102 Dearest (2) 120 ROB-B-HOOD 234

7 Anger Fist of Fury (2) 66 YiP Man II 172 Japanese Aggression 96

8 Anger Kangxi Dynasty 94 Don’t Talk to Strangers 205 Blind Mountain 275

9 Anger Conman in Tokyo 107 Fist of Fury (1) 258 Poaching Wild Animals 148

10 Fear Help Me 50 Lights Out 134 A Man Lying in Bed 162

11 Fear The Game of Killing (1) 159 Man Lying on the Ground 291 The Grudge 167

12 Fear Inner Senses 247 Snake Eating People 158 A Woman Taking a Gun 190

FIGURE 1 | Experimental procedure. The experiment was performed in three parts: Experiments A, B, and C. The order of the three parts was random and the time

interval was 1 week. In each part, 12 movie clips with four discrete categories of emotion (joy, sadness, anger, and fear) were presented in 12 trials. Each subject

participated in two complete experiments.

we used a band-pass filter of 0.1–64Hz to filter out high-
frequency interference in EEG signals. Then, we used the
reference electrode standardization technology (REST) to re-
reference the data (Yao, 2001; Yao et al., 2019), and finally,
we removed the 5 s of the baseline before the task from the
EEG signal.

TWO-LEVEL DOMAIN ADAPTATION
NEURAL NETWORK

The two-level deep domain adaptation framework for EEG-based
emotion recognition is shown in Figure 2. The framework was

mainly composed of three parts, namely a feature generator,
a domain discriminator, and a classifier. The main task of the
generator was to further learn the stable features related to
the emotional state in the EEG image and to align the source
and target domains in the subspace. The domain discriminator
further reduced the distribution distance between the source and
target domains.

Feature Generator Based on CNN
Feature extraction is a very critical step in the research of
EEG emotion recognition. Features based on EEG emotion
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FIGURE 2 | Flowchart of the two-level depth domain adaptation framework, with feature extractors, classifiers, and domain discriminators. The DE feature was

converted into a topological map feature as the input of the feature extractor. After processing by the two-level domain adaptation network, the source and target

domains were distributed similarly while ensuring classification performance. The first-level domain adaptation network was mainly composed of feature extractors

and a traditional algorithm MMD; the second-level domain adaptation network was composed of domain adversarial networks with feature extractors and

domain discriminators.

recognition are mainly divided into three categories: time-
domain features, frequency-domain features, and time-frequency
features (Jenke et al., 2014). Time domain features include
energy, average, standard deviation, first-order variance,
standard first-order variance, second-order variance, and
standard second-order variance. Hjorth (1970) proposed more
complex temporal characteristics: Activity, Mobility, and
Complexity. There is also the fractal dimension (FD) (Sourina
and Liu, 2011), in addition to the high-order cross (HOC)
(Petrantonakis and Hadjileontiadis, 2010) feature extraction
method, which represents the oscillation mode of the signal and
has high stability. The frequency domain features are mainly
extracted on five frequency bands, Delta band (1–3Hz), Theta
band (4–7Hz), Alpha band (8–13Hz), Beta band (14–30Hz), and
Gamma band (31–50Hz). Commonly used frequency domain
features include energy and power spectral density (PSD)
(Jenke et al., 2014). Moreover, time-frequency domain features
include differential entropy (DE) (Duan et al., 2013), differential
asymmetry (DASM) feature, rational asymmetry (RASM)
feature, and differential causality (DCAU) feature (Zheng et al.,
2019). Time-frequency domain features is usually extracted by
short-time Fourier transform (STFT) (Koenig, 1946), Hilbert-
Huang Spectrum (HHS) (Hadjidimitriou and Hadjileontiadis,
2012), discrete wavelet transform (DWT) (Mallat, 2009) and

other time-frequency transformation methods. Murugappan
et al. (2010) used DWT to extract the energy and entropy
of five frequency bands of EEG signal, including root mean
square (RMS), and recursive energy efficiency (REE). Alazrai
et al. (2018) proposed a quadratic time-frequency distribution
(QTFD) to extract time-frequency feature. Most of the current
researches extract the DE features of five frequency bands for
emotion recognition. Since the EEG signal is non-stationary, it
can be approximated that the EEG signals follow the Gaussian
distribution N(µ, σ 2), DE can be simply expressed by the
following (Duan et al., 2013):

h(X) = −
∫ ∞

∞

1
√
2πσ 2

ℓ
− (x−µ)2

2σ2 log

(

1
√
2πσ 2

ℓ
− (x−µ)2

2σ2

)

dx

=
1

2
log

(

2πℓσ 2
)

