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Enhancing materials property prediction by
leveraging computational and experimental
data using deep transfer learning

Dipendra Jha!, Kamal Choudhary?, Francesca Tavazza?, Wei-keng Liao', Alok Choudhary!, Carelyn Campbell? &
Ankit Agrawal'

The current predictive modeling techniques applied to Density Functional Theory (DFT)
computations have helped accelerate the process of materials discovery by providing sig-
nificantly faster methods to scan materials candidates, thereby reducing the search space for
future DFT computations and experiments. However, in addition to prediction error against
DFT-computed properties, such predictive models also inherit the DFT-computation dis-
crepancies against experimentally measured properties. To address this challenge, we
demonstrate that using deep transfer learning, existing large DFT-computational data sets
(such as the Open Quantum Materials Database (OQMD)) can be leveraged together with
other smaller DFT-computed data sets as well as available experimental observations to build
robust prediction models. We build a highly accurate model for predicting formation energy
of materials from their compositions; using an experimental data set of 1,963 observations,
the proposed approach yields a mean absolute error (MAE) of 0.06 eV/atom, which is
significantly better than existing machine learning (ML) prediction modeling based on DFT
computations and is comparable to the MAE of DFT-computation itself.
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xperimental observations have been the primary means to

learn and understand various chemical and physical prop-

erties of materials!~®. Nevertheless, since experiments are
expensive and time-consuming, materials scientists have been
relying on computational methods such as Density Functional
Theory (DFT)” to compute materials properties and model pro-
cesses at the atomic level to help guide experiments®. DFT has
enabled the creation of high-throughput atomistic calculation
frameworks for accurately computing (predicting) the electronic-
scale properties of a crystalline solid using first principles, which
can be expensive to measure experimentally. Over the years, such
DFT computations have led to a number of large data sets like the
Open Quantum Materials Database (OQMD)?19, the Automatic
Flow of Materials Discovery Library (AFLOWLIB)!!, the Mate-
rials Project!2-14, Joint Automated Repository for Various Inte-
grated Simulations (JARVIS)!>-18, and the Novel Materials
Discovery (NoMaD)!?. They contain DFT-computed properties
of ~10%-10° materials, which are either experimentally-
observed?? or hypothetical materials. The availability of such
large DFT-computed data sets has spurred the interest of mate-
rials scientists to apply advanced data-driven machine learning
(ML) techniques to accelerate the discovery/design of new
materials with select engineering properties?!~4>. Such predictive
models enable reducing the size of the search space for material
candidates and help in prioritizing which DFT simulations and,
possibly, experiments, to perform. Training data sizes can have
significant impact on the quality of prediction performance in ML
and particularly in deep learning®. This has also been proven
specifically for the case of the prediction of material proper-
ties3342, As experimental data are limited in materials science,
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ML models are mostly trained using DFT-computational data
sets24:32,33,42,47-49

Some recent works compare the DFT-computed formation
energies with experimental observations!®>0>1. For instance,
Kirklin et al. compared the DFT-computed formation energy
with experimental measurements of 1670 materials and found the
mean absolute error (MAE) to vary from 0.096 to 0.136 eV/atom
for OQMD!10, Jain et al.>! reports the MAE of the Materials
Project as 0.172 eV/atom, whereas in Kirklin et al.!%, the MAE of
the Materials Project is reported as 0.133 eV/atom. We also
performed an analysis to compare the experimental formation
energies of 463 materials against their corresponding formation
energies from OQMD, the Materials Project and JARVIS data sets
available in Matminer (an open-source materials data mining
toolkit)>2. A scatter plot of the comparison of different DFT-
computed data sets against the experimental observations is
illustrated in Fig. 1. We find the MAEs in OQMD, Materials
Project and JARVIS are 0.083 eV/atom, 0.078 eV/atom and 0.095
eV/atom, respectively, against experimental formation energies.
In this paper, we will refer to this as the “discrepancy” between
DFT computation and experiments, in order to distinguish it
from the “error” of the ML-based predictive models built on top
of DFT/experimental data sets. As DFT calculations are per-
formed at 0 K and the experimental formation energies are
typically measured at room temperature, the two formation
energies could be different!%>0. However, such a difference is very
small except for the materials that undergo phase transformation
between 0 K and 300 K; these elements include Ce, Na, Li, Ti, and
Sn>3, DFT databases, such as OQMD and the Materials Project,
reduce this systematic error by chemical potential fitting
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Fig. 1 DFT-computed formation energies against the experimental observations. A comparison using scatter plots of the DFT-computed formation energies
of 463 materials from a OQMD, b Materials Project (MP), and ¢ JARVIS (JAR) data sets against their corresponding experimental formation energies from
Matminer>2. d CDF of the corresponding DFT-computation errors for the three data sets.
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procedures for the constituent elements having phase transfor-
mations between 0 K and 300 K!°. For instance, Kim et al.>
performed a comparison between the experimental and the DFT-
computed formation energy of such compounds containing
constituent elements having phase transformation at low tem-
perature, and reported an average discrepancy of ~0.1 eV/atom in
both the Materials Project and OQMD; the average uncertainty of
the experimental standard formation energy was one order of
magnitude lower. Unlike OQMD and Materials Project, JARVIS
does not apply any empirical corrections on formation energies to
match experiments. As a consequence, such models trained on
DFT-computed data sets automatically inherit the underlying
discrepancies between the DFT computations and the experi-
mental observations, in addition to the prediction error with
respect to DFT computations used for training. The discrepancy
between DFT-computation and experiments serves as the lower
bound of the prediction errors that can be achieved by the ML
models with respect to experiments. Owing to this issue, potential
material candidates identified by such ML screening could be
incorrect and disagree with intuition from domain knowledge
and experiments24242,

