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Abstract: The re-entrant honeycomb microstructure is one of the most famous, typical examples of
an auxetic structure. The re-entrant geometries also include other members as, among others, the
star re-entrant geometries with various symmetries. In this paper, we focus on one of them, having
a 6-fold symmetry axis. The investigated systems consist of binary hard discs (two-dimensional
particles with two slightly different sizes, interacting through infinitely repulsive pairwise potential),
from which different structures, based on the mentioned geometry, were formed. To study the
elastic properties of the systems, computer simulations using the Monte Carlo method in isobaric-
isothermal ensemble with varying shape of the periodic box were performed. The results show that
all the considered systems are isotropic and not auxetic—their Poisson’s ratio is positive in each case.
Moreover, Poisson’s ratios of the majority of examined structures tend to +1 with increasing pressure,
which is the upper limit for two-dimensional isotropic media, thus they can be recognized as the ideal
non-auxetics in appropriate thermodynamic conditions. The results obtained contradict the common
belief that the unique properties of metamaterials result solely from their microstructure and indicate
that the material itself can be crucial.

Keywords: Monte Carlo simulations; extreme Poisson’s ratio; re-entrant geometry; star-shaped
geometry; elasticity; hard discs; binary mixtures; mechanical metamaterials

1. Introduction

Auxetic materials are a group of metamaterials characterized by a negative Poisson’s
ratio (PR) [1–3]. A negative value of this coefficient leads to an unusual behavior of these
structures, such as increasing their transverse dimensions (instead of decreasing) during
longitudinal stretching [4]. Despite the fact that the theoretical basis indicating the possibil-
ity of achieving negative PR values by the media existed much earlier, an intensive increase
in the interest of the scientific community in auxetics falls on the 1980s, when the first
theoretical models showing such properties were proposed [5–10]. One of the most popular
two-dimensional (2D) auxetic models is the re-entrant honeycomb structure, introduced
by Gibson et al. [5]. The group of re-entrant geometries was later intensively studied
and included, among others, such representatives as star re-entrant [11–13], double arrow-
head [14–16], hierarchical star re-entrant [17] and augmented re-entrant honeycomb [18–20].
Analitycally and numerically investigated properties of auxetic materials and structures
showed unusual properties, from negative compressibility [21,22], increased hardness and
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values of contact pressure [23,24], enhanced energy and vibration absorption [25,26], to
non-intuitive behaviour [27].

In this paper, we focus on star re-entrant geometries with a 6-fold symmetry axis [11].
The structures studied are 2D multi-body periodic systems consisting of binary hard discs
(HD) [28], i.e., of circular particles of two slightly different sizes. The diameters of the
different HDs are very close to each other, but even such a small difference has a great
impact on elastic properties at high densities. Using HDs of one size as a matrix and the
other ones as the nanoinclusions, which are thought of as the core of the structure, we
have modeled systems that can be described as atomic star re-entrant structures. As is
shown in this paper, the star re-entrant geometry, which in the typical case has an auxetic
character (i.e., negative PR) [11], in the described (atomic) binary mixtures, interacting
through the hard interaction potential, behaves in the opposite way. PR at high densities
of most of the structures studied with this geometry tends to the positive limit of 2D
isotropic systems, equal to +1 [29,30], and neither of them is auxetic. It is important to
emphasize the importance of the described phenomenon. In many works devoted to
metamaterials, one can find the suggestion that their unusual, novel properties result only
from their (micro)structure. In this work, we show an example that stands in opposition to
this statement, since for a typically auxetic microstructure, we have obtained extremely
non-auxetic results. Thus, it turns out that not only the microstructure, but also the material
itself can be crucial from the point of view of unusual metamaterial properties.

The structure of the article is as follows. In the next sections, we present the models
studied (Section 2) and the method (Section 3) used to examine them. In Section 4, we
discuss the results obtained and in the last Section 5, we summarize the conducted research.

2. Models

All studied structures consist of HDs—circular particles that interact through the
interparticle interaction potential uij, which, in the case of two possible particle diameters,
takes the form [31]:

uij =

{
∞, rij < σ̄ij,
0, rij ≥ σ̄ij,

(1)

where σ̄ij =
σi+σj

2 is the closest mutual distance at which particles i and j with diameters σi
and σj can be found. The hard interaction potential is an extreme, although nontrivial type
of repulsive interaction, used when the attractive interaction between molecules can be
considered very small and represents only a certain disturbance in comparison with the
dominant repulsive force. The systems in which particles interact through a hard potential
play an important role in modeling the condensed matter phases such as liquids [32], liquid
crystals [33], plastic crystals [34], as well as periodic and aperiodic crystals [35]. They can
also be used to model colloids [36] and granulates[37,38].