(1)

Where X submits the Gaussian distributionN(µ, σ 2),

1√
2πσ 2

ℓ
− (x−µ)2

2σ2 is the probability density function of X, x is

a variable, π and ℓ are constants.
The extracted DE features only consider the temporal

information and ignore spatial information. Therefore, we
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FIGURE 3 | (A) 3-dimensional position of the EEG electrode with 61 channels. (B) 2-dimensional position of the electrode using the polar coordinate

projection method.

FIGURE 4 | TP-DE images of five frequency bands for a certain participant. Length and width are 32; channel is 5.

adopted a previously tested method using polar coordinate
projection to maintain the spatial topology (Bashivan et al.,
2015; Hwang et al., 2020). We projected the three-dimensional
electrode position onto a two-dimensional plane, as shown in
Figure 3. We used the Clough–Tocher scheme interpolation
method to insert the differential entropy feature on each
electrode and to estimate the value between the electrodes
to obtain a 32 × 32 × 5 EEG image. Figure 4 shows
the topology-preserving DE (TP-DE) characteristics of five
frequency bands of a certain subject after using maximum and
minimum standardization.

In the deep CNN, we used a multi-layer convolutional
layer and two maximum pooling layers. Table 2 shows
the CNN model structure for cross-day transfer research.
We added an AdaBN layer after each set of convolutional
layer and fully connected layer. The AdaBN standardized
the distribution between the source and target domains
in each batch of samples, so that the source and
target domains were better matched in the subspace.
Each fully connected layer used a dropout layer, with
dropout rate= 0.5.

TABLE 2 | CNN model structure for cross-day transfer research.

Layer Input dimension Output dimension Kernel size Stride size

Conv1 5 6 3 × 3 1 × 1

Maxpool1 6 6 2 × 2 2 × 2

Conv2 6 64 3 × 3 1 × 1

Maxpool2 64 64 2 × 2 2 × 2

FC1 7 × 7 × 64 512

FC2 512 256

In the mean, bolding means the accuracy mean is the largest; In the Std, the bold is the

smallest.

Two-Level Domain Adaptation Method
In order to understand the deep domain adversarial method
more clearly, we first introduce the symbols that will be used
here. We assume XS ∼ xSi , i = 1 · · · nS is the data sample
of the source domainDs, YS ∼ ySi , i = 1 · · · nS is the
label corresponding to the source domain data sample, and
XT ∼ xTi , i = 1 · · · nT is the data sample of the target
domain DT .
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Feature generator Gfmaps the source domain data XSand the
target domain data XT to the same space:

X′
S = Gf (XS),X

′
T = Gf (XT) (2)

The generator Gf shares parameters in the source domains XS

and target domains XT , so the feature dimensions of X′
S and X′

T

are the same.
The function of the domain discriminator Gd is to distinguish

the source domain and the target domain. It takes X′
S and X

′
T as

the input, and outputs the prediction of domain, respectively YD
S

and YD
T :

YD
S = Gd(X

′
S),Y

D
T = Gd(X

′
T) (3)

The role of the classifier Gc is to classify EEG emotions. It takes
X′

S and X′
T as inputs and outputs predictive labels, which YS

are and YT :

YS = Gc(X
′
S),YT = Gc(X

′
D) (4)

We parameterize the generatorGf , domain discriminatorGd, and
classifier Gc; their parameters are θf , θd and θc respectively.