In this work, we demonstrate that it is possible to predict
material properties closer to the true experimental observations
using deep learning models that can leverage the existing large
DFT-computational data sets together with available experi-
mental observations and other smaller DFT-computed data sets.
Deep learning?® enables us to perform transfer learning from
large data sets to smaller data sets between similar domains. The
transfer learning approach works by first training a deep neural
network model on the source domain with a large data set and
then, fine-tuning the trained model parameters by training on the
target domain with a relatively smaller data set as shown in
Fig. 2°4°5. As the model is first trained on a large data set, it
identifies a rich set of features from the input data representation,
and this simplifies the task of learning features present in the
smaller data set, on which the model is subsequently fine-tuned.
Specifically, here we evaluate the effectiveness of the proposed
approach by revisiting a commonly-studied challenge in materials
informatics: predicting whether a crystal structure will be stable
(formation energy) given its composition?$32°0-58 We leverage
the recent deep neural network architecture: ElemNet2; ElemNet
enables us to perform transfer learning from OQMD (a large data
set containing DFT-computed materials properties for ~341K
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Fig. 2 Proposed approach of deep transfer learning. First, a deep neural
network architecture (ElemNet) is trained from scratch, by initializing
model parameters randomly from a uniform distribution, on a big DFT-
computed source data set (OQMD). As this model is trained from scratch
on OQMD, we refer to this as OQMD-SC model. Next, the same
architecture (ElemNet) is trained on smaller target data sets, such as the
experimental data set, using transfer learning. Here, the model parameters
are initialized with that of OQMD-SC, and then fine-tuned using the
corresponding target dataset.

materials) to two other DFT databases (JARVIS and the Materials
Project) and an experimental data set containing 1963 samples
from the SGTE Solid SUBstance (SSUB) database. Our results
demonstrate a significant benefit from the use of deep transfer
learning; in particular, the proposed approach enables us to
achieve an MAE of 0.06 eV/atom against an experimental data set
containing 1963 observations, which is significantly better than
the mean absolute discrepancy of ~0.1eV/atom of the DFT-
computational data sets compared against experiments, and MAE
of ~0.15eV/atom of the predictive models trained from scratch
(without using transfer learning) on either experimental data set
or DFT-computed data sets.

Results

Data sets. We use three data sets of DFT-computed properties:
OQMD, the Materials Project and JARVIS, and one experimental
data set. Among other properties, these databases report the
composition of material compounds along with their lowest
formation energy in eV/atom, hence identifying their most stable
structure. OQMD contains composition and formation energies
for ~341K material compounds that can be either stable or
unstable. We selected 11,050 stable materials from JARVIS and
23, 641 stable materials from Materials Project. Note that the total
number of materials in JARVIS and Materials Project is on the
order of 30,000 and 70, 000, respectively. However, for the pre-
sent work, only materials present on the convex hull (energy
above convex hull =0) were selected. In the case of material
compounds with multiple crystal structures, the minimum for-
mation energy for the given material composition is used, as it
represents the most stable crystal structure. For the experimental
data set, we use the experimental formation energy from the
SGTE Solid SUBstance (SSUB) database; they are collected by
international scientists®® and contain a single value of the
experimental formation enthalpy, which should represent the
average of formation enthalpy observed during multiple experi-
ments, and do not contain error bars. It is curated and used by
Kirklin et al.10 in their study of assessing the accuracy of DFT
formation energies in OQMD. It is composed of 1,963 formation
energies at 298.15K, and contains many oxides, nitrides,
hydrides, halides, and some intermetallics, all being stable
compounds.

