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A B S T R A C T

Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major 
global public health concern. This has put economic burden on the public healthcare system and causing sig-
nificant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney 
diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence 
making these drugs a “necessary evil”. In recent times, antioxidant therapy has been explored as a potential 
pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less 
adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional 
antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including 
the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharma-
cological management of many kidney diseases through its antioxidant and other therapeutic properties by 
activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we 
present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological 
properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular 
mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer 
nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of 
kidney diseases while giving hope to these patients.

1. Introduction

Despite several decades of extensive research in nephrology and 
pharmacological management and treatment of kidney diseases, ne-
phrologists are still faced with increased prevalence of kidney diseases, 
which has become a major public health concern worldwide (Carney, 
2020; Ke et al., 2022; Kovesdy, 2011). This worrying trend has been 
projected to increase exponentially in the coming years due to a number 
of factors that are patient-specific, kidney- and drug-related, which 
promote various kidney diseases (Shahrbaf and Assadi, 2015; Luyckx 
et al., 2018). The kidneys play major roles in the body such as produc-
tion of urine, vitamin D, erythropoietin, maintaining blood pH levels, 
and regulating fluid and electrolyte balance and blood pressure. As a 
metabolically active excretory organ, the kidneys are prone to a lot of 

harmful products such as iodinated contrast media, drug metabolites, 
xenobiotics with high nephrotoxic potential, infections and chronic 
diseases such as diabetes mellitus and hypertension (Cockwell and 
Fisher, 2020; Chen et al., 2020; Zhang et al., 2020; Shen et al., 2021; Gao 
et al., 2022, Engesser et al., 2024). Drugs such as everolimus and 
methotrexate are both used in transplantation as immunosuppressive 
agents and also in the management of some renal cancers. Biologics such 
as pembrolizumab, bevacizumab and ipilimumab are used as immuno-
therapy against renal cell carcinoma and more importantly, the possible 
use of ustekinumab in the management of antineutrophil cytoplasmic 
antibody-associated glomerulonephritis (ANCA-GM). (Stallmach et al., 
2010; Porta et al., 2011; Chae et al., 2017). These drugs are expensive 
and present a lot of adverse effects, which reduce the quality of life of the 
patients. This development has led to the search for alternative 
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compounds that have similar or superior renoprotective properties as 
that of the conventional medications but with less adverse effects. It 
must be pointed out that without appropriate, less toxic and economical 
access to nephroprotective agents, the burden on healthcare systems 
from patients with kidney diseases will skyrocket soon. The surge of 
kidney diseases are on the increase globally, with global annual figures 
for hospitalized patients with acute kidney disease standing at 13.3 
million, out of which 11.3 million of these cases are in low-to mid-
dle-income countries (Francis et al., 2024). The risk of the development 
of chronic kidney disease (CKD) is generally higher in patients with a 
previous episode of acute kidney injury (AKI) than those with no history 
of AKI (Horne et al., 2017; Koh and Chung, 2024). CKD presents with an 
increase in strain on healthcare resources and also on kidney replace-
ment therapies such as dialysis and transplantation in patients who go 
on to develop end-stage renal disease (ESRD).

Currently, a host of medications are being investigated for their 
potential renoprotective properties in an attempt to improve renal 
outcomes in patients worldwide. Drugs such as sodium-glucose 
cotransporter 2 inhibitors (SGLT2i), glucagon-like-peptide 1 (GLP-1) 
agonists and inhibitors of renin-angiotensin-aldosterone system such as 
angiotensin-converting enzyme inhibitors and angiotensin II receptor 
blockers are among the most widely investigated in this regard. Recent 
studies have highlighted the renoprotective benefits of SGLT2i in pre-
serving kidney function (Lin et al., 2021; Berezin and Berezina, 2024) 
aside its primary indication in lowering blood glucose levels mainly via 
glucosuria. Furthermore, the use of GLP-1 agonist in kidney diseases, 
particularly, diabetic nephropathy, has shown positive outcomes in 
reducing overall disease progression (Lin et al., 2023; Pan et al., 2024). 
On the contrary, Wajdlich and Nowicki (2024) reported that the use of 
liraglutide (an incretin mimetics for type 2 diabetic patients) in CKD 
patients increased blood pressure due to a decrease in natriuresis and 
increased aldosterone secretion, particularly in patients with estimated 
glomerular filtration rate of <30 ml/min/1.73 m2.

Antioxidant therapy is emerging as an alternative primary or adjunct 
therapy in the management of some kidney diseases (Akkara and Sabina, 
2020; Abo-Elmaaty et al., 2020; Uddin et al., 2021). One of such anti-
oxidants that is receiving significant experimental and clinical attention 
in the treatment and pharmacological management of kidney diseases is 
alpha-lipoic acid (ALA). In this review, we present ALA as a potent 
naturally occurring antioxidant, its mitochondrial biosynthesis, and 
pharmacological properties. In addition, we also discuss within the limit 
of present literature, ALA and its underlying molecular mechanisms 
implicated in experimental and clinical treatment and management of 
kidney conditions such as AKI, CKD, ESRD, renal ischemia-reperfusion 
injury, diabetic nephropathy, hypertensive nephropathy, autosomal 
dominant polycystic kidney disease, and obstructive uropathy.

