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Neuronal apoptosis plays key roles in secondary brain injury caused by intracerebral
hemorrhage (ICH). This study first reported the role of mesencephalic astrocyte-derived
neurotrophic factor (MANF) in alleviating secondary brain injury through anti-apoptosis in
rat model of ICH. The recombinant human-MANF (rh-MANF) and selective Akt inhibitor
MK2206 was administrated intracerebroventricularly 1 h after ICH. Brain water content,
behavioral assessment, BBB (blood brain barrier) leakage was evaluated 24 h after the
induction of ICH. Western blot analysis was used to evaluate the expression level of
target proteins (MANF, mouse 3T3 cell double-minute 2 (MDM2), P53, Akt, Bcl-2, Bax,
and caspase-3). Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end
labeling (TUNEL) was applied to evaluate the neuronal cell death. Besides, whether
MANF was expressed in neurons was verified with double immunofluorescence staining.
The results suggested that the level of MANF, and its downstream proteins, Akt, MDM2
was upregulated and reached peak at 24 h after ICH. MANF was mainly expressed in
neurons. The administration of rh-MANF could significantly increase the level of p-Akt,
p-MDM2, Bcl/Bax ratio, but reduce the expression of p53, caspase-3 and neuronal
death, thus ameliorate the neurological functions at 24 h after ICH. However, these
effects of rh-MANF could be obviously reversed by MK2206. MANF could exert its
neuronal anti-apoptotic effects via Akt/MDM2/P53 pathways. Therefore, MANF could
be a valuable drug target in the treatment of ICH.

Keywords: mesencephalic astrocyte-derived neurotrophic factor (MANF), intracerebral hemorrhage, neuronal
apoptosis, secondary brain injury, neuroprotection

Abbreviations: BBB, blood brain barrier; EB, Evans blue; ICH, intracerebral hemorrhage; MANF, mesencephalic astrocyte-
derived neurotrophic factor; MDM2, mouse 3T3 cell double-minute 2; NSS, Neurological Severity Score; NTF, neurotrophic
factor (NTF); SD, Sprague–Dawley; TUNNEL, Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end
labeling; UPR, unfolded protein response.
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INTRODUCTION

Intracerebral hemorrhage, which accounts for 10–15% of all
stroke cases, is one of the most prevalent subtype of stroke
worldwide (Feigin et al., 2009; Steiner et al., 2014). It was
characterized by high mortality and mobility, especially in
developing countries, which poses great burden on society (van
Asch et al., 2010; Krishnamurthi et al., 2014). ICH is mainly
caused by ruptured small arterioles that are degenerated caused
by long-lasting hypertension (Rodríguez et al., 2017). It is a
complicated process with varied pathophysiological mechanisms.
The poor outcome after ICH is mainly caused by direct damages
from blood accumulation and secondary injuries, such as brain
edema, BBB disruption, inflammation and neuronal apoptosis
(Chen et al., 2017; Delcourt et al., 2017; Wu et al., 2017).
Surgical procedures have restricted indications and cover only
a part of small clinical-relevant survival advantages (Pías-
Peleteiro et al., 2017). Although numerous studies had focused
on pharmacological treatments of ICH, no regimen with specific
efficacy has been launched (Han et al., 2017; Wang et al., 2017).

Mesencephalic astrocyte-derived neurotrophic factor, one
type of novel NTF family (Glembotski et al., 2012), has been
reported to display cytoprotective effects in myocardial infarction
and neurological diseases, such as Parkinson’s disease or ischemic
stroke. The mechanisms involve anti-inflammatory, anti-oxidant,
anti-apoptotic properties and ER stress prevention (Lindholm
et al., 2007; Voutilainen et al., 2009; Hellman et al., 2011). The
elevated level of MANF could partly due to ER stress and UPR as
ER stress is also the key process in various diseases (Zhou et al.,
2015; Goswami et al., 2016). MANF protein has two domains:
The saposin-like domain at N-terminal could attach to lipid
bilayer, and the unfolded C-terminal domain may be relative
to the protection of cells from endoplasmic reticulum stress.
However, the role of MANF in ICH has not been explored yet.
Based on its characteristics mentioned above, we hypothesized
that MANF could exert its neuroprotective roles in ICH.