Training from scratch. First, we discuss our results when
training ElemNet model architecture on each data set from
scratch. Although training from scratch, the model parameters
are initialized randomly from a uniform distribution. As the
model parameters are initialized randomly, all the features are
learned from the input training data. The input vector contains
the elemental fractions normalized to one, and the regression
output gives the formation energy. The models learn to capture
the required chemistry from the input training data. We report
the results of a 10-fold cross-validation (except OQMD) per-
formed on the four data sets in Table 1 (for OQMD, we used a 9:1
random split into train and test (validation) sets for this analysis,
and the same model is used 10 times to get the predictions on the
test set since the model predictions changes for same input owing
to use of Dropout®). We also report performance of our models
on a separate holdout test set using two different training:test set
splits in Table 2. For holdout test, we split the data sets into
training and test sets in the ratio of 9:1 and 8:2 and train ElemNet
model architecture on the training sets using a 10-fold cross-
validation, and report the performance of the best model from the
10-fold cross-validation on the holdout test set. Our results
demonstrate that the size of training data set has a significant
impact on the model performance, which is in agreement with
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Table 1 Performance of the ElemNet models from 10-fold cross-validation in MAE (eV/atom).

Data set Size Scratch [SC] OQMD-SC Transfer Learning [TL]
OQMD 341,000 0.0417 £ 0.0000 - -

JARVIS 11,050 0.0546 £0.0019 0.0821+0.0000 0.0311+0.0012
Materials project 23,641 0.0326 £ 0.0009 0.1084 £ 0.0000 0.0248 £ 0.0006
Experimental 1963 0.1299 £ 0.0136 0.1354 £ 0.0000 0.0642 £0.0061

Table 2 Holdout test set performance of the ElemNet
models in MAE (eV/atom).
Data set Size Train:test Scratch Transfer
split ratio [SC] learning [TL]
OQMD 341,000 82 0.0471 -
OQMD 341,000 91 0.0437 —
JARVIS 11,050 82 0.0593 0.0324
JARVIS 11,050 91 0.0568 0.0312
Materials project 23,641 8:2 0.0347 0.0251
Materials project 23, 641 91 0.0327 0.0247
Experimental 1963 8:2 0.1388 0.0660
Experimental 1963 91 0.1460 0.0608

similar analyses from past studies3342. Despite the smaller
training data set size, the ElemNet model trained using the
Materials Project has slightly better performance compared with
the models trained using OQMD. This may be attributed to the
inherent formation energy data in Materials Project for which
several empirical fittings were applied. The impact of training
data set is most evident in the case of the experimental data set,
where the training data for each fold of the 10-fold cross-vali-
dation contains only ~1767 observations and each test (valida-
tion) set contains ~196 samples. The higher error in the case of
the experimental data set is owing to its limited size and clearly
illustrates the impact of the training data size on the performance
of predictive models.

Prediction using OQMD-SC model. As OQMD is the largest
data set used for training our models, we evaluated the ElemNet
model trained on OQMD from scratch for making predictions on
different data sets. We refer to this as the OQMD-SC. As shown
in Table 1, we observe that although the OQMD-SC model has a
low prediction error with an MAE of 0.0417 eV/atom against
OQMD, it exhibits significantly higher error when evaluated
against other data sets, regardless of whether they are DFT-
computed or experimental. Although JARVIS, the Materials
Project and OQMD are all DFT-computed data sets, they differ in
their underlying approach for DFT computations. Note that the
OQMD-SC model is trained using only OQMD, our goal in this
evaluation is to illustrate the underlying difference in different
DFT data sets and the discrepancy between OQMD and the
experimental observations. When the OQMD-SC model is eval-
uated against JARVIS and the Materials Project, which are dif-
ferent from the training data set OQMD, the underlying
difference in DFT computations between OQMD and the test
data sets becomes obvious. This problem is exacerbated when the
OQMD-SC model is evaluated on the experimental observations.
As the DFT computations for the formation energy in the QOMD
have a significant discrepancy (an MAE of ~0.1 eV/atom) against
experimental observations, this adds up with the prediction error
of the OQMD-SC model against the OQMD data set itself. If we
compare the prediction errors using the OQMD-SC model on
different data sets against the error of the models trained from
scratch on them, we find that prediction errors are in the same

order of magnitude. The evaluation error for the Materials Project
data set using OQMD-SC model is three times greater compared
with the ElemNet model trained from scratch using the Materials
Project. Since the empirical shifts applied in the Materials Project
are not performed for OQMD, the OQMD-SC model cannot
learn about them and performs poorly when evaluated on the
Materials Project data set (which is different from the training
data set—OQMD). Especially, in the case of the experimental
data set, where the training sets in the 10-fold cross-validation
contains only ~1770 compositions, the prediction error of the
OQMD-SC model is very close to the model trained from scratch
using the experimental data set. Such observations suggest the
research question of whether using an existing model trained on
large DFT-computed data sets is better than using a prediction
model trained from scratch on relatively smaller data sets such as
ones from experimental observations containing ~1000s samples.