2. Alpha-lipoic acid

Alpha-lipoic acid (ALA), also known as thioctic acid, is a sulphur- 
containing natural antioxidant that scavenges free radicals in the body 
(Saboori et al., 2018; Skibska et al., 2023). Fruits and vegetables, as well 
as beef, kidney, and liver, are typical dietary sources of ALA (Basile 
et al., 2023). It is an essential cofactor in many cellular activities. ALA is 
a medium-chain fatty acid with sulphur atoms occurring at C6 and C8. 
The introduction of sulphur at C6 makes the carbon atom chiral. This 
chirality gives rise to two enantiomers or stereoisomers: R (+)-lipoic 
acid and S (− )-lipoic acid (Carlson et al., 2007). The S isomer is pro-
duced through a synthetic chemical reaction, while the R isomer natu-
rally exists in food sources, particularly from meat and vegetables (Xu 
et al., 2023). Although -lipoic acid occurs naturally as the R-enantiomer, 
the synthetic supplement contains a racemic mixture of both R and S 
forms (Xu et al., 2023). The racemic mixture of ALA has recently been 
reported to be beneficial in the management of diabetic peripheral 
neuropathy (Verma, 2018), improvement of blood glucose and lipid 
profiles (Haghighatdoost and Hariri, 2019; Dugbartey et al., 2022a, 

2022b, 2022c, Dugbartey et al., 2024), reduction of blood glucose levels 
and gamma-glutamyl transferase in pregnant women with gestational 
diabetes mellitus, management of irritable bowel disease in experi-
mental models (Aslfalah et al., 2019), immunomodulation in autoim-
mune diseases such as systemic lupus erythematosus, chronic fatigue 
syndrome, liver disease, cardiovascular diseases as well as eye-related 
disorders such as glaucoma, cataract and retinal damage (Liu et al., 
2019). The antioxidant property of ALA also suppresses various in-
flammatory pathways (Qiu et al., 2018; Dugbartey et al., 2022a, 2022b, 
2022c; Skibska et al., 2023). ALA has also been demonstrated to inhibit 
the progression of breast cancer in experimental models by inactivating 
transforming growth factor-beta (TGF-β) (Tripathy et al., 2018). ALA 
has also been recently reported to exhibit neuroprotective and neuro-
restorative effects through its antioxidant property (Kulikova et al., 
2018). In fact, ALA administration (20 mg/kg) through the jugular vein 
resulted in neuroprotection by decreasing mortality, neurological deficit 
score, infarction, and increasing neurogenesis and brain cell metabolism 
(Choi et al., 2015).

ALA is readily absorbed from the gastrointestinal tract with a mean 
plasma half-life of 30 min and a mean bioavailability of 30%. The pH- 
dependent cellular uptake of ALA is mediated by sodium-dependent 
multivitamin transporter (SMVT) and monocarboxylate transporter 
(Waslo et al., 2019). SMVT is highly specific to the R enantiomer of ALA, 
and the bioavailability of the R enantiomer is almost two-fold higher 
than the S form (Huerta et al., 2019). The pharmacokinetic parameters 
of R (+)-ALA are relatively better than that of S (+)-ALA. Therefore, the 
R-enantiomer has been suggested to be given in more quantities than in 
a racemic mixture form (Uchida et al., 2015). Also, the R-enantiomer of 
ALA has been shown to be a rather potent antioxidant in vivo compared 
to the racemic mixture of ALA (Yoon et al., 2016). Oxidative decar-
boxylation of pyruvate (a step where ALA, together with pyruvate de-
hydrogenase decarboxylates pyruvate to acetyl CoA) and 
α-ketoglutarate (a step where ALA, along with α-ketoglutarate dehy-
drogenase decarboxylates α-ketoglutarate to succinyl CoA in the citric 
acid cycle) are examples of the many of biological activities involving 
ALA (Ramachanderan, 2019).

ALA chelates heavy metal ions such as iron, copper and zinc, thereby 
reducing ROS by interfering with the Fenton and Haber-Weiss reaction 
(Saboori et al., 2018; Camiolo et al., 2019). ALA also increases the 
expression of other naturally occurring antioxidant enzymes such as 
catalase (for the conversion of hydrogen peroxide to water and oxygen), 
superoxide dismutase (SOD), both copper/zinc-SOD, located in the 
cytosol of eukaryotic cells and manganese-SOD, found in the mito-
chondria of eukaryotic and some bacteria - for the conversion of su-
peroxide ions to either hydrogen peroxide or molecular oxygen 
(Moeinian et al., 2019). Also, ALA bolsters the expression of glutathione 
peroxidase (GPx) (for reduction of lipid hydroperoxides to their corre-
sponding alcohols, as well as reduction of hydrogen peroxide to water), 
and also restores antioxidants such as vitamins C (ascorbic acid), E 
(α-tocopherol) and glutathione (GSH) (Moeinian et al., 2019).

3. ALA for the treatment and management of kidney conditions

ALA is emerging as a potent drug with renoprotective properties that 
could provide additional and/or alternative avenue in the pharmaco-
logical management and treatment of kidney diseases. The mechanisms 
underlying the potential renoprotective action of ALA include suppres-
sion of vasoconstriction system (e.g. endothelin pathway) while acti-
vating vasodilatory system and restoring antioxidant, anti-inflammatory 
and anti-apoptotic pathways.

3.1. ALA for toxic nephropathies

Acute kidney injury (AKI) is prevalent particularly in patients 
receiving certain anti-cancer drugs and antibiotics (Kang et al., 2009). 
Cytotoxic drugs such as cisplatin, methotrexate and doxorubicin and 
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antibiotics such as gentamycin and neomycin are regularly used in 
treatment regimens globally. In a rat model of cisplatin-induced AKI, 
intraperitoneal administration of 50 mg/kg of ALA on days 2 and 1, and 
8 h prior to 6 mg/kg cisplatin administration, followed by injection on 
days 1, 2 and 3 after cisplatin administration resulted in increased renal 
expression of aquaporins 1–3, improved urine concentration and tubular 
sodium reabsorption, with increased renal expression of adenylyl 
cyclase VI and vasopressin-induced cAMP production, and partly 
contributed to prevention of cisplatin-induced AKI (Bae et al., 2007, 
2009). These effects were reversed in cisplatin-treated rats without ALA 
administration Specifically, the increased expression of aquaporins 1–3 
by ALA were localized in the cortical and medullary regions of the 
kidney as revealed by semi-quantitative immunoblotting and immuno-
histochemical staining (Bae et al., 2007, 2009). This result was 
confirmed in another study in which intraperitoneal administration of 
50 mg/kg of ALA preserved renal expression of aquaporin 2 and Na+/H+