Despite the fact that MANF plays multiple roles in the
central nervous system, the underlying mechanisms have not
been fully understood. One of the possible mechanisms might
be through the activation of Akt (Hao et al., 2017). Akt, a
serine/threonine kinase, exerts great effects in the regulation of
cell development, growth, and survival (Paraskevopoulou and
Tsichlis, 2017). The activation of Akt could phosphorylate diverse
downstream factors, including MDM2, p53. MDM2 comprises
several conserved domains, which provide the structural basis
for its functions. The N-terminal domain could bind to tumor
suppressor protein p53 and inhibit the transcriptional activity
of p53. MDM-2 could bind to p53 and make it ubiquitination
for proteasomal degradation. Ubiquitination activity of MDM-
2 can be enhanced when MDM-2 is phosphorylated by Akt
at Ser-166/186 (Zhou et al., 2001), which promotes it transfer
to nuclear and interact with transcriptional co-activator p300,
then exacerbate p53 degradation and inhibits p53 function
(Grossman et al., 1998). On the other hand, abnormally elevated
p53 activity could also trigger over express of MDM-2, which
conversely suppresses p53 activation so form a feedback loop
(Toth et al., 2006). Thus, we hypothesized that MANF could

FIGURE 1 | Representative pictures of brain slices in sham (A) and ICH (B)
group (24 h).

prevent neuronal cells from apoptosis via Akt/MDM2/p53
pathway in ICH.

In this study, we found that MANF could display its
neuroprotective effects in rats after ICH via alleviating brain
edema, BBB protection and neuronal apoptosis prevention. The
possible underlying mechanisms may involve the activation of
Akt and MDM2 and the degradation of p53, thus up-regulating
the expression of anti-apoptotic proteins and down-regulating
the expression of pro-apoptotic proteins.

MATERIALS AND METHODS

Animals
All experimental protocols were warranted by the ethics
committee of Zhejiang University. The procedures were
conducted according to NIH guidelines. Two hundred and
fourteen male SD rats (280–330 g), purchased from SLAC
Laboratory Animal Co., Ltd. (Shanghai, China), were applied
to this study. All the rats were kept in a 12 h day/night cycle
(22± 1◦C; 60± 5% humidity). Food and water were ad libitum.

ICH Rat Models
The ICH models were made according to previous studies (Xie
et al., 2014; Zhou et al., 2014). Deep anesthesia was applied to
the rats using pentobarbital (40 mg/kg, intraperitoneal injection).
The operation was performed with the aid of a stereotaxic frame
(Stoelting Co., United States). First, we isolated the right femoral
artery and inserted with a polyethylene catheter (PE-160) to
obtain blood for the following injection. Second, the skin on
the top of the head was longitudinally incised with a scalpel.
Third, we drilled a burr hole at the place 3.5 mm lateral right of
the bregma. One hundred microliter autologous blood, obtained
from the right femoral artery, was manually injected into the
right striatum (5.5 mm depth) using a Hamilton syringe with a
26 G needle. After the injection, the needle was kept in place
for additional 10 min. Finally, we blocked the burr hole with a
sterilized medical bone wax and closed the incision with sutures.
The rats in sham-group received the same procedures except for
the insertion of the needle (Figure 1).

Experimental Design
In first step, the time course of MANF, p-Akt and p-MDM2 was
determined after the induction of ICH. Seventy-four rats were
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randomly distributed to seven groups: sham (n = 12), 3 h (n = 10),
6 h (n = 10), 12 h (n = 10), 24 h (n = 12), 48 h (n = 10), and
72 h (n = 10). Six brains per group were sampled for Western blot
analysis. Immunofluorescence staining of MANF with neuronal
nuclei (NeuN) was conducted in sham (n = 2) and 24 h after ICH
(n = 2).