Impact of transfer learning. As the prediction error of both the
model trained from scratch on the experimental data set and the
OQMD-SC model (which is trained from scratch on largest DFT-
comptued data set—OQMD) against the experimental observa-
tions is poor, we decided to leverage the concept of deep transfer
learning as it enables to transfer the feature representations
learned for a particular predictive modeling task from a big
source data set to other smaller target data sets in similar
domains. For the task of transfer learning, we chose the OQMD-
SC model, which is trained from scratch on OQMD using a 9:1
random split for training and the test (validation) sets. We chose
the OQMD-SC model owing to two reasons. First, OQMD-SC
model is trained on OQMD, which is the largest data set in our
study, containing ~341 K samples. Second, the OQMD-SC model
learns the required physical and chemical interactions and simi-
larities between different elements better than other models
trained from scratch, which is again owing to the large data set
used for training (more on this later). The use of transfer learning
helps us in leveraging these chemical and physical interactions
and similarities between elements learned by the OQMD-SC
model in training models for the other relatively smaller data sets.
Unlike in the case of training from scratch, where the model
parameters are initialized randomly, here the model parameters
are initialized using the ones from the OQMD-SC model. Next,
they are fine-tuned during the new training process, to learn the
data representation from the smaller target data set.

We find that the prediction error significantly drops after using
transfer learning from OQMD-SC model. As seen in Tables 1 and 2,
the prediction error for the experimental data model almost halves.
Interestingly, the error of the model trained using transfer learning
from OQMD-SC model on JARVIS and the Materials Project
achieves even smaller error than that of the prediction error of
the OQMD-SC model itself against the OQMD data set. Since the
JARVIS and Materials Project data sets are larger than the
experimental data set, we observe better performance for JARVIS
and Materials Project. The use of transfer learning is very effective
in the case of the models trained using experimental observations.
We find that the use of transfer learning from the OQMD-SC
model moves the predictions closer to the true experimental
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observations. The prediction error of the model trained on the
experimental data set using transfer learning from OQMD-SC
model is also comparable to the prediction error of the OQMD-SC
model itself against the OQMD data set. We expect the benefit
of using deep transfer learning to improve with the increase in
the availability of experimental observations for fine-tuning
(as discussed next). We believe that an MAE of 0.06 eV/atom by
a prediction model against experimental observations is a
remarkable feat as this is comparable to and slightly better than
the existing discrepancy of DFT computations themselves against
experimental observations!?.

Impact of training data size on transfer learning. The success of
deep learning in many applications is mostly attributed to the
availability of large training data sets, which has discouraged
many researchers in the scientific community having access to
only small data sets from leveraging deep learning in their
research. In our previous work42, we demonstrated how deep
learning can be used even with small data sets (in the order of
1000s) to build more robust predictive models than the ones
using traditional ML approaches like random forest. Here, we
demonstrate how transfer learning can be leveraged even if the
target data set is very small (in the order of 100s). We demon-
strate this for the experimental data set by fixing the test
(validation) set and changing the size of the training data set from
10% to 100% with an increment of 10%, for each fold in the
10-fold cross-validation. We trained the ElemNet model from
scratch—EXP-SC, and also using transfer learning from OQMD-
SC model —EXP-TL, on training data with varying size, as
illustrated in Fig. 3. For EXP-SC, we observe a large impact of the
training data set size as the MAE decreased from 0.474 ev/atom to
0.124 ev/atom as the training data size increased from 10% to
100%. However, the impact of training data set size is sig-
nificantly lower in the case of transfer learning in the case
of EXP-TL; the MAE changes gradually from 0.108 ev/atom to

0.064 ev/atom, as the training data size changes from 10% to
100%. This illustrates that the proposed approach of deep transfer
learning can be leveraged even in the case of significantly smaller
data sets having ~100s of samples for fine-tuning provided there
exists a bigger source data set for transfer learning.

