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Abstract: In the presence of Cs2CO3, the first simple, efficient, and one-pot procedure for the synthesis
of 3,5-diaryl pyridines via a variety of aromatic terminal alkynes with benzamides as the nitrogen
source in sulfolane is described. The formation of pyridine derivatives accompanies the outcome
of 1,3-diaryl propenes, which are also useful intermediates in organic synthesis. Thus, pyridine
ring results from a formal [2+2+1+1] cyclocondensation of three alkynes with benzamides, and
one of the alkynes provides one carbon, whilst benzamides provide a nitrogen source only. A new
transformation of alkynes as well as new utility of benzamide are found in this work.

Keywords: base-promoted; alkyne annulation; pyridine derivatives; benzamide as nitrogen source

1. Introduction

Pyridine derivatives are one of the most important and fundamental six-membered
nitrogen-heterocyclic compounds, and pyridine ring is the core structure not only in
pharmaceutical compounds [1–4], but also in natural products [5–7]. Therefore, devel-
opment of synthetic methods for constructing pyridine ring is an interesting and endur-
ing research topic in organic chemistry [5,8–17]. Among them, alkyne annulation with
nitrogen-containing substrates has been well-documented [10–14,17]. We are interested in
the development of alkyne annulation protocols for the synthesis of carbo- and heterocyclic
compounds in a one-step procedure [18–21], as well as in the construction of pyridine ring
starting from alkynes catalyzed by transition-metal complexes (Scheme 1) [22–24]. Encour-
aged by our recent success in the development of base-promoted formation of C-N and
C-O bonds and their applications in the synthesis of heterocyclic compounds [25–30], in
this paper we report a new protocol for the one-pot formation of 3,5-diaryl pyridines from
aromatic terminal alkynes and benzamide promoted by Cs2CO3 in sulfolane, although
the synthetic methods of 3,5-diaryl pyridines without use of alkyne have been recently
reported [31–33]. In this procedure, benzamides are firstly used as the nitrogen source
to provide nitrogen atom only, and the reactions also produce 1,3-diarylpropenes as the
by-product.
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2. Results and Discussion

Our initial purposes are to develop a base-promoted cyclocondensation of alkynes
with benzamide to form a nitrogen-heterocyclic compound. When the mixture of phenyl
acetylene (1a, 2.0 mmol), benzamide (2a, 1.0 mmol), and KOtBu (2.0 mmol) in DMSO
(2.0 mL) was heated at 135 ◦C for 24 h, the analyses of the reaction mixture by GC-MS
disclosed the formation of 3,5-diphenylpyridine (3aa) and 1,3-diphenylpropene in trace
amount. We are very interested in the formation of 3,5-disubstituted pyridines, since there
has never been a report on the synthesis of 3,5-disubstituted pyridines in one-pot manner
starting from alkynes; in addition, it is also a new transformation of alkynes. Therefore, we
decided to optimize the reaction conditions to establish and provide an efficient synthetic
method for access to 3,5-disubstituted pyridines by this new type of alkyne annulation
protocol. On the basis of the formation of 3aa and the structure of the by-product, it can
be confirmed that 3aa formation requires 4.0 equivalents of 1a as shown in Scheme 1.
Therefore, the optimizing reaction conditions were performed with the use of 4.0 mmol of
1a under different conditions.