In second step, we explored the effects of treatment with rh-
MANF, eighty rats were randomly distributed into four groups:
sham (n = 20), ICH (n = 20), ICH+ vehicle (10 µl sterile saline,
n = 20), ICH+ MANF (5 µg in 10 µl sterile saline, n = 20).
We assessed neurological functions, brain water content and EB
extravasation at 24 h after ICH in each group (n = 6). The
expression of MANF, MDM2, P53, Bcl-2/Bax ratio and caspase-
3 was analyzed by Western blot at 24 h after ICH (n = 6).
Immunofluorescence staining of TUNEL and NeuN was also
conducted in all groups at 24 h after ICH (n = 4).

In step three, in order to further explore the underlying
mechanisms of neuroprotective effects of MANF, 16 rats were
randomly distributed into four groups: sham (n = 15), ICH+
vehicle (n = 15), ICH + MANF (5 µg in 10 µl in sterile
saline, n = 15), or ICH+ MANF (5 µg, Sino biological inc.,
Beijing, China) + MK2206 (100 µg, n = 15, Selleck Chemicals,
Houston, TX, United States). rh-MANF and MK2206 was applied
intracerebroventricularly at 1 h after ICH. The levels of MANF,
Akt, MDM2, P53, Bcl-2/Bax ratio, and caspase-3 were evaluated
at 24 h after ICH by Western blot analysis in each group (n = 6).
Immunofluorescence staining of TUNEL and NeuN was also
conducted in all groups at 24 h after ICH (n = 4).

Behavioral Assessment
Neurological function was assessed at 24 h after ICH with a
marking system called the NSS (Cui et al., 2017). The NSS was
graded with a scale ranging from 1 to 18 (Supplementary Table 1).

Brain Water Content
The brain water content assessment was performed at 24 h
after ICH, which was based on wet–dry method. In brief,
the brain hemispheres of the rats were quickly removed after
anesthetization. Then, the injured brain hemisphere was weighed
(wet weight). Next, the hemisphere was put in an oven for
72 h (105◦C, dry weight). Finally, the brain water content
was evaluated as follows: [(wet weight – dry weight)/(wet
weight)]× 100% (Chen et al., 2015).

Evans Blue Staining
Blood–brain barrier leakage was assessed via EB staining at
24 h after ICH. Two percent EB solution (8 mL/kg, Sigma–
Aldrich) was applied through femoral vein after anesthetization.
Two hours later, the rats received transcardial perfusion with
0.1M PBS. Next, injured brain hemisphere was collected and
homogenized in N, N-dimethylformamide. The sample was
incubated in water bath (50◦C) for 48 h and centrifuged at
12,000× g for 30 min. Finally, the supernatant was collected and
measured at 620 nm with a spectrophotometer (2,000◦C, Thermo
Fisher) (Zhao et al., 2016).

Immunofluorescence and Calculation of
Apoptotic Cells
After anesthetization, transcardial perfusion with 0.1M PBS
was performed, followed by another perfusion with 4%
paraformaldehyde (pH 7.4). Then the cerebral hemispheres were
removed and put into 4% PFA for post-fixation (4◦C, 24 h). After
that, the brains were transferred to sucrose solution (30%, 2 days).
Next, the brains were coronally sliced into 10 mm sections,
which were then fixed on slides and used for immunofluorescence
staining, and then blocked with 10% normal goat serum for
2 h at room temperature and incubated at 4◦C overnight with
primary antibodies: rabbit anti-MANF (1:500, Abcam ab67271),
anti-Caspase3 (1:200, Abcam ab13847), mouse anti-NeuN (1:500,
Abcam ab177487). After that, secondary antibodies were applied
for 2 h at room temperature. Finally, a fluorescence microscope
(Olympus, Tokyo, Japan) was used to observe the sections and
the photographs taken were post-processed with Photoshop 13.0
(Adobe Systems Inc., Seattle, WA, United States). In addition,
we used TUNEL (Roche Inc., Basel, Switzerland) staining to
quantitatively evaluate the cell apoptosis. Neuronal apoptosis was
assessed by the proportion of TUNEL and Caspase-3 positive
neurons in six sections at ×200 magnification of each brain
sample. The results were showed as cells per square millimeter.