Prediction error analysis. Next, we analyzed the distribution of
prediction error of all ElemNet models: the model trained from
scratch (denoted by EXP-SC, JAR-SC, MP-SC), and the model
trained using transfer learning from OQMD-SC model (denoted
by EXP-TL, JAR-TL, MP-TL). Figure 4 illustrates the scatter plot
and cumulative distribution function (CDF) of the ElemNet
models trained from scratch and using transfer learning on dif-
ferent data sets; they contain the test predictions gathered using
10-fold cross-validation in different cases. We find that the use of
transfer learning leads to significant improvement in the pre-
diction of formation energy; the predicted values move closer to
the DFT-computed or the experimental values. The benefit of the
use of transfer learning is most significant in the case of experi-
mental data; the predicted formation energies are mostly con-
centrated along the diagonal (hence, closer to the values from
actual experimental observations). A glimpse of the CDF of the
model trained using experimental data shows the same benefit in
terms of percentiles; both the 50th and 90th percentiles of pre-
diction error reduced by almost half. We observe a similar trend
in case of JARVIS and Materials Project; although the distribu-
tions look similar, there is a clear reduction in prediction error as
predicted values become more concentrated along the diagonal of
the scatter plot in both cases. The third row in Fig. 4 illustrates the
scatter plot and CDF of the OQMD-SC model against a test set
containing 34, 145 materials from the OQMD. Although the
scatter plot appears to have a widespread in the prediction error,
most of the predictions are very close to the diagonal. This is
evident from the CDF plot, which illustrates that the 50th per-
centile error is ~0.015 eV/atom and the 90th percentile error is
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Fig. 3 Impact of training size on model performance. The models are trained on the experimental data set and the results are aggregated from a 10-fold
cross-validation (mean and standard deviation). First, we split the complete data set randomly into training and test (validation) set in the ratio of 9:1. Next,
we fixed the test (validation) set and changed the size of the training set from 10% to 100%. OQMD-SC represents the model trained from scratch on
OQMD data set, EXP-SC represents the model trained from scratch on the experimental data set, and EXP-TL represents the model built on experimental

data set using transfer learning from the OQMD-SC model.
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Fig. 4 Prediction error analysis. For OQMD-SC, ElemNet model is trained from scratch using a 9:1 random split into training and test (validation) set of
OQMD; here, we show the predictions on the test set. For other (smaller) data sets, we aggregate the predictions on the test (validation) sets from each
split of the 10-fold cross-validation. The four rows represent the four data sets: a-¢ JARVIS (JAR), d-f Materials Project (MP), g-i OQMD, and j-I the
experimental observations (EXP); first a, d, g, and j and second b, e and k (except h) columns of each row show the predictions using the model trained on
the particular data set from scratch (SC) and using transfer learning (TL), respectively, the third column ¢, f, i, and | shows the corresponding CDF of the
prediction errors using models trained from scratch (SC) and using transfer learning (TL).

~0.08 eV/atom. Hence, the OQMD-SC model predicts the for-
mation energy of most of the compounds with high precision
when compared against OQMD itself. However, OQMD-SC
model has significantly worse error distribution when compared
against other three data sets—broader spread in the scattter plot

and lower slopes for the CDF curves (Supplementary Fig. 1),
which illustrates that although the OQMD-SC model is trained
on the big DFT-computed OQMD data set, it does not always
make robust predictions against data sets computed/collected
using other techniques. A thorough analysis of the input elements
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Table 3 Performance of ElemNet models on the
experimental data in MAE (eV/atom).

Training Test data set Scratch [SC] Transfer

data set learning [TL]
OQMD Experimental  0.1354 + 0.0000 -
JARVIS Experimental ~ 0.1911+0.0042 0.1487 £ 0.0027
Materials project Experimental 0.1619 £+ 0.0020 0.1613 £ 0.0016
Experimental Experimental 0.1299£0.0136  0.0642 + 0.0061

present in the set of compounds having more than 98th percentile
error is available in the Supplementary Discussion.

Performance on experimental data. Next, we analyze the per-
formance of the prediction models trained on different DFT-
computed data sets (both trained from scratch and with transfer
learning from the OQMD-SC model), by evaluating their
performance on the experimental observations containing
1963 samples. The performance of different models on the
experimental data set is shown in Table 3. For models trained on
experimental data, we report the performance on test (validation)
sets from the 10-fold cross-validation. For JARVIS and the
Materials Project, we report the mean and standard deviation of
the predictions using 10 different models from the 10-fold cross-
validation. For OQMD, we use one OQMD-SC model 10 times
since use of Dropout®® results in different predictions for same
input. As we can observe from these results, the performance of
all the models trained on DFT-computed data sets is significantly
worse compared with their performance against unseen test sets
from the data set on which they are trained (Table 1). There is a
minor impact of the use of transfer learning for the models
trained on the JARVIS and Materials Project data set. Among all
the models trained using DFT-computed data sets, the OQMD-
SC model has the lowest discrepancy which is comparable to the
prediction error of model trained on experimental data set from
scratch. The performance of OQMD-SC model re-emphasizes the
impact of training data size, which enables the model to auto-
matically capture the physical and chemical interactions from the
input data representation that is essential for making correct
predictions. The error in predictions using different models are at
least double than that of the model trained on the experimental
data set using transfer learning from the OQMD-SC model. Our
observations demonstrate the need to leverage DFT-computed
data sets with experimental data sets to build robust prediction
models, which can make predictions closer to true experimental
observations, thereby questioning and providing an alternative to
the current practice of using predictive models built using DFT-
computed data sets alone.