exchanger, which were significantly downregulated by lipopolysaccha-
ride (LPS), and partly contributed to attenuating LPS-induced AKI in rats 
(Suh et al., 2015). In addition, prophylactic treatment with 100 
mg/kg/day ALA for 30 days improved renal function parameters such as 
serum creatinine and blood urea nitrogen (BUN) and prevented 
cisplatin-induced AKI in rats (Khalifa et al., 2020). Kang et al. (2009)
also observed downregulation and reduced production of 
pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) 
and adhesion markers such as intercellular adhesion molecule-1 
(ICAM-1), monocyte chemoattractant protein-1 (MCP-1), as well as in-
hibition of the activation of the inflammation-related transcription 
factor, nuclear factor kappaB (NF-κβ) following 100 mg/kg adminis-
tration of ALA in a mouse model of cisplatin-induced AKI. Furthermore, 
intraperitoneal administration of 10 mg/kg of ALA also improved renal 
levels of antioxidant enzymes such as SOD, CAT and glutathione, 
reduced renal levels of malondialdehyde (MDA; a by-product of lipid 
peroxidation and indicator of reactive oxygen species [ROS] produc-
tion), and thus partly contributed to attenuating cisplatin-induced AKI 

in rats (Adikwu et al., 2019) and also preserved renal structure (Fig. 1). 
The administration of ALA in experimental animals with AKI induced by 
drugs such as doxorubicin, methotrexate, gentamycin and vancomycin, 
produced results similar to that in cisplatin-induced nephrotoxicity, 
with the similar mechanisms of protection (Sandhya et al., 1995; 
Malarkodi et al., 2003; Celik et al., 2005; Armagan et al., 2015; El-Sayed 
et al., 2017; Darwish and El-lateef, 2018; Adikwu et al., 2019). These 
observations highlight the potential renoprotective effect that ALA 
could exhibit when used as a primary and/or adjuvant therapy in pa-
tients receiving nephrotoxic medications.

AKI is also seen in patients undergoing coronary angiography and 
percutaneous intervention, which rely on the use of iodinated contrast 
media for diagnostic radiographic imaging of the coronary arteries. This 
radiographic procedure involves administration of intravascular iodin-
ated contrast media, which unfortunately induces AKI as a complication 
of the procedure. Contrast-induced AKI (CI-AKI) occurs in about 30% of 
patients receiving intravenous contrast media, and is currently the third 
most common cause of hospital-acquired AKI next to renal hypo-
perfusion and post-operative renal injury (Fähling et al., 2017; Tanık 
et al., 2019). The use of ALA has been investigated in human and animal 
models of CI-AKI with varying success. Not a great deal of research has 
been carried out in this area. However, the results obtained from the few 
available studies do not appear to support the use of ALA in the pre-
vention of CI-AKI. For example, a prospective randomized controlled 
trial by Jo et al. (2013) concluded that the use of ALA as a prophylactic 
agent in patients receiving contrast media did not offer any superior 
protection to that of placebo. Another clinical study involving diabetic 
patients undergoing coronary angiography demonstrated that ALA did 
not decrease the risk of CI-AKI in this subset of diabetic patients (Cicek 
et al., 2013). However, other antioxidants such as N-acetyl cysteine, 
vitamin C, and vitamin E were reported to significantly reduce CI-AKI in 
49 human clinical trials (Ali-Hasan-Al-Saegh et al., 2017). While the 
clinical trials involving ALA did not explain why ALA did not reduce the 
incidence of CI-AKI, it is possible that the study protocol may have 

Fig. 1. Mechanisms of renal protection by alpha-lipoic acid in kidney diseases. ALA: Alpha-lipoic acid; AQP1-3: Aquaporins 1–3, LDH: Lactate dehydrogenase, 
Intercellular adhesion molecule-1, MCP-1: Monocyte chemoattractant protein-1, iNOS: Inducible nitric oxide synthase, eNOS: Endothelial nitric oxide synthase, TNF- 
α: Tumor necrosis factor-alpha, IL-1β: Inerleukin-1beta, IL-6: Interleukin-6, IL-8: Interleukin-8, NF-кB: Nuclear factor kappaB, MAPK: Mitogen-activated protein 
kinase, COX-2: Cyclooxygenase-2, MDA: Malondialdehyde, ROS: Reactive oxygen species, GSH: Glutathione, GPx: Glutathione peroxidase, CAT: Catalase, SOD: 
Superoxide dismutase, ATG5:Autophagy related 5, ATG7: Autophagy Related 7, MMP-2: Matrix metalloproteinase-2, MMP-9: Matrix metalloproteinase-9, TIMP-1: 
Tissue inhibitor of metalloproteinase-1, TIMP-2: Tissue inhibitor of metalloproteinase-2, TGF-β1: Transforming growth factor-beta1, ET-1: Endothelin-1, NO: Nitric 
oxide, cAMP: Cyclic adenosine monophosphate, cGMP: Cyclic guanosine monophosphate, AMPK: AMP-activated protein kinase, mTOR: Mammalian target of 
rapamycin, 8-OHdG: 8-hydroxy-2′ -deoxyguanosine, MPO: Myeloperoxidase, CRP: C-reactive protein, H2S: Hydrogen sulfide, Ca2+: Calcium ion, and C3: Complement 
component 3.

G.J. Dugbartey et al.                                                                                                                                                                                                                           Current Research in Pharmacology and Drug Discovery 7 (2024) 100206 

3 



significantly impacted the study outcome, as ALA (600 mg) was 
administered only 2 days before and after coronary catheterization. 
Perhaps a higher dose and longer treatment duration may decrease 
CI-AKI development. Taken together, ALA administration protects 
against many forms of AKI.

Colistin, an antibacterial agent used in the management of multi- 
drug resistant infections, is notoriously known to have nephrotoxicity 
as one of its main adverse effects (Mosayebi et al., 2021). ALA has shown 
promise in the attenuation of nephrotoxicity induced by colistin 
administration (Oktan et al., 2021), highlighting the diverse roles that 
ALA plays in disease prevention and/or management. In this study, ALA 
pre-treatment reduced kidney damage (decrease urine KIM-1 levels, 
MDA, caspase-3 and urine albumin/creatinine ratio). Ferroptosis has 
recently been described as a key driver in the development of kidney 
diseases. It is a form of cell-death mediated in part by accumulation of 
iron, abnormal amino acid metabolism and subsequently, increased 
reactive oxygen species production via lipid peroxidation (Zhang and Li, 
2022; Li et al., 2023). ALA has been shown to ameliorate the effects of 
iron in an experimental rat model where there was a reduction in mRNA 
levels of Nox4, p22phox, TNF-α and KIM-1 (Cavdar et al., 2020).