The simulations were conducted for a family of atomic star re-entrant structures,
formed using the binary HDs (having one of two possible values of the diameter). The
diameters of the HDs are equal to (1± δ)σ, respectively, where σ is the unit of length of the
simulated systems and δ = 0.0005 . The selected value of δ corresponds to the one we used
in our previous work on binary systems [28], and its detailed influence on the properties of
the examined structures remains beyond the scope of this work. Due to the fact that such a
small difference of sizes would be impossible to see with the naked eye, for visualization
purposes in the figures in this work, we used black dots (for “larger” atoms with diameters
(1 + δ)σ) and open circles (for “smaller” atoms with diameters (1− δ)σ). Furthermore,
each structure is described by three parameters:

• l—specifies the length of the side of the core of the structure,
• t—specifies the number of rows of the core discs on the side of the core of the structure,
• s—specifies the separation of neighbouring cores of the structure.

The parameters introduced allow for easy identification of the structures in the follow-
ing part of the work. Each of them will be named using the scheme: “S〈l〉:〈t〉[〈s〉]”. For
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the convenience of the reader, all of the above parameters are also presented in Figure 1,
showing a fragment of the structure S4:2[18].

l

t

s

Figure 1. A fragment of the structure S4:2[18]. HDs of different sizes are distinguished by black
dots (“larger” atoms with diameters (1 + δ)σ) and open circles (“smaller” atoms with diameters
(1− δ)σ). The parameters describing the structure are marked with double-sided arrows and letters.
Symbol l refers to the length of the inner side (i.e., the shortest) of the core that forms the star-like
geometry (consisting of black dots in the structure shown). Symbol t refers to the number of rows of
the core discs on the side of the core. Symbol s refers to the separation distance between the central
dodecagon atoms (consisting of open circles in the structure shown) surrounded by neighboring
cores. It should be noted that l and s are measured in σ units (assuming δ = 0), while t is simply the
number of “layers” of the side of the core.

The cores of the structure S4:2[18] in Figure 1 are formed by “larger” atoms, illus-
trated with black dots, while the “smaller” atoms (open circles) constitute the matrix of
the structure. In such a case, the structure could be called the “regular” one. In addition
to the “regular” structures, we also studied the “inverted” structures, which can be ob-
tained by replacing black dots with open circles (and vice versa) in the “regular” structure.
To distinguish the “inverted” structures from the “regular” ones, the letter ‘i’ was ap-
pended to their names. Three example structures along with their “inverses” are shown in
Figure 2a–c and the rest are included in the Appendix A.

It is worth noting that the presented mechanical models are applicable to novel 2D
material systems with similar structural complexity. In particular, the theoretical study
conducted in this work can be useful from the point of view of nanostructured, low-
dimensional materials with patterned bonding that are intended for mechanical (and,
presumably, electronic) applications [39,40].
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S2:1[8] S2:1[8]i
(a)

S2:1[11] S2:1[11]i
(b)

S3:2[15] S3:2[15]i
(c)

Figure 2. Images of example binary disc systems: (a) S2:1[8], (b) S2:1[11] and (c) S3:2[15]. The
“regular” structures are shown in the left column, and the corresponding “inverted” structures (with
‘i’ appended to their names) are shown in the right column. HDs of different sizes are distinguished
by black dots (“larger” atoms with diameters (1 + δ)σ) and open circles (“smaller” atoms with
diameters (1− δ)σ). The numbers in the names of the structures define their shape and are described
in more detail in Figure 1.
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3. Method

There are many methods for the numerical examination of the models developed in
this work or their generic analogues. Examples include computational methods such as
molecular dynamics [41,42] and the finite element method [43], which have been success-
fully used by researchers in the field of thermodynamic stability and elasticity. In this work,
in order to determine the elastic properties of the structures studied, the Monte Carlo (MC)
method in the isobaric-isothermal ensemble (NpT) was used. The method, which was
initiated by Parinello and Rahman [44–46] is a strain-fluctuation method in which the box
of periodicity containing the simulated structure can change its shape. The calculations are
based on natural (small) fluctuations of the system (not on artificial deformations), from
which one can obtain macroscopic thermodynamic characteristics.