As shown in Table 1, in DMSO, the reactions of 1a (4.0 mmol) with benzamide (2a,
2.0 mmol) in the presence of 4.0 mmol of KOtBu, KOH, and K2CO3 resulted in a trace
amount of 3aa formation, confirmed by GCMS of the reaction mixtures (entries 1–3). In
the case of Cs2CO3 used, delightedly, 3aa could be isolated from the reaction mixture in
20% yield (the yield was based on the total amount of 1a used, entry 4). The structure of
3aa was confirmed by its NMR spectroscopic data, and the formation of the pyridine ring
was unambiguously confirmed by its x-ray diffraction studies (3,5-Diphenyl pyridine (3aa)
is a known compound, the structure was confirmed by its spectroscopic data and x-ray
diffrac-tion studies. See Supplementary File and CCDC Number 2112477). The utility of
other solvents, such as THF, 1,4-dioxane, DMF, and DMAc (N,N-dimethylacetamide) gave
the trace amount and low yield of 3aa (entries 5–8). In addition, sulfolane (tetramethylene
sulfone, or 2,3,4,5-tetrahydrothiophen-1,1-dioxide, undried) is a highly stable and versatile
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dipolar aprotic laboratory and industrial solvent commonly used in organic synthesis
to drastically enhance the rate and selectivity [34], and this solvent is expected to have
superior solubility for alkali metal salts [35]. Thus, we repeated the reactions in sulfolane
with the use of different amounts of 2a; Cs2CO3, the desired 3aa, was obtained in low to
good yields (entries 9–12). Among them, the best reaction conditions of 2a (1.0 mmol)
and Cs2CO3 (2.5 mmol) produced 3aa in 77% yield (based on half the amount of 1a used)
(entry 11). In this case, the by-product of 1,3-diphenyl propene, which has highly potential
application and is not easily available by traditional organic synthesis, was isolated in
a comparable yield (75%, based on half the amount of 1a used). (Their 1H, 13C NMR
spectroscopic data and/or GC-MS are reported in Supplementary File), accompanied with
the formation of benzoic acid (confirmed by GCMS after work-up by the addition of water,
it is not isolated) (see in Supplementary File). With the use of 1.0 mmol of Cs2CO3, repeating
the reactions in DMSO, DMF, formamide, and DMAc again gave either a low yield of 3aa,
or no product at all (entries 13–16). If 2a was replaced by NH4OAc or acetamide as the
nitrogen source, no desired product was formed (entries 17–18). Acetamide does not work,
which is maybe due to being more basic than benzamide [36]. In addition, no product
formation was observed in the absence of a base (entry 19).

Table 1. Optimizing reaction conditions for 3,5-diphenylpyridine (3aa) formation a.
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 12 benzamide (1.0) Cs2CO3 (1.5) sulfolane 63c 

 13e benzamide (1.0) Cs2CO3 (2.5) DMSO 33c 

 14 benzamide (1.0) Cs2CO3 (2.5) DMF 0 

 15 benzamide (1.0) Cs2CO3 (2.5) formamide 0 

 16 benzamide (1.0) Cs2CO3 (2.5) DMAc 25c 

 17 NH4OAc (1.0) Cs2CO3 (2.5) sulfolane 0 

 18 acetamide (1.0) Cs2CO3 (2.5) sulfolane 0 

 19 benzamide (1.0) -- sulfolane 0 

a Reactions were carried out using 1a (4.0 mmol), and 2, and base in 4.0 mL of  

solvent in a sealed tube at 135 oC for 24 h.  
b Yields of 3aa were calculated on basis of the amount of 1a. 
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Entry 2a (mmol) Base (mmol) Solvent Yield (%)

1 benzamide (2.0) KOtBu (4.0) DMSO trace
2 benzamide (2.0) KOH (4.0) DMSO trace
3 benzamide (2.0) K2CO3 (4.0) DMSO trace
4 benzamide (2.0) Cs2CO3 (4.0) DMSO 20 b

5 benzamide (2.0) Cs2CO3 (4.0) THF 0
6 benzamide (2.0) Cs2CO3 (4.0) dioxane trace
7 benzamide (2.0) Cs2CO3 (4.0) DMF trace
8 benzamide (2.0) Cs2CO3 (4.0) DMAc 15 b