First, we optimize the parameters and minimize
the cross-entropy:

min
θf ,θc

LC(XS,XT) = −E(xS ,yS)−(XS ,YS)

[

M
∑

c = 1

ySc logGc(Gf (xS))

]

(5)

Here,M represents the emotion class.
Then, introducing the domain adaptation algorithm, we

propose a two-level domain adaptation algorithm based on
a deep neural network. In the first-level domain adaptation,
we use the MMD algorithm, combined with the AdaBN layer
in the feature extractor, to align the class distribution of the
source and target domains. Under the premise of ensuring
the classification performance, the source and target domains
are initially confused, and the MMD distance is minimized by
optimizing the parameter θf :

min
θf

LMMD(XS,XT) = LMMDEXS ,XT (XS,XT) (6)

Where LMMD represents the MMD distance. MMD distance can
effectively measure the distance between distributions, and can
be expressed by:

LMMD(XS,XT) =
1

n2S

nS
∑

i,j = 0

κ(X
(i)
S ,X

(j)
S )−

1

nSnT

ns ,nT
∑

i,j = 0

κ(X
(i)
S ,X

(j)
T )

+
1

n2T

nT
∑

i,j = 0

κ(X
(i)
T ,X

(j)
T ) (7)

Where nS, nT represent the number of samples in the source and
target domains, respectively, and κ(·, ·) is a linear combination of
multiple radial basis function (RBF) kernels, defined as:

κ(X
(i)
S ,X

(j)
T ) =

∑

n

ηn exp

{

−
1

2σn

∥

∥

∥
X
(i)
S − X

(j)
T

∥

∥

∥

2
}

(8)

Where σn is the standard deviation of the nth RBF kernel and ηn
corresponds to its associated weight.

Using the MMD algorithm alone for domain adaptation is
not sufficient for multi-source domain matching. Therefore, the
second-level domain adaptation–domain adversarial method is
introduced. We use the second-level domain adaptation network
to reduce the distribution distance between the source and
target domains. The principle of the domain discriminator is
to maximize the cross entropy by optimizing the parameters
θf and θd:

max
θd

, min
θf

LD(XS,XT) = −E(xS ,xT )−(XS ,XT )

[

N
∑

d = 1

yd logGd(Gf (xS, xT))

]

(9)

Where N is the numbers of domains.
Finally, we add gradient penalty to the domain loss to realize

the Lipschitz constraint, so that the domain loss function can be
more stable and converge faster in training. We also add an extra
L2 norm regular term:

min
θf ,θc ,θd

LG = LC + λdLD + λmLMMD + λz‖W‖2 (10)

max
θd

LD = −LD + λL(
∥

∥∇xGd(x)
∥

∥

2
− 1)

2
(11)

Where λd, λm, λz , and λL are hyper-parameters, and is the
transformation matrix.

RESULTS

Cross-Day Transfer Research
We used a self-built data set for cross-day transfer research.
In this data set, each participant had 6 days of data and each
participant iterated six times. We used the leave-one-out method
for cross-validation, that is, for each subject, 1 day was randomly
selected as the test set, and the remaining days as the training set.
In the deep network, 15% of the data was randomly selected from
the training set every day as the validation set. In the parameter
settings of the network model, the batch size was 160, the source
and target domains were each 80, and the number of neurons
in the fully connected layer was 512 and 256, respectively.
The hyperparameters were λd (0.1), λm (0.1), λz (0.01), and
λL (10). An Adam optimizer was used, and the learning rate
was 0.0005. All the methods in this paper were implemented
in Python, and the deep neural network was implemented in
Tensorflow. The workstation operating system was Windows 7,
using Inter(R)Xeon(R) E3-1230v3 CPU, NVIDIATITANVGPU,
and 16G of RAM.

We studied the characteristics of the CNN learning EEG
topological map. We extracted the output of the EEG topological
map through the last layer of the convolutional network, and
after superimposing and averaging the samples of the source
and target domains, we selected nine channels with clear
features and drawn feature maps after using maximum and
minimum standardization, as shown in Figure 5. The first two
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FIGURE 5 | Feature visualization based on cross-day transfer model learning in the second convolutional layer. (SP, source positive; TP, target positive; SN, source

negative; TN, target negative).

rows represent the positive characteristics of the source domain
and target domain learned by the convolutional network, and
the last two rows represent the negative characteristics of the
source domain and target domain learned by the network. From
channels 1, 2, 3, and 4, we can see that there are differences
between positive and negative emotions in the central area of the
graph; in channels 5, 6, and 7, there are differences at the top of
the graph; in channels 8, There are differences on both sides of
the graph; channels 9 are differences at the bottom of the graph.
There were obvious differences between positive and negative
emotions in the parietal, frontal, and temporal lobes. This result
was consistent with that of Zhuang et al. (2018). In addition, the
positive and negative emotions of the source and target domains
were similar, which proved that the network proposed in this
paper can effectively solve the problem of cross-day transfer.