Western Blot Analysis
After being anesthetized, the peri-hematoma brain tissue of
the rat was collected and further processed as previously
reported (Nakka et al., 2010). Forty microgram protein from
each sample was used for electrophoresis (100 V, 1 h) and
then transferred to the polyvinylidene fluoride membranes at
250 V for 1 h. Next, the protein was incubated overnight
(4◦C) with rabbit anti-MANF (1:2000, Abcam ab67271), anti-
p-Akt (1:2000, CST 4060s), anti-Akt (1:1000, CST 9272s), anti-
p-MDM-2 (1:1000, CST 3521s), anti- MDM-2 (1:1000, CST
86934s), anti-p53 (1:1000, CST 2527s), anti-Bax (1:1000, Abcam
ab32503), anti-Bcl-2 (1:500, Abcam ab59348), anti-caspase3
(1:500, Abcam ab13847), and mouse anti-β-actin (1:5000, Abcam
ab8226). After that, secondary antibodies (1:10000, Zhongshan
Gold Bridge ZB-2301 or ZB-2305) were applied at room
temperature for 1 h. Finally, protein was visualized with the
ECL Plus chemiluminescence reagent kit (Amersham Bioscience,
Arlington Heights, IL, United States). The results were showed as
the relative density which was the ratio of the grayscale value of
the target proteins to that of β-actin, pan-Akt, or pan-MDM2.

Transmission Electron Microscopy
The rats received transcardial perfusion with 0.1M PBS and
4% paraformaldehyde (pH 7.4) after anesthetization. Then the
perihematomal tissues were collected and grained into 1 mm3

slices. After that, the slices were immersed into glutaraldehyde
(2.5%) at 4◦C overnight. Next, we put the samples in 1% osmium
tetroxide for 1 h and dehydrated the samples with a serious of
graded ethanol. Then the tissues were immersed into a mixture
of propylene oxide and resin (1:1). Four hours later, the samples
were imbedded in resin. After that, we cut the samples in to
100 nm sections and stained the sections with 4% uranyl acetate
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(20 min) and 0.5% lead citrate (5 min). Finally, the transmission
electron microscopy (Philiphs Tecnai 10) was used to observe the
ultrastructure of brain tissues.

Statistical Analysis
Results were presented as mean ± SD. Further analysis was
performed by SPSS 22.0 software (IBM, United States). Student’s
t-test or one-way analysis of variance was applied for the
comparisons between groups, with a p < 0.05 deeming to be
statistically significant.

RESULTS

Physiological Data
Data regarding the physiological parameters were collected
during surgical procedures. No significant differences of
physiological parameters were observed across each group (data
not shown).

Expression Level of MANF, p-Akt and
p-MDM2 After ICH
The protein level of MANF started to raise at 3 h, and peaked at
24 h after ICH (p < 0.05, Figure 2). While the level of p-Akt and
p-MDM2 increased at 6h, and peaked at 24 h after ICH (p < 0.05,
Figure 2).

Morphometric Changes of Brain Tissues
24 h After the Induction of ICH
We observed the morphometric changes of mitochondria
and nucleus under the help of TEM. In the sham group,
prominent cristae within mitochondria and intact membrane
structure could be observed (Figures 3A,C). Chromatin was
homogeneous distributed within the nucleus and large oval
nucleus with clear nuclear membrane was observed for normal
nucleus. In the ICH group, the heterogeneities of mitochondria
and chromatin were obvious. neurons had irregular nuclear
membrane, chromatin condensation, many vacuole and swollen
mitochondria (Figures 3B,D).

MANF Distribution in Cells After ICH
The results of double immunofluorescence staining of MANF
with NeuN in both sham and ICH groups (24 h) showed that
MANF was mainly located in neurons (Figure 4) and the protein
level of MANF increased 24 h after ICH.