3.2. ALA for renal ischemia-reperfusion injury and sepsis

Ischemia-reperfusion injury (IRI) refers to tissue injury caused by 
temporary cessation of blood supply to a tissue and subsequent resto-
ration of blood supply to the ischemic tissue. This is a “hot” area that has 
attracted significant scientific attention, especially among nephrologists 
and kidney transplant surgeons, as it is an inexorable problem in 
transplantation of kidney and other transplantable organs. In a rat 
model of renal IRI, which was induced by 1-h occlusion of the left renal 
pedicle followed by a 6-h period of reperfusion, intraperitoneal 
administration of 100 mg/kg of ALA at 30 min prior to induction of 
ischemia reduced the levels of renal ROS and the fibrotic proteins, ma-
trix metalloproteinase 2 (MMP2) and MMP9, which were significantly 
elevated during ischemia and reperfusion (IR) (Cavdar et al., 2014). It is 
important to note that MMPs are involved in pathological remodeling of 
renal tissue, which is associated with renal dysfunction 
(Rodríguez-Sánchez et al., 2019). In addition, ALA administration 
markedly increased renal expression of tissue inhibitor of metal-
loproteinase (TIMP)-1 and TIMP-2 proteins as well as renal GSH (Cavdar 
et al., 2014). These changes mediated by ALA, ultimately resulted in 
reduced serum creatinine and preserved renal ultrastructure, and 
thereby culminating in renal protection (Cavdar et al., 2014). This 
promising result supports that of a previous study by Takaoka et al. 
(2002) in which rats were subjected to 45 min of ischemia by occluding 
sthe left renal artery and vein followed by reperfusion, 14 days after 
contralateral nephrectomy. In this study, both glomerular and tubular 
function significantly decreased 24 h following reperfusion evidenced 
by abnormally increased levels of serum creatinine, BUN and decreased 
creatinine clearance and urinary osmolality, with severe renal lesions 
upon histopathological examination. Conversely, intraperitoneal 
administration of 10 mg/kg of ALA prior to induction of ischemia pre-
vented this pathological alteration and improved renal dysfunction 
(Takaoka et al., 2002). Interestingly, a higher of ALA (100 mg/kg) 
produced a better renal production than the lower dose (10 mg/kg) as 
seen in significantly lower tubular necrosis score, and fewer proteina-
ceous casts in tubuli and congestion in the renal medulla. Mechanisti-
cally, ALA strongly downregulated renal expression of endothelin-1 
(ET-1), which was markedly upregulated after IR (Takaoka et al., 2002). 
ET-1 is a potent vasoconstrictor peptide produced by vascular endo-
thelial cells, which in turn, activates several pathological factors such as 
NF-κB and TNF-α and contributes to oxidative stress-mediated endo-
thelial dysfunction (Zhang and Frei, 2001; Bhatt et al., 2014). The 
inhibitory effect of ALA on ET-1 has been shown in preclinical and 
clinical investigations in which ALA suppressed vascular overproduction 
of ET-1 and activated the pathway that synthesizes nitric oxide (NO; a 

potent vasodilator whose vasodilatory action is via eNOS/NO/cGMP 
pathway) (Heitzer et al., 2001; Takaoka et al., 2001; Ahmad et al., 2018) 
(Fig. 1). As such, ALA administration was found to attenuate the loss of 
eNOS phosphorylation in diabetic patients and animals, and thus 
improved endothelial function (Heitzer et al., 2001; Sena et al., 2008). 
Along this line of evidence, Bae et al. (2008) observed that intraperi-
toneal administration of 80 mg/kg of ALA before and immediately after 
40 min occlusion of renal pedicles of rats significantly downregulated 
renal mRNA expression of ET-1 to control level, which was strongly 
upregulated by IR. In the same study, induction of IR markedly 
decreased eNOS expression, cGMP and cAMP generation and down-
regulated the expression of aquaporins 1–3 as well as sodium trans-
porters such as Na+/K+-ATPase, type 3 Na+/H+ exchanger, Na+-K+-2Cl- 

cotransporter, and Na+-Cl- cotransporter. Remarkably, ALA significantly 
prevented the decreased expression of eNOS, stimulated cGMP and 
cAMP production, and strongly upregulated expression of aquaporins 
1–3 and sodium transporters (Bae et al., 2008) (Fig. 1).

Another model of IRI also showed that 45 min of renal pedicle oc-
clusion followed by 24 h of reperfusion in unilaterally nephrectomized 
rats induced substantial increases in serum creatinine, BUN, IL-1β, IL-6, 
TNF-α, MDA, activity of myeloperoxidase (MPO, neutrophil marker), as 
well as increases in lactate dehydrogenase (LDH; a marker of cell and 
tissue damage), 8-hydroxy-2′-deoxyguanosine (8-OHdG; a marker of 
oxidative DNA damage) and collagen deposition, which corresponded 
with decreases in GSH, total antioxidant capacity and Na+/K+-ATPase 
activity. However, intraperitoneal injection of ALA (100 mg/kg) at 15 
min before induction of ischemia and just before reperfusion reversed 
these biochemical parameters and the pathological changes in the kid-
ney and improved renal integrity (Sehirli et al., 2008) (Fig. 1). This 
result indicate that ALA protects against renal IRI through its antioxi-
dant, anti-inflammatory and other therapeutic properties. The same 
salutary effect was observed in very recent studies when rats received 
daily prophylactic treatment with 50 mg/kg of ALA (intraperitoneally) 
for 2 weeks prior to induction of IRI (Ahmadvand and Mahdavifard, 
2019) as well as with ALA derivatives and under condition of renal 
damage induced by limb IRI (Koga et al., 2012; Othman et al., 2022). 
Collectively, these experimental findings demonstrate that renal pro-
tection by ALA against IRI is partly due to inhibition of vasoconstrictive 
mechanisms while simultaneously activating vasodilatory pathways and 
improving tubular transport function as well as other potentially pro-
tective but unidentified mechanisms.