Figure 5 illustrates the scatter plot of the predicted values
against the true experimental values and CDF of the correspond-
ing errors. If we look at the prediction results using the OQMD-
SC model in Fig. 5, the predictions are less concentrated on the
diagonal of the scatter plot; the 50th percentile error is 0.1 eV/
atom and the 90th percentile error is 0.28 eV/atom. This is
significantly worse than the test error of OQMD-SC model on
OQMD itself (MAE of 0.04eV/atom in Table 1) and the
discrepancy of the DFT computations for OQMD against
experimental values (0.1 eV/atom!?). This illustrates the high
deviation of the OQMD-SC model in the predicted values against
the true experimental observations. The improvement owing to
transfer learning in the prediction error distribution is negligible
for the models trained using JARVIS and Materials Project data
sets. This again illustrates the inefficacy of using a model trained
using DFT-computed data sets alone, since they will have high

prediction error against experimental observations owing to the
inherent discrepancy of the DFT computation itself against
experimental observations.

Activation analysis. Next, to understand the impact of transfer
learning on the performance of models trained using different
data sets, we analyzed the activations from different layers of
ElemNet architecture to visualize the physical and chemical
interactions and similarities captured by the model. We per-
formed two kinds of analysis for two different classification tasks
using two different data sets. The first analysis involved taking the
activations from each layer of different models and apply prin-
cipal component analysis (PCA) for dimensionality reduction;
since the number of activations varies from 1024 in the first
hidden layer to 32 in the penultimate layer, we use PCA to get
first two principal components and scale them in the range of
[0,1] for ease of visualization using a scatter plot. The second
analysis involved taking the activations from each hidden layer
without applying PCA and training a Logistic Regression for
classification using a random split of training and test set in the
ratio of 9:1. We analyze the activations to see how well they can
be used to perform three classification tasks—magnetic vs non-
magnetic (1 vs 0) from JARVIS, insulator vs metallic (1 vs 0) from
JARVIS, and insulator vs metallic (1 vs 0) from Materials Project.

Figure 6 demonstrates the scatter plot and ROC (Receiver
Operating Characteristics) curves of the Logistic Regression
model trained using activations from the first hidden layer of the
ElemNet model trained from scratch and using transfer learning
on different data sets. Logistic Regression is a statistical model
based on using a logistic function to model the binary dependent
variable for binary classification problems®®¢l. A ROC curve is
generated by plotting the true positive rate (TPR) against the false
positive rate (FPR) at a varying threshold, and the area under the
curve (AUC) of a ROC curve represents the performance
measurement for the binary classification problem® Higher the
AUC of a ROC, better is the model at distinguishing between the
binary classes. The distinction of magnetic vs non-magnetic
materials is evident from the visualization using the scatter plot of
the first two PCA components of the activations of the same
hidden layer in Fig. 6. In the case of the OQMD-SC model, we
find that the distinction between the two classes is more
distinguished, which agrees with the fact that the ElemNet model
trained on OQMD data set captures the physical and chemical
interactions between different elements automatically 42. From
the scatter plot of the first two components of the PCA analysis,
we find that other than the OQMD-SC model, other models
trained from scratch hardly capture the distinction between
magnetic and non-magnetic class (1 vs 0) from the training data
set, owing to their relatively small size used for training (first row
of Fig. 6). When using transfer learning, we find that this ability
to distinguish between magnetic and non-magnetic is passed to
the fine-tuned models, thereby enhancing the prediction
performance of the models trained using transfer learning from
the ElemNet-QOMD model. Although there is no clear boundary
between the magnetic vs non-magnetic materials in the scatter
plot, the magnetic materials are concentrated towards the lower
part of the scatter plot for the models trained using transfer
learning.