Next, we used the traditional support vector machine (SVM)
classification method as the baseline, the RBF kernel is used,
and compared the superior traditional transfer method, transfer
component analysis (TCA), and the depth domain adaptation
network DANN. First, we verified the EEG data set we collected
using the leave-one-out method, and the results are shown in
Table 3. In the self-built database, due to the difference in the data
distribution of the training set and the test set, the baseline SVM
classification performance was poor. In the second classification,
for Joy-Sadness, Joy-Anger, and Joy-Fear, the accuracy rates were
70.02%, 71.16%, and 69.01%, and the accuracy rate for the four
categories was 40.29%.Compared with the SVM method, the
classification accuracy was slightly improved with the traditional
TCA transfer method, but the improvement was not obvious.
Using the DANN, the classification accuracy was significantly
improved. The accuracy of the two classifications was 80.84%,
81.27%, and 80.20%, and the accuracy of the four classifications
was 49.67%. Compared with the baseline SVM classifier, the
accuracy of the classification was improved by 10%, 10%, 11%,

TABLE 3 | Performance of adaptive methods in different domains for self- built

EEG data set (cross-day).

Methods Two classification Four classification

Joy-Sadness Joy-Anger Joy-Fear

Mean Std. Mean Std. Mean Std. Mean Std.

SVM 0.7002 0.159 0.7160 0.162 0.6901 0.137 0.4029 0.102

TCA 0.7429 0.172 0.7343 0.149 0.7256 0.131 0.4373 0.108

DANN 0.8084 0.123 0.8127 0.128 0.8020 0.117 0.4967 0.083

MMD 0.7997 0.153 0.8094 0.136 0.8038 0.118 0.4298 0.105

TDANN 0.8400 0.149 0.8704 0.119 0.8532 0.120 0.5688 0.097

TABLE 4 | Performance of SEED adaptation methods in different domains for the

public data set (cross-day).

SVM TCA DANN MMD TDANN

Mean 0.5884 0.6827 0.6972 0.6817 0.7493

Std. 0.1142 0.1670 0.0900 0.1350 0.0927

and 9%. This showed that deep neural networks can effectively
learn more transferable features for domain adaptation. The
accuracy of the method proposed in this paper reached 84.0%,
87.04%, and 85.32% in the second classification. The accuracy
of the four classifications reached 56.88%. Compared with the
DANN network, it increased by 4%, 6%, 5%, and 7% respectively.

Moreover, we used SEED data set for cross-day transfer
research. The SEED data set was proposed by Zheng and Lu
(2017). They used scores (1–5) and keywords to evaluate subjects’
emotions (positive, neutral, and negative) when watching video
clips. There were 15 movie clips (5 positive, 5 neutral, and 5
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negative) and each movie clip lasted about 4 minutes. Fifteen
healthy subjects (8 females, 7 males, MEAN: 23.27, SD: 2.37)
were selected and scanned using the ESI NeuroScan System.
The distribution of 62 electrodes conformed to the international
10–20 standard and the sampling rate was 1000Hz. The EEG
signal was down-sampled to 200Hz, the signals that were heavily
polluted by EOG and EMG were screened, and the screened
signals were then passed through a 0.3–50Hz bandpass filter.
Then the EEG signal was divided into 1s-long data segments
without overlap. Thus, there were 3,394 samples for each subject,
and the sample sizes of the three emotions were basically the
same. Each subject had three experiments. We used the leave-
one-out method for cross-validation. The results are shown in
the Table 4. Compared with SVM, TCA, DANN, and MMD, the
accuracy of TDANN is improved by 16, 6, 5, and 6% respectively.