Another form of AKI is sepsis-induced AKI. Sepsis is a life-threatening 
dysregulated systemic response to bacterial infection. Although it can 
cause multiorgan failure, the kidney is the most affected organ (Li et al., 
2014). Unfortunately, effective pharmacotherapy for sepsis-induced AKI 
is lacking, suggesting the need to identify or develop pharmacological 
agents for this condition. ALA supplementation has been studied in 
experimental models of sepsis. In these studies, the authors reported 
preservation of renal integrity following ALA administration, which 
corresponded with increase in antioxidant enzymes and a decline in 
MDA and protein carbonyl (Suh et al., 2015; Petronilho et al., 2016). A 
recent study also showed that ALA protects against sepsis-induced AKI in 
rats by promoting autophagy as seen in increased LC3II/I ratio (auto-
phagy marker), upregulated renal expression of the autophagy factors, 
ATG5 and ATG7, as well as beclin-1 (autophagy and anti-apoptotic 
protein) and downregulated renal expression of p62 protein (an auto-
phagy protein that promotes NF-κB activation), and thereby facilitating 
autophagosome accumulation in the septic kidney (Jia et al., 2019). This 
changes at the molecular level resulted in reduced levels of BUN and 
serum creatinine, which corresponded with improved renal ultrastruc-
ture and survival rate of septic rats (Jia et al., 2019). Other studies also 
the protective action of ALA against sepsis-induced AKI to its 
anti-inflammatory property by inhibiting NF-кB signaling pathway and 
suppressing the release of pro-inflammatory cytokines such as TNF-α, 
iNOS, interleukin-1beta (IL-1β) and IL-6 in septic kidneys (Li et al., 
2014, 2015) (Fig. 1). ALA has also been identified to ameliorate 
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mitochondrial oxidative stress, and preserved type 3 Na+/H+ exchanger 
and aquaporin 2 expression in septic kidneys of rats (Suh et al., 2015). In 
addition, ALA reduced ROS-mediated kidney injury by suppressing the 
production and release of cyclooxygenase-2 (COX-2; a pro-inflammatory 
enzyme) and inducible nitric oxide synthase (iNOS; a pro-inflammatory 
mediator) in cultured mesangial cells (Li et al., 2015).

3.3. ALA for diabetic nephropathy

Diabetic nephropathy (DN) is one of the major microvascular com-
plications of diabetes mellitus. It is seen in both type 1 (T1DM) and type 
2 diabetes mellitus (T2DM) but more common in the latter than the 
former because of the high prevalence of the latter than the former. DN 
is a clinical syndrome characterised by albuminuria (>300 mg/day or 
>200 μg/min) confirmed on at least two occasions 3–6 months apart, 
permanent and irreversible decrease in glomerular filtration rate due to 
angiopathy of glomerular capillaries (Adler et al., 2003). It is currently 
the leading cause of end-stage renal disease (ESRD) for which renal 
replacement therapy, such as dialysis or transplantation is required 
(Gnudi et al., 2016; Dugbartey, 2017). It presents with a myriad of 
pathophysiological changes hyperglycemia-induced ROS production, 
which ultimately lead to glomerulosclerosis, tubulointerstitial fibrosis 
and vascular remodeling (Hayden et al., 2005; Reiniger et al., 2010). DN 
results in a cascade of hemodynamic events such as increased intra-
glomerular and systemic pressure, increased expression of ET-1, 
vascular endothelial growth factor and suppressed production and 
release of nitric oxide and endogenous antioxidants such as catalase, 
glutathione, SOD and GPx (Kalani, 2008; Satirapoj and Adler, 2014).

Growing evidence from human and animal studies shows that 
administration of ALA is protective against DN development and pro-
gression. In a randomized control trial involving 34 patients with DN, 
oral administration of ALA (800 mg/day) with pyridoxine (80 mg/day) 
for 12 weeks resulted in significant decrease in advanced glycation end- 
products, albuminuria and systolic blood pressure, and improved anti-
oxidant and glycemic status, along with increased serum nitric oxide 
compared to placebo-treated control group (Noori et al., 2013). The 
same salutary effect was observed in other randomized controlled trials 
with more than 60 DN patients in which ALA was administered for 2–8 
weeks (Sun et al., 2017; Hong et al., 2017; Qu et al., 2018; Cao and Chen, 
2021). Lipoic acid synthetase (LAS) is an enzyme responsible for the 
synthesis of ALA in the body. A recent clinical study revealed a reduced 
level of LAS in DN patients (Esawy and Magdy, 2020), suggesting that 
LAS could represent a useful biomarker for the diagnosis of DN and 
perhaps other diabetic complications. In support of this clinical obser-
vation, a genetic study showed acceleration of DN, with increased 
ROS-induced oxidative stress in T1DM mice that lack LAS gene (Yi et al., 
2012). In another clinical study the effect of ALA on vascular smooth 
muscles was investigated in 101 T2DM patients, administration of ALA 
(0.6 g/day) in addition to conventional hypoglycemic therapy for 2 
weeks, significantly attenuated dysfunctional vascular smooth muscle 
by increasing the production of hydrogen sulphide (H2S) when 
compared to non-diabetic control group (n = 20) that was age- and 
sex-matched (Qiu et al., 2018). In a separate study by the same authors, 
intraperitoneal daily administration of ALA (100 mg/kg) for 8 weeks to 
streptozotocin-treated T2DM rats upregulated the expression of cys-
tathionine γ-lyase (CSE; H2S-producing enzyme), increased serum H2S 
level, prevented hyperglycemia and inhibited autophagy in vascular 
smooth muscle cells via AMPK/mTOR pathway (Qiu et al., 2018). These 
preclinical and clinical observations align with the results of our recent 
studies in which oral daily administration of ALA (60 mg/kg) to 
streptozotocin-induced T2DM rats with or without conventional hypo-
glycemic therapy for 6 weeks, activated renal H2S system, restored 
normoglycemia, and prevented ROS-induced renal damage in a rat 
model of DN (Dugbartey et al., 2022a, 2022b). H2S is an endogenously 
produced gaseous signaling molecule that is involved in cellular ho-
meostasis at low physiological concentrations, and has been reported to 

exhibit protection against several renal pathologies and other metabolic 
conditions through diverse molecular mechanisms (Ahangarpour et al., 
2014; Feng et al., 2015; Huang et al., 2016; Dugbartey et al., 2022c, 
2022d, 2022e).