9 benzamide (2.0) Cs2CO3 (4.0) sulfolane 25 b

10 benzamide (3.0) Cs2CO3 (4.0) sulfolane 16 b

11 benzamide (1.0) Cs2CO3 (2.5) sulfolane 77 c

12 benzamide (1.0) Cs2CO3 (1.5) sulfolane 63 c

13 benzamide (1.0) Cs2CO3 (2.5) DMSO 33 c

14 benzamide (1.0) Cs2CO3 (2.5) DMF 0
15 benzamide (1.0) Cs2CO3 (2.5) formamide 0
16 benzamide (1.0) Cs2CO3 (2.5) DMAc 25 c

17 NH4OAc (1.0) Cs2CO3 (2.5) sulfolane 0
18 acetamide (1.0) Cs2CO3 (2.5) sulfolane 0
19 benzamide (1.0) – sulfolane 0

a Reactions were carried out using 1a (4.0 mmol), and 2, and base in 4.0 mL of solvent in a sealed tube at 135 ◦C
for 24 h. b Yields of 3aa were calculated on basis of the amount of 1a. c Yields of 3aa were calculated on basis of
the half amount of 1a.

Under the optimized reaction conditions (entry 11 of Table 1), the substrate scope
of the present alkyne annulation with 2a affording 3,5-disubstituted pyridines was then
investigated. As concluded in Scheme 2, aromatic terminal alkynes bearing electron-
donating (alkyl group) and electron-withdrawing substituents (Cl, F, CF3) could undergo
the annulation to give the corresponding pyridines 3ba~3sa in moderate to good yields, but
an apparent dependence of the electronic effects of the substituents in aromatic terminal
alkynes was observed. Thus, alkynes 1b~1f, 1l, 1n, and 1r bearing electron-donating
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groups (R = Me, Et, nPr, iPr, and t-Bu) at the para-, ortho-, or meta-position show the higher
reactivity compared to the halogen-substituted alkynes (R = Br, Cl, F, 1h~1k, 1m, 1p~1q).
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The present annulation was also applicable to heteroaromatic terminal alkynes. For
example, subjecting 2-ethynylthiophene (1s) to the standard reaction conditions afforded
3,5-di(thiophen-2-yl)pyridine (3sa) in 79% yield.

It should be noted that under the standard reaction conditions, two exceptions of
the substituent effect were observed. The electron-rich para-methoxyphenylacetylenes
(1g) and meta-methoxyphenylacetylenes (1o) show comparatively low reactivity to give
the corresponding pyridines in 43% and 41% yields, respectively. For that reason, the
considerable amount of enamine derivatives that resulted from the addition reaction of
1g or 1o with 2a under basic conditions was detected in the reaction mixtures by GCMS,
which is due to the strong electron-donating methoxy group that suppresses the formation
of amide anion for further transformation (vide infra).

In addition, it is notable that either aliphatic terminal alkynes or internal alkynes,
as well as 1-ethynyl-4-nitrobenzene used as the substrates, resulted in no formation of
pyridine derivatives at all.

On the basis of the 3,5-diaryl pyridine and 1,3-diaryl propene formation, a proposed
mechanism for the present base-promoted annulation of alkynes with benzamides to
form pyridine ring is depicted in Scheme 3. It involves the common addition reaction
of benzamides to terminal alkyne promoted by the base to give enamine intermediate A,
which forms amide anion AA and then undergoes cycloaddition with three alkynes to
afford nitrogen-heterocyclohexadiene intermediate B. Under basic conditions and with a
small amount of water (wet solvent), intermediate B is considered to be converted into
3,5-diaryl pyridine and 1,3-diaryl propene via cleavage of C-N and C-C bonds.
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Scheme 3. Possible mechanism for pyridine formation.

According to the proposed mechanism, the formation of 3aa and 1,3-diphenyl propene
in the comparable yields (77% vs 75%) is easily understood. Also, the low reactivity of
electron-rich para-methoxyphenylacetylenes (1g) and meta-methoxyphenylacetylenes (1o) is
reasonably due to the strong electron-donating methoxy group that decreases the formation
of amide anion AA (Ar = para-/meta-MeOC6H4) for further transformation.