This enhancement in the ability to distinguish between
magnetic and non-magnetic materials becomes more evident if
we look at the ROC curve of the Logistic Regression model
trained using the actual activations from the same layer. As
shown in Fig. 6, the Logistic Regression models trained using
activations from the model trained using transfer learning from
OQMD-SC model exhibit a significant difference in the AUC of
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Fig. 5 Prediction error analysis on the experimental data set. The experimental data set contains 1,963 observations. For the models trained using
experimental data set, the predictions are aggregated on test (validation) sets from each split in the 10-fold cross-validation. For the models trained using
JARVIS and Materials Project, since we have 10 models from the 10-fold cross-validation during training, we take the mean of their predictions for each
data point in the experimental data set. For OQMD-SC, we make 10 predictions for each point in the experimental data set and take their mean. The four
rows represent the four data sets: a-¢ JARVIS (JAR), d-f Materials Project (MP), g-i OQMD, and j-I the experimental observations (EXP); first a, d, g, and j
and second b, e and k (except h) columns of each row show the predictions using the model trained on the particular data set from scratch (SC) and using
transfer learning (TL) respectively; the third column ¢, f, i, and | shows the corresponding CDF of the prediction errors using models trained from scratch
(SC) and using transfer learning (TL).
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Fig. 6 Activation analysis to understand the impact of transfer learning. Here, we analyze the activations from the first hidden layer of the ElemNet
architecture for understanding the impact of transfer learning on the model’s capability to automatically learn to distinguish between the magnetic vs non-
magnetic class (1and 0) from JARVIS data set. The four columns represent the models trained using four different data sets: a, e, and i using JARVIS (JAR),
b, f, and j using Materials Project (MP), ¢, g, and k using OQMD and d, h, and I using the experimental observations (EXP); the first a-d and second
e-h (except g) rows represent scatter plots demonstrating the first two principal components of the activations using principal component analysis (PCA)
technique from the models trained from scratch (SC) and using transfer learning (TL), whereas third row i-l represents the ROC curves from the Logistic
Regression model trained using complete set of activations from the same hidden layer (the corresponding AUC values are shown in brackets) on the

corresponding data sets.

the ROC curve—0.97 compared with that of ~0.93 using the
activations from the model trained from scratch (except the
OQMD-SC model). We observe a similar impact on the
classification task to distinguish magnetic and non-magnetic
materials for activations up to the first six layers. Further, we
observed similar results for insulator vs metallic class for different
data sets, and the analysis for JARVIS data set is available in the
Supplementary Fig. 2. We also performed this task on activations
of different layers for the data set from the Materials Project, and
observed similar results. An interesting observation is that
although the activation plots of all the different models trained
from scratch look distinct, they look almost similar after the use
of transfer learning from the OQMD-SC model. This illustrates
that the knowledge of chemical and physical interactions and
similarities between different elements transferred from the
OQMD-SC model dominates even after the models are fine-
tuned using the target data sets; this is because data representa-
tion learned from OQMD is very rich compared with the limited
representation present in the relatively smaller training data sets
from JARVIS, the Materials Project and the experimental
observations.

Discussion
In this work, we demonstrated the benefit of leveraging both DFT
computations and experimental observations to build more robust

prediction models whose predictions are closer to the experimental
observations compared with the predictive models built using only
DFT-computed data sets. As we already illustrated how ElemNet
can automatically capture the underlying chemistry from only
elemental fractions using artificial intelligence (deep learning) and
perform better than the traditional ML approach in our previous
work?2, here we focused on using the deep neural network archi-
tecture of ElemNet for deep transfer learning of the chemistry
learned from large data sets to smaller data sets using DFT or
experimental observations; the comparison of ElemNet against
traditional ML approaches for all data sets is available in the
Supplementary Table 1. Our analysis of the prediction models
based on different DFT-computed and experimental data sets
illuminates the fundamental problem of building prediction models
using DFT-computed data sets. Prediction models built using only
the DFT-computed values exhibit high prediction errors against the
experimental values; this results from the inherent discrepancy of
DFT computations against the experimental observations them-
selves, in addition to the error of the model against the DFT-
computed values used for its training. We expect the proposed
approach to perform better with the increasing availability of DFT
computations (for source data set) as well as an increase in the
experimental observations for fine-tuning.