In other rodent models of DN, administration of ALA to diabetic rats 
prevented podocyte loss, reversed hyperglycemia, and reduced serum 
levels of advanced glycated end-products, IL-6, TNF-α, MDA, and c- 
reactive protein (CRP) and other markers of renal injury (Obrosova 
et al., 2003; Siu et al., 2006; Wang et al., 2013). These changes corre-
sponded with increased activities of antioxidant enzymes such as SOD 
and GPx in diabetic kidneys (Obrosova et al., 2003; Bhatti et al., 2005; 
Wang et al., 2013). In addition, ALA administration prevented collapse 
of mitochondrial membrane potential, attenuated Ca2+-induced mito-
chondrial swelling and voltage-gated anion channel signal decrease in 
kidneys of diabetic rats (Wang et al., 2013). These empirical findings 
highlight the anti-inflammatory and antioxidant action of ALA as well as 
its ability to preserve mitochondrial integrity while restoring normo-
glycemia under diabetic condition. In another rat model of DN, ALA 
administration for 5 weeks attenuated proteinuria by downregulating 
renal cortical expression of fibrotic markers, transforming growth 
factor-beta1 (TGF-β1) and fibronectin, via inhibition of p38 MAPK 
signaling pathway (Lee et al., 2009), and inhibited proliferation of high 
glucose-exposed human mesangial cells via the same mechanism (Zhang 
et al., 2021) (Fig. 1). Taken together, ALA offers therapeutic benefit in 
clinical and preclinical models of DN.

3.4. ALA for hypertensive nephropathy

In addition to the protective role of ALA in the renal pathologies 
discussed in the preceding sections, ALA has also been reported to pre-
vent the pathogenesis and progression of hypertensive nephropathy in 
experimental models (Midaoui et al., 2003; Louhelainen et al., 2006), 
with increased free sulfhydryl groups of membrane Ca2+ channels, 
leading to normalisation of intracellular Ca2+ concentration, vascular 
resistance and blood pressure (Vasdev et al., 2005). In a rat model to 
investigate the effect of ALA on hypertensive nephropathy, ALA 
increased the production of renal antioxidants such as CAT, GSH and 
SOD while decreasing the levels of MDA, protein carbonyls, urinary 
creatinine and proteinuria (Chandran and Sirajudeen, 2019) as well as 
increase in baroreflex sensitivity in hypertensive rats (Queiroz et al., 
2012) (Fig. 1). Remarkably, ALA treatment also prevented thickening 
and narrowing of the lumina of small arteries, the development of ne-
crosis in the glomeruli and a mild hyperplasia of smooth muscles of an 
experimental model of hypertension (Vasdev et al., 2003). The dimin-
ished production of renal and vascular ET-1 may account for the pro-
tective effect of ALA in preserving renal and vascular function from ROS- 
and hypertension-mediated damage (Takaoka et al., 2001; Louhelainen 
et al., 2006). Clinical studies also confirmed data obtained from murine 
studies about the beneficial role of ALA in protecting blood vessels from 
ROS-mediated damage and dysfunction, a situation which prevents the 
development of renovascular hypertension and damage 
(Hajizadeh-Sharafabad and Sharifi Zahabi, 2022; Rahman et al., 2012). 
In addition, ALA supplementation prevented glomerular and vascular 
damage in spontaneous hypertensive rats, with significant improvement 
in creatinine clearance and proteinuria, increased N-acetyl-(D)-gluco-
saminidase activity (Martinelli et al., 2021), and improved blood pres-
sure level via a reduction in cytosolic free calcium level and oxidative 
stress (Midaoui and de Champlain, 2002; Vasdev et al., 2003). In sum-
mary, these empirical findings suggest that ALA may serve as pharma-
cological tool for the treatment of hypertension and hypertensive 
nephropathy, and potentially other hypertensive complications.

3.5. ALA for end-stage renal disease

During hemodialysis, there is activation of immune cells, particularly 
leukocytes on the surface membrane of the dialyzer, leading to the 
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generation of ROS, one major unwanted side effect associated with pa-
tients undergoing hemodialysis. High concentrations of accumulated 
pro-inflammatory and pro-oxidant toxins also initiate an inflammatory 
response that ultimately lead to the production of ROS (Ninic et al., 
2018; Kohlová et al., 2020). To mitigate this unwanted side effect, 
emerging studies show that treatment of polysulfone membranes with 
ALA for dialysis reduced ROS production, decreased platelet adhesion 
and activation, with the membranes maintaining their ability for se-
lective separation of biomolecules (Mahlicli and Altinkaya, 2014; 
Kohlová et al., 2020). A study by Ahmadi et al. (2013) highlighted the 
usefulness of a combination of ALA and vitamin E in reducing oxidative 
stress and inflammatory markers in hemodialysis patients. Also, ALA 
markedly reduced serum levels of pro-inflammatory cytokines (IL-8 and 
TNF-α) in a double-blinded randomized clinical trial in ESRD patients 
undergoing hemodialysis (Safa et al., 2014) (Fig. 1). ALA has also been 
reported to be beneficial as an erythropoietin adjuvant in ESRD patients 
undergoing hemodialysis (El-Nakib et al., 2013). These clinical reports 
show that ALA could be a potential drug of choice for ESRD patients 
undergoing hemodialysis therapy.