In order to show the transfer process of feature distribution,
we selected one subject’s EEG data in our self-built data set to
visualize by t-SNE (Donahue et al., 2013) in different domain
adaptation algorithms in the leave-one-out method verification
(see Figure 6). Figure 6A shows the original distribution of
the source and target domains of the subject. It can be seen
that the distribution of EEG features in the source and target
domains was different, which was confusing and resulted in a
very poor classification effect using the SVM classifier directly.
Figure 6B shows the feature distribution map after feature
mapping by the TCA method. It can be seen that mapping
the feature to the feature subspace effectively distinguished the
source domain from the target domain, but for multi-source
domains transfer it was not enough; the feature distribution of
the source domain was still very scattered. Figure 6C shows the
feature distribution map learned by the DANN network. Still,
some of the features of the source and target domains were
confused, and the features of the source and target domains
were relatively scattered and not clustered together. Figure 6D
shows the distribution of features learned by the MMD. It can
reduce the intra class distance, but can’t widen the class spacing.
Figure 6E shows the distribution of features learned by our
method. It is evident that the features learned by our method are
easier to distinguish than those learned by the DANN. Moreover,
the class spacing became larger and the class inner distance
became smaller.

Cross-Subject Transfer Research
Currently, the most used data set for cross-subject transfer
research is SEED, so we first chose to use SEED for this as
well. When using the SEED data set to verify the cross-subject
transfer research, we also used the leave-one-out method for
cross-validation, that is, one subject was randomly selected as
the test set, and the rest were the training set, so 15 iterations
were required. Compared with the cross-day transfer study, the
tasks were different, and the selected data and sample sizes
were also different. The number of samples in the cross-day
transfer study was small, while the number in the cross-subject
transfer study was large. Therefore, the CNN in the cross-subject
transfer study had a deeper network structure than in the cross-
day transfer study. The CNN structure is shown in Table 5.
Similarly, we added an AdaBN layer after each convolutional
layer and fully connected layer. The AdaBN standardized the
distribution between the source and target domains in each batch
of samples, making the source and target domains better in the
subspace matched by one (Donahue et al., 2013). In addition,
each fully connected layer used a dropout layer, with a dropout
rate of 0.5.

We then conducted cross-subject transfer research on the
SEED data set. When using the SEED data set to verify the cross-
subject transfer research, we also used the leave-one-out method

TABLE 5 | CNN model structure for cross-subject transfer research.

Layer Input dimension Output dimension Kernel size Stride size

Conv1 5 32 3 × 3 1 × 1

Conv2 32 32 3 × 3 1 × 1

Maxpool1 32 32 2 × 2 2 × 2

Conv3 32 64 3 × 3 1 × 1

Conv4 64 64 3 × 3 1 × 1

Conv5 64 128 3 × 3 1 × 1

Conv6 128 128 3 × 3 1 × 1

Maxpool2 128 128 2 × 2 2 × 2

FC1 6 × 6 × 128 1,024

FC2 1,024 512

FC3 512 256

FIGURE 6 | Feature visualization diagram. (A) original distribution of the features of the source and target domains; (B) distribution of the features after being mapped

by the TCA algorithm; (C) distribution of the features learned by the DANN algorithm; (D) distribution of the features learned by the MMD algorithm; (E) feature

distribution of TDANN learning.
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TABLE 6 | Performance of SEED adaptation methods in different domains for the public data set (cross-subject).

SVM TCA TPT DANN MMD DAN DResNet WGAN-DA TDANN

Mean 0.5818 0.6400 0.7517 0.7919 0.6655 0.8381 0.8530 0.8707 0.8790

Std. 0.1385 0.1466 0.1283 0.1314 0.0483 0.0856 0.0832 0.0714 0.0613

In the mean, bolding means the accuracy mean is the largest; In the Std, the bold is the smallest.

for cross-validation, that is, we randomly selected one subject as
the test set, and the rest as the training set. Therefore, 15 iterations
were required. The batch size was 224, the source domain and
target domain were each 112, and the number of neurons in the
fully connected layer was 1,024, 512, and 256, respectively. The
hyperparameters were λd (0.1), λm (0.1), λz (0.01), and λL (0.1).
An Adam optimizer was used, and the learning rate was 0.0005.