We have shown the application of deep transfer learning in
predicting formation energy of materials (and hence, the stability
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of materials) such that they are closer to experimental observa-
tions, which in turn, can be used for performing more robust
combinatorial screening for hypothetical materials candidates for
new materials discovery and design?4#2. Formation energy is an
extremely important material property since it is required to
predict compound stability, generate phase diagrams, calculate
reaction enthalpies and voltages, and determine many other
important properties. Note that while formation energy is so
ubiquitous, DFT calculations allow prediction of many other
properties (such as bandgap energy, volume, energy above the
convex hull, elasticity, magnetization moment), which are very
expensive to measure experimentally. The presented approach
can be leveraged for predicting many other such materials
properties where we have large computational data sets (such as
using DFT), but small ground truth (experimental observations),
a scenario that is very common in materials science; some
examples being predicting bandgap energies of certain classes of
crystals3263:64, thermal conductivity, thermal expansion coeffi-
cients, Seebeck coefficient of thermal compounds®>%, mechanical
properties of metal alloys3%%3, magnetic properties of materials??,
and so on, for various types of applications in materials design.
DFT databases are in the order of 10%, however, the computa-
tionally hypothetical materials are in the order of 10, that is
where ML models can be extremely valuable for the pre-screening
process?442. As long as the source data set for transfer learning
contains a diverse range of chemistry and the target data set
contains compounds having similar chemistry (a subset of ele-
ments or features present in the source data set for transfer
learning), we expect the proposed method to work well. The
presented approach can also be leveraged for building more
robust predictive systems for other scientific domains where the
amount of experimental observations and ground truth is not
sufficient to train a ML model on its own, but there exists a large
set of computational/simulation data set from the same domain
for transfer learning.

Methods

Data cleaning. The input data are composed of fixed size vectors containing raw
elemental compositions as the input and formation enthalpy in eV/atom as the
output labels. The input vector is composed of non-zero values for all the elements
present in the compound and zero values for others; the composition fractions are
normalized to one. We perform two stages of data cleaning to remove single
elements and outliers. The single elements are removed since their formation
energy is zero. The samples with formation energy outside of +5¢ (o is the
standard deviation in the training set) are removed. Further, the elements not
appearing in the training data sets after cleaning are removed from the input
attribute set. Out of 118 elements in the periodic table, our data set contains the
following 86 elements—[H, Li, Be, B, C, N, O, F, Na, Mg, Al Si, P, S, Cl, K, Ca, Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc,
Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Ac, Th, Pa, U,
Np, and Pu].

Experimental settings and tools used. We have used the ElemNet*? model
architecture shown in Table 4 implemented using Python and TensorFlow®” fra-
mework. ElemNet is a 17-layered fully connected deep neural network architecture
that is designed to predict the formation energy from elemental fractions without
any manual feature engineering?2. The input for ElemNet is composed of a set of
86 elements in our data set, from Hydrogen to Plutonium except for Helium, Neon,
Argon, Polonium, Astatine, Radon, Francium, and Radium. These 86 elements
form the materials in most of the current DFT-computed data sets such as OQMD,
JARVIS, and the Materials Project. ElemNet model is trained on each data set with/
without using transfer learning using 10-fold cross-validation except when training
from scratch on OQMD; in the case of OQMD, ElemNet model is trained using a
9:1 random split into train and test (validation) sets, this is referred as OQMD-SC.
OQMD-SC model is used for transfer learning in this work. We train for 1000
epochs with a learning rate of 0.0001 and minibatch size of 32 using Adam%8
optimizer. A patience of 200 minibatch iterations is used to avoid overfitting to the
training data set; if there is no improvement in validation error for 200 minibatch
iterations, the training is stopped. Dropout® layers are leveraged to prevent
overfitting and they are not counted as a separate layer. We used ReLU?? as the
activation function. We have used the Matplotlib library in Python to plot the

Table 4 ElemNet model architecture used for training
different models.

Layer types No. of units  Activation  Layer positions
Fully connected layer 1024 RelU First to 4th
Dropout (0.8) 1024 After 4th
Fully connected layer 512 RelU 5th to 7th
Dropout (0.9) 512 After 7th
Fully connected layer 256 RelU 8th to 10th
Dropout (0.7) 256 After 10th
Fully connected layer 128 RelU 1th to 13th
Dropout (0.8) 128 After 13th
Fully connected layer 64 RelLU 14th to 15th
Fully connected layer 32 RelU 16th

Fully connected layer 1 Linear 17th

figures used in this manuscript. All the models are trained and tested using Titan X
GPUs on NVIDIA DIGITS DevBox. The training curves of the ElemNet models
trained from scratch and using transfer learning on the experimental data set are
available in Supplementary Fig. 3.

Data availability

No data sets were generated during current study. All the data sets used in the current
study are available from their corresponding public repositories—OQMD (http://oqgmd.
org), Materials Project (https://materialsproject.org), JARVIS (https://jarvis.nist.gov), and
experimental observations (https://github.com/wolverton-research-group/qmpy/blob/
master/qmpy/data/thermodata/ssub.dat).

Code availability
All the codes required to train the ElemNet model used in this study is available at
https://github.com/dipendra009/ElemNet.
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