3.6. ALA in kidney transplantation

Kidney transplantation is a routine life-saving procedure for ESRD 
patients. It offers improved quality of life and significant survival 
advantage at a cheaper cost compared to dialysis therapy. However, 
transplant-induced IRI increases the incidence of delayed graft function 
(DGF), primary non-function, graft rejection and other post-transplant 
complications, and thereby hampering the short- and long-term suc-
cess of kidney transplantation. Emerging clinical evidence shows that 
ALA administration results in beneficial outcome after kidney trans-
plantation. In a clinical trial involving 26 patients undergoing simulta-
neous kidney-pancreas transplant, the effect of ALA was evaluated 
through functional recovery of the renal graft as well as biochemical 
markers of IRI (Ambrosi et al., 2016). In this clinical study, adminis-
tration of 600 mg of ALA to deceased donors at the time of donor kidney 
procurement and to recipients immediately before the surgical proced-
ure resulted in significantly reduced renal expression of TNF-α and C3 (a 
protein in the complement system) and serum IL-8, IL-6, lipase and 
amylase secretory leukocyte protease inhibitor, and mediated early 
kidney function compared to untreated control recipients (Ambrosi 
et al., 2016) (Fig. 1). This positive clinical outcome highlights the 
anti-inflammatory action of ALA, showing that ALA contributes to 
attenuating transplant-induced IRI and improves renal graft function 
after transplantation. A similar result was presented at the American 
Transplant Congress in 2013 when Guerrieri et al. (2013) observed in 
another clinical trial involving 18 patients recruited for kidney-pancreas 
transplantation in which intravenous administration of 600 mg of ALA 
to deceased donors at the time of renal graft retrieval and to the re-
cipients during the surgical procedure. In a clinical trial, administration 
of 2600 mg of ALA to 18 patients just before kidney transplantation 
along with perfusion of the renal grafts with 600 mg of ALA 1 h before 
transplantation markedly reduced plasma creatinine level and severity 
of DGF, and prevented renal allograft rejection while increasing MDRD 
during the first 14 days after kidney transplantation compared to 
placebo-treated control group (18 patients) (Weber et al., 2017). 
Although ALA did not prevent the occurrence of DGF in this study, it 
improved renal graft function, and prevented early rejection episodes 
and a return to dialysis after transplantation. Using the same protocol, 
this observation was confirmed by Osella et al. (2019) who also reported 
markedly lower levels of plasma creatinine and BUN and higher MDRD 
in 31 ALA-treated kidney transplant recipients compared to 32 
placebo-treated control transplant recipients. In the same study, ALA 
also improved short-term outcomes of kidney transplantation in a recent 
retrospective clinical study in which 47 patients were treated with ALA 
(600 mg) immediately before kidney transplantation who also received 
600 mg ALA-perfused renal allograft 1 h prior to transplantation (Osella 

et al., 2023). Although these clinical studies did not report the mecha-
nisms underlying the renal graft protection by ALA, it is not wrong to 
suggest that the protective mechanisms by ALA against renal IRI as 
discussed in section 3.2 above, account for the observed renal graft 
protection and the improved outcomes of kidney transplantation since 
IRI is a major contributor to the development of post-transplant com-
plications including renal graft rejection.

3.7. ALA for autosomal dominant polycystic kidney disease

Autosomal dominant polycystic kidney disease (ADPKD) is an 
inherited life-threatening multisystemic and progressive disorder char-
acterized by multiple and bilateral cystic dilation of renal tubules due to 
mutations in polycystin 1 (PKD1) or polycystin 2 (PKD2) genes 
(Boerrigter et al., 2021). ADPKD is one of the most prevalent hereditary 
human illnesses and the most frequent genetic cause of kidney failure in 
adults. Approximately, 4 to 7 million people have ADPKD worldwide, 
which accounts for 7–15% of patients receiving renal replacement 
therapy (Akoh, 2015; Goksu et al., 2023). Early-stage changes such as 
hypertension, endothelial dysfunction, systemic inflammation, and 
accelerated atherosclerosis are responsible for increased cardiovascular 
risks and hasten the onset of ESRD (Lai et al., 2020).

There is a dearth of studies in the literature on the effect of H2S on 
ADPKD. The only available study is the one by Lai et al. (2020), who 
recently reported a controlled longitudinal, prospective interventional 
study involving 33 ADPKD patients who received daily administration of 
1.6 g of ALA for 6 months and 26 ADPKD patients with no ALA 
administration as control group. They observed significant reduction in 
serum levels of C-reactive protein and pro-inflammatory cytokines 
(IL-1β, IL-6 and TNF-α), uric acid as well as plasma NOX2 and renal 
resistive index (a renal and systemic vascular damage marker), which 
partly contributed to improvement in vascular endothelial dysfunction, 
renal function, and cardiovascular risk factors in ALA-treated ADPKD 
patients compared to ADPKD control subjects (Lai et al., 2020) (Fig. 1). 
Recent pre-clinical evidence including those from our research group 
demonstrate that administration of ALA results in H2S release from 
sulfane sulphur (precursor of H2S) in the homogenates of rat kidneys and 
other tissues, and increases expression of H2S-producing enzymes (CBS, 
CSE and 3-MST), leading to increased renal and plasma H2S levels under 
pathological conditions (Bilska et al., 2008; Bilska-Wilkosz et al., 2017; 
Dugbartey et al., 2022b, 2022d, 2022e). This suggests that ALA can be 
considered an H2S-storage compound that releases H2S in response to 
biological signals. Although endogenous H2S level was not measured 
following administration of ALA in ADPKD patients in the above clinical 
study, it is possible that the beneficial effect of ALA in this group of 
patients could be due to increased expression of H2S-producing enzymes 
and endogenous H2S production by ALA along with the potent antioxi-
dant, anti-inflammatory and other therapeutic properties of H2S.

Burgeoning evidence also suggest that metabolic dysregulations in 
ADPKD involve abnormal mitochondrial morphology and function and 
facilitates cyst formation, as seen in increased vacuolated and frag-
mented mitochondria in PKD1− /− mutant renal epithelial cell lines, 
mouse and human kidneys and decreased viability and exercise endur-
ance along with increased carbon dioxide production (Ishimoto et al., 
2017; Lin et al., 2018). Against this background, the mitochondrial 
synthesis of ALA and improvement in renal function following its 
administration in ADPKD patients suggests that ALA may have attenu-
ated pathological events that lead to abnormal renal mitochondrial 
morphology and function and inhibited cyst formation. Besides, ALA has 
been reported to increase mitochondrial membrane potential (an indi-
cation of improved mitochondrial bioenergetics) and inhibited ROS 
generation in the mitochondria under pathological conditions (Wang 
et al., 2013). Furthermore, the H2S-producing enzyme, 3-MST, is a 
mitochondrial enzyme, which accounts principally for renal mitochon-
drial H2S production, while CBS and CSE (cytosolic H2S-producing en-
zymes) translocate to the mitochondria to increase endogenous H2S 

G.J. Dugbartey et al.                                                                                                                                                                                                                           Current Research in Pharmacology and Drug Discovery 7 (2024) 100206 

6 



production in response to specific stressful stimuli. Therefore, the 
observed improvement in renal function in ALA-treated ADPKD patients 
may imply that ALA may have facilitated CBS and CSE translocation to 
the mitochondria to increase renal mitochondrial H2S production via 
mechanisms that are activated under stressful conditions such as ADPKD 
(Fig. 1). While this assumption sounds logical and convincing, further 
studies are needed to validate it.