Brain Edema, BBB Permeability and
Neurological Functions at 24 h After ICH
A dose of 5 µg recombinant human MANF (rh-MANF) was
administered intracerebroventricularly 1 h after the induction of
ICH. Brain water content and BBB permeability and neurological
functions were measured at 24 h after ICH. The induction of
ICH could significantly increase the brain water when compared
with the rats in sham group (p < 0.05, Figure 5B). However, the
administration of rh-MANF could obviously reduce the water
content at 24 h after ICH (p < 0.05 vs. ICH+ vehicle, n = 6,

FIGURE 2 | Expression of MANF, p-Akt and p-MDM2. (A) Time course of
MANF in injured hemisphere after ICH; (B) Time course of p-Akt; (C) Time
course of p-MDM2; n = 6 for each group. The bars represent the mean ± SD.
∗p < 0.05 vs. sham, #p < 0.05 vs. ICH at 24 h.
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FIGURE 3 | Transmission electron microscopy images of the morphometric changes of brain tissues for sham group and ICH + vehicle group. (A) Sham, the arrow
(green) indicated normal nucleus with homogeneous chromatin; (B) ICH+ vehicle (scar bar = 2 µm), the arrows (white) indicated abnormal nucleus with condensed
chromatin; (C,D) Magnification of (A,B) (scar bar = 0.5 µm), the arrows(green) in (C) indicated normal mitochondria with intact prominent cristae, while arrows (white)
in (D) indicated vacuole and swollen mitochondria.

FIGURE 4 | Representative microphotographs of immunofluorescence staining showing localization of MANF (green) and NeuN (red) in the perihematomal region
after ICH. MANF was upregulated after the induction of ICH and mainly located in neurons. N = 2 for each group. Scale bar = 50 µm.

Figure 5B). Besides, the RB was obviously increased in ipsilateral
hemisphere of ICH compared with the rats in sham group
(p < 0.05 vs. sham, n = 6, Figure 5C), while the rats receiving
rh-MANF displayed reduced levels of EB staining compared with
the rats in ICH+ vehicle group (p < 0.05 vs. sham, n = 6,

Figure 5C). Severe neurological deficits were observed in the ICH
group when compared with the sham group at 24 h after ICH
(p < 0.05, n = 6, Figure 5A). However, the administration of
rh-MANF could significantly improve the neurological functions
(p < 0.05 vs. ICH+ vehicle, n = 6, Figure 5A).
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FIGURE 5 | Effects of rh-MANF on neurological functions, brain edema and BBB leakage. (A) The quantification of neurological functions; (B) The quantification of
brain water content at 24 after ICH; (C) The quantification of Evans blue dye extravasation at 24 after ICH. n = 6 for each group. The bars represent the mean ± SD.
∗p < 0.05 vs. sham, #p < 0.05 vs. ICH at 24 h.

FIGURE 6 | The administration of rh-MANF increased the expression of MANF and bcl-2, but decrease the level of Bax, Caspase-3 and p53. (A) MANF; (B) Bcl-2,
Bax; (C) Caspase-3; (D) p53. n = 6 for each group. The bars represent the mean ± SD. ∗p < 0.05 vs. sham, #p < 0.05 vs. ICH+ vehicle.
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FIGURE 7 | The administration of rh-MANF significantly decreased the number of TUNEL and NeuN double-stained cells in the perihematomal region 24 h after ICH,
which could be obviously reversed by MK2206 (100 µg). (A) Representative microphotographs showed the co-localization of NeuN (red) with TUNNEL
(green)-positive cells in injured brain hemisphere at 24 h after ICH; (B) Quantitative analysis of TUNNEL-positive neurons showed that rh-MANF decreased the
number of apoptotic cells after ICH. Scale bar = 100 µm. ∗p < 0.05 vs. sham, #p < 0.05 vs. ICH+ vehicle; &p < 0.05 vs. ICH+ rh-MANF.

Administration of rh-MANF Promotes
Neuronal Survival at 24 h After ICH
The protein level of MANF was significantly elevated at 24 h
after ICH. However, the administration of rh-MANF could
increase the total amount of MANF, which could further up-
regulate the expression of p-MDM2 but reduce the expression
level of p53 compared with ICH+ vehicle group (p < 0.05)
(Figures 6A,D). Additionally, the induction of ICH significantly
decreased the ratio of Bcl-2/Bax (Figure 6B) while upregulated
the level of caspase-3 (p < 0.05, ICH+ vehicle vs. sham
groups) (Figure 6C). However, administration of rh-MANF
could significantly reversed these results (p < 0.05 ICH+ rh-
MANF vs. ICH+ vehicle). The results of TUNEL staining

suggested that the number of TUNEL and NeuN double-
stained cells significantly increased at 24 h after ICH, as
well as Caspase-3 (p < 0.05, ICH vs. sham, Figures 7, 8).
Whereas the number of TUNEL-positive neurons and Caspase-
3 positive neurons were significantly decreased after the
administration of rh-MANF (p < 0.05, ICH+ rh-MANF vs.
ICH+ vehicle).