We simultaneously compared the current best-performing
algorithms in the cross-subject transfer of EEG emotions,
including shallow algorithms such as TCA and TPT, and deep
algorithms such as DANN, DResNet, and WGAN-DA. We
continued to use the SVM classifier as the baseline. Table 6 shows
the average and variance obtained with different algorithms.
Among the shallow transfer algorithms, TPT had the best effect,
with an accuracy rate of 75.17%. Among the deep transfer
algorithms, WGAN-DA had the best classification performance,
with an accuracy rate of 87.07%. Although the accuracy of
DResNet was not as high as that of WGAN-DA, DResNet did
not use any information about the target domain data. TDANN’s
recognition accuracy rate was 87.9%, the highest recognition
rate achieved by any of the algorithms, and it was more stable
than WGAN-DA.

Then, we used a self-built data set for cross-subject transfer
research. Twelve subjects’ EEG data collected for the first time
were used in this cross-subject transfer experiment. We used
the leave-one-out method for cross-validation, and compared
with TCA, DANN, and MMD algorithms. The results are
shown in the Table 7. The accuracy of the method TDANN
reached 83.79, 84.13, and 81.72% in the second classification. The
accuracy of the four classifications reached 47.28%. Compared
with the MMD, it increased by 5, 5, 6, and 4%, respectively.
However, in the cross-subject transfer experiment of self-built
data set, the overall accuracy is lower than that of cross day
transfer experiment. The reason for this may be that there exists
intrinsic differences among subjects, and more data collected
from different subjects are needed to remove this intrinsic
differences among subjects.

CONCLUSIONS

Emotion recognition is the most important part of human-
computer interaction. EEG emotion recognition research has
been developed for decades, and many impressive results have
been obtained. However, there are still quite a few problems,
among which the most important are cross-day transfer and
cross-subject transfer. Because EEG signals are non-stationary,
the signal distribution of each subject is different. Even for the

TABLE 7 | Performance of adaptive methods in different domains for self-built

EEG data set (cross-subject).

Methods Two classification Four classification

Joy-Sadness Joy-Anger Joy-Fear

Mean Std. Mean Std. Mean Std. Mean Std.

SVM 0.6726 0.147 0.6995 0.1474 0.6565 0.120 0.3411 0.089

TCA 0.7505 0.040 0.7544 0.049 0.7327 0.459 0.4202 0.025

DANN 0.7299 0.046 0.7168 0.023 0.6624 0.025 0.4120 0.043

MMD 0.7837 0.151 0.7993 0.154 0.7568 0.146 0.4341 0.100

TDANN 0.8379 0.155 0.8413 0.137 0.8172 0.130 0.4728 0.079

In the mean, bolding means the accuracy mean is the largest; In the Std, the bold is the

smallest.

same subject, there are differences in the EEG signals collected at
different times.

In this paper, we propose a domain adaptation framework
using deep neural networks for EEG emotion recognition. We
have verified the performance of the framework on two data
sets: our self-built data set, and the public data set SEED. In
the cross-day transfer evaluation, we compared the currently
favored transfer algorithms TCA and DANN. In the self-built
data set, the accuracy rates of Joy-Sadness, Joy-Anger, and Joy-
Fear were 84.0, 87.04, and 85.32%, respectively, and the accuracy
rate of the four categories was 56.88%. In the SEED data set, the
accuracy of three classification reached 74.93%. For the cross-
subject transfer evaluation, the algorithm we proposed achieved
an average accuracy rate of 87.9% in SEED data set. In the self-
built data set, the accuracy rates of Joy-Sadness, Joy-Anger, and
Joy-Fear were 83.79, 84.13, and 81.72%, respectively, and the
accuracy rate of the four categories was 47.28%. Visualizing the
features learned by the feature extractor, it can be clearly seen
that different brain regions are activated by different emotions.
The energy of positive emotions in the parietal, and frontal lobes
is significantly higher than that of negative emotions.

In our cross-day transfer research, although we established a
data set with the largest amount of data available at present for
deep neural network training, the amount of data is still far from
enough. The labor and funds required to build a sufficiently large
data set are beyond the scope of most research institutions. Some
studies have found that sample generation through a generative
adversarial network (GAN) can effectively increase sample size
and improve the training performance of a neural network
to a certain extent. In follow-up research, we will study data
enhancement based on a GAN to further address the problem
of EEG emotion transfer.
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