The simulation box with its three periodic images is shown in Figure 3, on the example
of the S4:1[16] structure. The pink area is the simulation box, and only the particles
contained inside it are actually calculated. Due to the periodic boundary conditions, a
particle near the boundary of the box can interact with a particle on the opposite side (more
precisely, with its periodic image), creating a certain realization of the infinite system.

Figure 3. Visualization of the simulation box of S4:1[16] binary disc system and its three periodic
images. The pink area indicates the simulation box containing the simulated particles. On the right,
above, and in the upper right corner, there are periodic images of the simulation box (similar periodic
images could also be drawn in the rest of the area around the simulation box). HDs of different sizes
are distinguished by black dots (“larger” atoms with diameters (1 + δ)σ) and open circles (“smaller”
atoms with diameters (1− δ)σ). The numbers in the name of the structure define its shape and are
described in more detail in Figure 1.

The shape of the simulation box (Figures 2 and 3) of the studied systems is very close
to the rectangle, but in the general case it is a parallelogram, which can be described using
a symmetric matrix h, whose columns correspond to the vectors of the box sides [44–46].
During the simulation, elements of h can change, which is a practical realization of the
fluctuations in shape of the periodic box. Denoting the box matrix of the reference state, H,
at a fixed pressure as the average of the box matrix h, H = 〈h〉, one can calculate the strain
tensor ε at any stage of the simulation (described by h), using equation [46]:
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ε =
1
2
(H−1 · h · h ·H−1 − I), (2)

where I stands for the identity matrix. Averaging the mentioned fluctuations of the shape
of the periodic box, expressed by the changes of the strain tensor ε, the elastic compliance
tensor S can be calculated:

Sijkl = 〈∆εij∆εkl〉
Vp

kT
, (3)

where: k—Boltzmann constant, T—temperature, Vp = |det(H)|—average (2D) volume of
the system at fixed pressure p, and 〈. . . 〉 is the average in the NpT ensemble. The elastic
compliance tensor S contains full information on the elasticity of the system.

The systems studied in this work are isotropic due to their six-fold symmetry [1] and
therefore the obtained elements of S should satisfy the conditions:

Sxxxx = Syyyy = S11, (4a)

Sxxyy = Syyxx = S12, (4b)

Sxyxy = Sxyyx = Syxxy = Syxyx =
S33

4
=

S11 − S12

2
, (4c)

the rest of Sαβγδ not mentioned above = 0. (4d)

In such an isotropic case, the PR is independent of the direction and can be computed
in two equivalent ways:

ν(1) = −S12

S11
, or (5a)

ν(2) =
S33

2S11
− 1. (5b)

In the case of an anisotropic 2D medium, its PR can be obtained from Sαβγδ as a
function of a single angle φ [47,48]:

ν(φ) =

(
1 + 4

S11 + 2S12 + S22 + (S11 − S22) cos(2φ) + (S13 + S23) sin(2φ)

−S11 − 6S12 − S22 + S33 + (S11 − 2S12 + S22 − S33) cos(4φ) + 2(S13 − S23) sin(4φ)

)−1

, (6)

where, as in Equation (4), Voigt notation was used:

S11 = Sxxxx, S22 = Syyyy,

S12 = Sxxyy = Syyxx,

S13 = 2Sxxxy = 2Sxxyx = 2Sxyxx = 2Syxxx,

S23 = 2Syyyx = 2Syyxy = 2Syxyy = 2Sxyyy,

S33 = 4Sxyxy = 4Sxyyx = 4Syxxy = 4Syxyx.

The last Equation (6) was used for determination of angular dependence of ν and
for independent calculations of the mean PR, 〈ν〉 = 1

π

∫ π
0 ν(φ)dφ, in order to check for

discrepancies with the results obtained with Equation (5).
In the case of an isotropic medium, its elastic properties are fully determined by two

independent quantities from the set: bulk modulus, shear modulus, Young’s modulus, and
Poisson’s ratio; usually, either bulk modulus and shear modulus or Young’s modulus and
Poisson’s ratio are applied. As the work focuses on the matters related to PR, the Young’s
modulus, E, would be the most appropriate choice for the second quantity. In an isotropic
case, it is independent of the direction and, similar to the PR from Equation (5), takes one
of two equivalent (dimensionless) forms:
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E∗(1) =
1

S11
· σ2

kT
, or (7a)

E∗(2) =
4S11 − S33

2S11(S11 + S12)
· σ2

kT
. (7b)

Simulation Details

In this paper, we examine 16 “regular” structures along with their “inversions”
(32 structures in total). The systems can be divided into 5 groups depending on the
size of their cores (parameters l and t, see Figure 1): S2:1[s2:1], S3:1[s3:1], S4:1[s4:1], S3:2[s3:2]
and S4:2[s4:2]. The value of the last parameter, sl:t, specifying the separation between
neighboring cores, depended on the group and took integer values from the following
ranges: s2:1 ∈ [8, 11], s3:1 ∈ [11, 14], s4:1 ∈ [14, 17], s3:2 ∈ [14, 15] and s4:2 ∈ [17, 18]. Images
of all the studied structures are included in the Appendix A.