3.8. ALA for obstructive uropathy

Obstructive uropathy refers to an anatomical or functional blockade 
along the urinary tract resulting in a disturbance in normal urine flow. 
The obstruction to normal urine flow causes physiologic and metabolic 
derangements which affect kidney function. Tseng and Stoller (2009)
found that a partial obstruction results in upregulation of angiotensin 
and AT1 receptor, leading to increased ureteral peristalsis in an attempt 
to relieve the obstruction. This may lead to increased distention and 
intraluminal pressure when the obstruction becomes complete (Tseng 
and Stoller, 2009). Furthermore, unilateral ureteral obstruction (UUO) 
has been found to increase interstitial inflammation mediated by mac-
rophages, which attract several cytokines and chemokines as an early 
response to the obstruction (Misseri et al., 2004; Kluth et al., 2004).

Interestingly, ALA has been found to be useful in treatment of 
obstructive uropathy. In a rat model of UUO, pre-treatment of UUO rats 
with ALA significantly reduced ipsilateral hydronephrosis along with 
improved renal function (markedly reduced serum creatinine and BUN) 
compared to the sham group without ALA treatment (Wongmekiat et al., 
2013). This renal protection corresponded to reduced leukocyte infil-
tration, renal TGF-β1 expression, and improved renal antioxidant status, 
which was evidenced by substantial reduction in MDA level and 
increased levels of GSH and total antioxidant capacity (Wongmekiat 
et al., 2013). This observation was later confirmed by Cho et al. (2017)
in a mouse model of UUO in which ALA treatment markedly attenuated 
renal fibrosis and UUO-induced epithelial mesenchymal transition 
(EMT) by decreasing renal expression of TGF-β1, ICAM-1 and NF-κB 
proteins compared with the sham group. It is important to note that EMT 
induces renal fibrosis in UUO and destroys tubular basement membrane 
integrity through upregulation of matrix proteinases such as MMP-2 and 
MMP-9 (Fig. 1). Remarkably, this pathological change was ameliorated 
by ALA treatment, characterized by reduction in the expression of these 
proteinases (Cho et al., 2017). Although further investigations are 
required to provide a comprehensive understanding of the effects of ALA 
in the clinical management of obstructive uropathy, these preclinical 
studies suggest that ALA may have significant potential benefits in 
attenuating renal injury in obstructive uropathy by reducing metabolic 
and structural changes that negatively impact kidney function.

4. Toxicity of ALA

ALA is generally regarded as a safe supplement in the management of 
various immune-mediated conditions. However, as with any other 
medication or supplement, the main issue regarding the use of ALA is the 
incidence of overdose. According to a study by Fogacci et al. (2020), 
adults can safely consume up to 2400 mg of ALA without experiencing 
any harmful effects. However, although ALA has many potential ther-
apeutic effects, there have been reports of ALA toxicity when ingested at 
higher than recommended doses (Cremer et al., 2006). Therefore, it is 
important to note that taking high doses of ALA is not recommended, as 
it does not provide any additional benefits. A case report by Halabi et al. 
(2023) described the clinical course of a 42-year-old woman who arrived 
at the emergency department after intentionally ingesting an overdose 
of 10 tablets of ALA 600 mg each, resulting in a total intake of 6 g (92.3 
mg/kg). The patient exhibited various severe complications, including 
refractory seizures, metabolic acidosis, thrombocytopenia, rhabdo-
myolysis, impaired cardiac function, kidney injury, and supraventricu-
lar tachycardia (Halabi et al., 2023). Despite receiving multiple 

interventions such as dual pressors, anti-epileptic medications, 
high-dose insulin with euglycemia protocol, and methylene blue (at a 
dose of 1 mg/kg), her condition worsened, ultimately leading to 
multi-organ failure. Unfortunately, despite aggressive resuscitation ef-
forts, the patient unfortunately did not survive. This case report in-
dicates that just like other pharmacological agents, doses of ALA higher 
than therapeutic dose can cause organ damage and death.

A new body of evidence points to the fact that ALA has the potential 
of precipitating neural epidermal growth factor-like 1(NELL)-associated 
membranous nephropathy. In a recent case report by Nassar et al. 
(2023), about a type-2 diabetic patient with CKD on ALA supplemen-
tation for the management of her neuropathy, she developed high-grade 
proteinuria (4175 mg/24 h) and with elevated serum creatinine level. 
Results from her kidney biopsy revealed characteristic features of 
NELL-1-asssociated membranous nephropathy. Upon discontinuation of 
ALA for 5 months, her serum creatinine and urine albumin levels 
markedly improved.

5. Conclusion and future perspectives

A substantial body of preclinical and clinical evidence shows that 
ALA is beneficial in the treatment of a variety of kidney diseases. 
However, due to relatively low bioavailability and increased renal 
clearance, the use of ALA is limited. To address this shortfall, structural 
analogs of ALA can be synthesized and evaluated to develop relatively 
longer-lasting and more potent molecules from the parent ALA mole-
cule. A suitable candidate (ALA analog) will go a long way in enhancing 
the utilization of ALA as a preferred molecule for research into oxidative 
stress-mediated and metabolic disorders. The next step in this journey is 
to initiate a global bench-to-bedside translational approach in the rele-
vant clinical settings. Furthermore, the use of ALA in other renal con-
ditions such as nephrotic syndrome, renal cancers and glomerulopathies 
should be considered.
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