Since acetamide is more basic than benzamide [36], when it was used as the nitrogen
source, 3aa could not form due to the difficult formation of anion 2a (Table 1, entry 18).

In addition, the reactions of 1a with para-methylbenzamide (2b) gave 3aa (78% yield),
para-methylbenzoic acid (see in Supplementary File), and 1,3-diphenylpropene, which
confirm again that the benzamide 2b is used as the nitrogen source only (Scheme 4 (eq.1)).
Moreover, in the formation of 3sa (Scheme 2), the corresponding (E)-2,2′-(prop-1-ene-1,3-
diyl)dithiophene was isolated in 77% yield (see in Supplementary File), and the yield is
also comparable to the yield of 3sa (79%) (Scheme 4 (eq.2)).
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3. Materials and Methods
3.1. General Methods

All commercial reagents are analytically pure and used directly without further pu-
rification. Nuclear magnetic resonance (NMR) spectra were recorded on an ECA-400
spectrometer (JEOL, Tokyo, Japan) using CDCl3 as solvent at 298 K. 1H NMR (400 MHz)
chemical shifts (δ) were referenced to internal standard TMS (for 1H, δ = 0.00 ppm).
13C NMR (100 MHz) chemical shifts were referenced to internal solvent CDCl3 (for 13C,
δ = 77.16 ppm). Mass spectra (MS) were obtained on a GC-MS-QP2010S (Shimadzu, Tokyo,
Japan) with a PEG-25M column, and the high-resolution mass spectra (HRMS) with electron
spray ionization (ESI) were obtained with a micrOTOF-Q spectrometer (Agilent, California,
CA, USA).

3.2. Typical Experimental Procedure for the Synthesis of 3,5-Diphenyl Pyridine (3aa)

A mixture of phenylacetylene (1a, 408.1 mg, 4.0 mmol), benzamide (2a, 121.5 mg,
1.0 mmol), and Cs2CO3 (815.1 mg, 2.5 mmol) in sulfolane (4.0 mL) in a 25 mL screw-capped
thick-walled Pyrex tube was stirred at 135 ◦C for 24 h in an oil bath. After the reaction
mixture was cooled to room temperature, it was poured into a solvent mixture of water
(50.0 mL) and ethyl acetate (25.0 mL), and the two phases were then separated. The
aqueous layer was extracted with ethyl acetate (3 × 15.0 mL), and the combined organic
extracts were dried over anhydrous Mg2SO4. After removing the solvent under reduced
pressure, the residue was purified by column chromatography on silica gel with petroleum
ether/ethyl acetate (gradient mixture ratio from 100:0 to 90:10) as eluent to afford 3aa as a
white solid (177.9 mg, 77%). (E)-1,3-diphenylpropene was isolated in 75% yield.

The structural characterization data for all the products are reported in the Supple-
mentary Materials.

4. Conclusions

In summary, the present work provides a simple and efficient method for the synthesis
of 3,5-diaryl pyridines by Cs2CO3-promoted annulation of aromatic terminal alkynes
with benzamides as nitrogen sources in sulfolane, along with the formation of 1,3-diaryl
propenes as by-product. Noteworthy features of this procedure include the one-pot manner
with a wide range of readily available alkynes under transition-metal-free conditions to
afford 3,5-diaryl pyridines with high chemoselectivity, and benzamides were firstly used
as nitrogen sources in the construction of pyridine. In addition, the present pyridine
ring formation resulted from a formal [2+2+1+1] cyclocondensation of three alkynes and
benzamides, one of the alkynes provided one carbon and benzamides provided the nitrogen
atom. This is a new transformation of alkyne and shows the new utility of benzamides in
organic synthesis.

Supplementary Materials: The following are available online at www.mdpi.com/link. The char-
acterization data of the known products, copies of 1H and 13C NMR charts of all products, X-ray
structural details of 3aa, and part by-product’s NMR spectroscopic data and GC-MS.
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