The sizes of the simulated systems varied, depending on the parameter s. The number
of particles, N, contained in the simulation boxes of the systems (see Figure 3) can be
obtained from the formula: N = 4s2, therefore, it varied from N = 256 in the smallest
system to N = 1296 in the largest one.

All of the systems were investigated under appropriate thermodynamic conditions,
guaranteeing their existence in the crystalline phase. To ensure such conditions, the smallest

of the external (reduced) pressure values considered, p∗ = pσ2

kT , was (much) higher than the
melting point of equidiameter HD system (i.e., with δ = 0). Starting with such an assigned
value of p∗, the systems were then increasingly compressed during the simulations, which
were conducted for a list of successive pressures, determined by the formula: p∗ = 101+i/3,
for integer i ∈ [1, 12].

All structures were simulated in 10 independent runs, each of which had a length of
108 cycles (trial steps per particle) for each pressure. The first 107 cycles were considered as
the equilibrium stage, bringing the simulated systems to the proximity of the equilibrium
state at a given pressure; therefore, they were not taken into account by the averaging
procedures. The acceptance ratio of the generated trial states was close to 30% for the
molecular trial moves and 20% for the box trial moves.

4. Results and Discussion

In Figure 4, the results of (a) the PR values and (b) the Young’s modules of the studied
systems are shown. As all structures, due to their 6-fold symmetry, are isotropic for small
deformations, there are no angular dependencies of their elastic properties. Hence, their
PR can be obtained directly from S by Equation (5) (similarly for E∗, using Equation (7)).
Both formulas, Equations (5a) and (5b), gave approximately the same result within an
error not exceeding 3%. Simultaneously, it should be noted that all the elements of elastic
compliance tensor S were calculated independently, directly from the fluctuations of the
h matrix during the simulation, and by no means were the isotropy conditions from
Equation (4) artificially enforced. In Appendix A, the angular dependencies of PR are also
shown, as well as comparisons of the results obtained with Equation (5) and by averaging
Equation (6), where the independence of PR from the direction (isotropy) is clearly visible.
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Figure 4. (a) The PR values ν and (b) the (dimensionless) Young’s modules E∗ as functions of inverted
reduced pressure (p∗)−1, for all the structures studied. Different colors, black and red, were used to
distinguish the “regular” structures (in the left column of Figure 2) and their “inverses” (in the right
column of Figure 2), respectively.

As can be seen in Figure 4a, up to a reduced pressure value of p∗ = 101+5/3, the
characteristics of PR as functions of the inverted (dimensionless) pressure, 1/p∗, are
almost identical for all the systems studied. Above this p∗, the curves begin to be clearly
distinguishable, and many of them converge again to the value ν = +1 at high pressures.

One can see in Figure 4a, that PRs of almost all “regular” structures (black symbols in
Figure 4a) tend to the upper limit of 2D isotropic systems, i.e., ν→ +1. The only “regular”
structure for which PR behaves differently is S4:1[14]—the structure of the S4:1 group, with
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the smallest separation distance between its cores. The disengagement of this structure
from the rest of the “regular” ones seems to be somehow caused by a too small spacing
between its cores. As can be seen in Figure A9, the core sites in S4:1[14] are separated
only by single matrix atoms. Structures with the same core size, but with larger separation
between them (even by one single atom, as in S4:1[15]), already tend to ν = +1. It should
be noted, however, that similar situations occur in other groups and do not make the PR
cease to strive for the upper limit of 2D isotropic systems. The cores of S2:1[8] (Figure A1),
S3:1[11] (Figure A5), S3:2[14] (Figure A13) and S4:2[17] (Figure A15) are also separated by
single matrix atoms, but for p∗ → ∞, their PR tends to +1.

In the case of the “inverted” structures (red symbols in Figure 4a), i.e., when the core
is made of “smaller” atoms and the matrix is made of “larger” ones (see the right column
in Figure 2), only the PR of structures with thicker cores (t > 1, see Figure 1) tends to +1
with p∗ → ∞. The PRs of all other examined “inverted” structures tend to some values in
the range ν ∈ (0.435, 0.585) at high pressures p∗.