Role of Downstream Akt in the
MANF-Mediated Neuroprotective Effects
24 h After ICH
In order to explore the effects of Akt in the MANF-mediated
neuroprotective effects, MK 2206, a highly selective inhibitor
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FIGURE 8 | The administration of rh-MANF significantly decreased the number of Caspase-3 and NeuN double-stained cells in the perihematomal region 24 h after
ICH, which could be obviously reversed by MK2206 (100 µg). (A) Representative microphotographs showed the co-localization of NeuN (red) with Caspase-3
(green)-positive cells in injured brain hemisphere at 24 h after ICH; (B) Quantitative analysis of Caspase-3 positive neurons showed that rh-MANF decreased the
number of apoptotic cells after ICH. Scale bar = 100 µm. ∗p < 0.05 vs. sham, #p < 0.05 vs. ICH+ vehicle; &p < 0.05 vs. ICH+ rh-MANF.

of Akt, was applied at 1 h after ICH. The results showed that
the expression of MANF, which was significantly increased at
24 h after ICH, was not obviously affected by the administration
of MK2206 (Figure 9A). However, upregulation effects of
p-Akt induced by administration of rh-MANF was significantly
suppressed by MK 2206 (p < 0.05 vs. ICH+ rh-MANF,
Figure 9B). Besides, the administration of rh-MANF could
greatly enhanced cell survival via increasing Bcl-2/Bax ratio while
decreasing the level of caspase-3 (p < 0.05 vs. ICH+ vehicle,
Figures 9C–E); However, this neuroprotective effects could be
significantly weakened by MK 2206 (p < 0.05 vs. ICH+ rh-
MANF).

DISCUSSION

In this study, we explored the role of MANF in rats after
the induction of ICH. The expression of MANF was noted
to be up-regulated after ICH insult, and the downstream
target proteins of MANF including Akt and MDM2,
reached peak at 24 h after ICH. Besides, the expression
level of p53 was significantly upregulated after ICH.
MANF was expressed mainly in neurons. The result of
administration of rh-MANF suggested that MANF could
exert neuroprotective effects in rats after experimental ICH.
rh-MANF could significantly alleviate the neurological deficits,
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FIGURE 9 | The administration of rh-MANF significantly decreased the number of Caspase-3 and NeuN double-stained cells at 24 h after ICH, which could be
obviously reversed by MK2206 (100 µg). (A) MANF; (B) p-Akt; (C) p-MDM2; (D) Caspase-3; (E) Bcl-2 and Bax. n = 6 for each group. The bars represent the
mean ± SD. ∗p < 0.05 vs. sham, #p < 0.05 vs. ICH+ vehicle, &p < 0.05 vs. ICH+ rh-MANF.
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FIGURE 10 | The potential molecular mechanisms of MANF-mediated
anti-apoptotic effects via Akt/MDM2/p53 pathway.

reduce brain edema, protect BBB and prevent neuronal
apoptosis by increasing Akt phosphorylation, and Bcl-2/Bax
ratio, reducing the level of caspase-3. However, the anti-
apoptotic effects of rh-MANF could be greatly weakened
by the administration of selective Akt inhibitor – the MK
2206.