5. Conclusions

In this work, elastic properties of one of the typical auxetic microstructures, the star
re-entrant structure, were examined using computer simulations. The simulations were
carried out using the Monte Carlo method in the isobaric-isothermal ensemble, which
allows one for obtaining complete information on the elastic properties (i.e., all elements of
the elastic compliance tensor Sαβγδ) from the analysis of fluctuations of the shape of the
studied systems. The examined systems were binary mixtures consisting of hard discs with
two slightly different diameters. The particles of different sizes were used to form the star
re-entrant geometry, considering one of them as (nano)inclusions forming the core with an
assumed shape and the other as the matrix.

Within the framework of the study, a total of 32 structures were considered, differing
in the size of their cores and their mutual separation within the structure. Furthermore,
for each configuration of binary mixtures, two cases including “regular” and “inverted”
structures were considered, differing in the type of atoms (“larger” or “smaller”) used to
create the star-shaped cores.

The results indicate that all the studied systems are isotropic (in the limit of small
deformations, their properties do not depend on the direction), which was predicted even
before the start of the simulations, due to the 6-fold symmetry of the geometry under
consideration [1,30]. The analysis of Poisson’s ratio has shown that for the majority of
the studied systems it tends to +1 with increasing pressure, which is the upper limit for
two-dimensional isotropic media, due to the thermodynamic stability conditions [30]. In
the case of the “regular” structures, only one behaves differently, and this is predictably
due to the insufficient spacing between the star-shaped cores. Things are different in the
group of “inversed” structures. In their case, only four structures—those with thicker sides
of the cores (two atomic “layers” instead of one) have PR striving for +1 at high pressure.

Based on the results presented, it can be concluded that the binary mixtures considered
with sufficiently spaced star-shaped cores consisting of “larger” atoms, at high pressures
are ideal non-auxetics (ν ≈ +1). In the case of structures with cores formed by “smaller”
atoms, those with thicker core sides show a similar character, while PRs of the remaining
ones tend to some values in the range ν ∈ (0.435, 0.585). The key point, however, is that
none of the structures shows an auxetic character (ν < 0), while each of them is based on
the star re-entrant geometry—one of the typical auxetic microstructures. This constitutes
an example against the presumption that the unusual properties of metamaterials are only
due to their microstructure. The research carried out clearly shows that the material of the
structure itself can also be very important.
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Appendix A

In the appendix, the obtained results of angular characteristics of PR and pressure
dependences of PR and Young’s modulus, for all the studied structures are shown.
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Figure A1. Image of structure S2:1[8] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A2. Image of structure S2:1[9] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A3. Image of structure S2:1[10] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A4. Image of structure S2:1[11] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A5. Image of structure S3:1[11] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A6. Image of structure S3:1[12] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A7. Image of structure S3:1[13] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A8. Image of structure S3:1[14] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A9. Image of structure S4:1[14] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A10. Image of structure S4:1[15] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A11. Image of structure S4:1[16] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).



Materials 2021, 14, 7837 13 of 18

p*=101+i/3

i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10
i=11
i=12

0 π/4 π/2 3π/4 π
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

ν

ν from Eqs. (5)
〈ν(ϕ)〉 from Eq. (6)

10-5 10-4 10-3 10-2 10-1
0.0

0.2

0.4

0.6

0.8

1.0

1/p*

ν

10-5 10-4 10-3 10-2 10-1

104

106

108

1010

1/p*

E
*

Figure A12. Image of structure S4:1[17] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A13. Image of structure S3:2[14] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A14. Image of structure S3:2[15] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A15. Image of structure S4:2[17] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A16. Image of structure S4:2[18] (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A17. Image of structure S2:1[8]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A18. Image of structure S2:1[9]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A19. Image of structure S2:1[10]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A20. Image of structure S2:1[11]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A21. Image of structure S3:1[11]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A22. Image of structure S3:1[12]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A23. Image of structure S3:1[13]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A24. Image of structure S3:1[14]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A25. Image of structure S4:1[14]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A26. Image of structure S4:1[15]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A27. Image of structure S4:1[16]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A28. Image of structure S4:1[17]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A29. Image of structure S3:2[14]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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Figure A30. Image of structure S3:2[15]i (leftmost) and its dependencies: ν(φ) (left), ν(1/p∗) (center)
and E∗(1/p∗) (right).
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and E∗(1/p∗) (right).
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and E∗(1/p∗) (right).
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