In addition, we also used TEM to document the morphometric
changes of the ultrastructure of mitochondria and nucleus
after ICH. As a result, irregular nuclear membrane, chromatin
condensation, many vacuole and swollen mitochondria was
observed in the ICH group, which was the classical manifestation
of cellular apoptosis. Besides, it was reported that the protein
level of MANF was highly elevated in traumatic brain injury
and ischemic stroke (Yang et al., 2014; Chiu et al., 2016). The
MANF could protect neurons from apoptosis via activating
the PI3K/Akt pathway (Hao et al., 2017). In addition, MANF
is an ER stress-inducible protein (Lin et al., 1993; Mizobuchi
et al., 2007). The special structure of MANF determined it has
a unique mechanism to rescue neurons from death (Hellman
et al., 2011). In this study, we explored the expression level
of MANF and its downstream targets, p-MDM2 and P53 after
ICH. In accordance with the abovementioned observations,
the protein level of MANF was obviously upregulated at
3 h while the level of p-Akt and p-MDM2 start to increase
at 6 h, all of which reached the highest at 24 h. The
expression of P53 was down-regulated, which reached its nadir
at 24 h. According to the abovementioned, MANF displayed
a close relationship with the elevated pro-survival signals in
experimental ICH models, which was consistent with previous
reported studies that the level of MANF was up-regulated in

neurological diseases (Stratoulias and Heino, 2015; Norisada
et al., 2016).

We further investigated the effects of MANF by the
intracerebroventricular injection of rh-MANF at 1 h
after ICH. Intracranially (extracellularly) injected MANF
effectively protected dopaminergic neurons in a rat model of
6-hydroxydopamine induced Parkinson’s disease (Voutilainen
et al., 2009) and the ischemia model (Mikko et al., 2009),
thereby suggesting it to function as a secreted neurotrophic
factor (Lindholm et al., 2007; Mikko et al., 2009; Voutilainen
et al., 2009). It may function on neurons through activating
a transmembrane protein receptor and induce intracellular
second messengers. In this study, the administration of rh-
MANF could improve neurobehavioral deficits, alleviate BBB
disruption and reduce brain edema at 24 h after ICH. Besides,
this treatment could significantly increase in the expression
of MDM2 and reduce the expression of P53. In addition, the
expression of Bcl-2 was upregulated and that of Bax as well as
caspase-3 was down-regulated. Double immunofluorescence
staining demonstrated that neuronal apoptosis was induced
by ICH, while the administration of rh-MANF significantly
promoted neuronal survival. These results demonstrated that
MANF exerted neuroprotective effects in experimental ICH
models. This was consistent with the characteristics of MANF
in previously reported studies. Airavaara et al. (2009) treated
the cerebral cortex with recombinant human MANF 60-min
before the middle cerebral artery occlusion (MCAO), the results
demonstrated that MANF exerts its neuroprotective role in
cerebral ischemia via preventing the cells from necrosis/apoptosis
in cerebral cortex. In vivo, Sun et al. (2017) found that MANF
could reduce cell death by increasing the level of HSP70 in
SHSY-5Y cells. In addition, ER stress which played great roles in
ICH could also be regulated by MANF in ischemia/reperfusion
models. The use of rh-MANF after cerebral ischemia could
significantly decrease the ischemic volume and reduce cerebral
injury by regulating ER stress and UPR (Voutilainen et al.,
2015).

In addition, we explored the role of Akt in MANF-mediated
neuroprotection. Many researchers have demonstrated that Akt
signaling was critical in the promotion of neuronal survival either
in physiological or pathological condition (Zhao et al., 2014; Song
et al., 2015). In this study, the results suggested that the level
of p-Akt significantly increased at 6 h and peaked at 24 h after
ICH. The administration of rh-MANF could further increase
the level of p-Akt, as well as p-MDM2, Bcl-2 while reduce the
expression of p53, Bax and caspase-3. However, the results could
be obviously reversed by the use of Akt inhibitor MK2206. The
results demonstrated that MK2206 could partly counteract the
neuroprotective effects of rh-MANF. All the above-mentioned
results proved the potential value of rh-MANF in the treatment
of ICH via Akt/MDM2/P53 pathway (Figure 10).

Although this study verified the neuroprotection effects of
MANF, some limitations could not be ignored. Firstly, MANF
has been reported to exert its neuroprotective effects in many
ways (Lindahl et al., 2017). This study only focused on its anti-
apoptotic characteristics without further investigation of its role
in anti-inflammation or autophagy. Secondly, the anti-apoptotic
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pathway of MANF in this study was limited to Akt/MDM2/p53.
However, some other signal pathways were also reported in
neurological diseases (Lindholm and Saarma, 2010). Hence
further studies on the relationship of MANF and other signal
pathways in neuronal apoptosis after ICH are also required.
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