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Primarymicrocephaly is abraingrowthdisordercharacter-
ized by a severe reduction of brain size and thinning of the
cerebral cortex. Many primary microcephaly mutations
occur in genes that encode centrosomeproteins, highlight-
ing an important role for centrosomes in cortical develop-
ment. Centrosomes are microtubule organizing centers
that participate in several processes, including controlling
polarity, catalyzing spindle assembly inmitosis, andbuild-
ing primary cilia. Understanding which of these processes
are altered and how these disruptions contribute tomicro-
cephaly pathogenesis is a central unresolved question. In
this review, we revisit the different models that have
been proposed to explainhowcentrosomedysfunction im-
pairs cortical development. We review the evidence sup-
porting a unified model in which centrosome defects
reduce cell proliferation in the developing cortex by pro-
longingmitosis and activating amitotic surveillance path-
way. Finally,we also extend our discussion to centrosome-
independent microcephaly mutations, such as those in-
volved in DNA replication and repair.

The cerebral cortex is the primary site of neural integra-
tion in the brain and serves as the ultimate control and in-
formation-processing center of the central nervous
system. Thus, generating the correct number of cortical
neurons is essential for proper brain development and
the performance of higher-order brain functions. Micro-
cephaly is a brain disorder where defects in corticogenesis
lead to the formation of fewer cells, resulting in a thinner
cerebral cortex and reduced brain size. Curiously,many of
the genes mutated in patients with primary microcephaly
encode proteins functioning at the centrosome, illustrat-
ing that cortical neurogenesis is highly sensitive to disrup-
tions in centrosome function (Faheem et al. 2015;
Jayaraman et al. 2018; Naveed et al. 2018; Marthiens
and Basto 2020).
Centrosomes function as microtubule organizing cen-

ters (MTOCs). In proliferating animal cells, centrosomes

organize the interphase microtubule network that pro-
vides cell shape and polarity and helps traffic material
within the cell (Nigg and Raff 2009; Bornens 2012; Con-
duit et al. 2015; Fu et al. 2015). Centrosomes also catalyze
the formation of the bipolar spindle inmitosis that directs
the movement of chromosomes into the two daughter
cells. In early G1 of cycling cells and in most quiescent
cells, the centrosome migrates to the cell surface to initi-
ate the formation of a primary cilium that serves as a sig-
naling antenna to sense extracellular cues (Fırat-Karalar
and Stearns 2014; Sánchez andDynlacht 2016).Mutations
in centrosome proteins can lead to disruption in any of
these cellular processes, but it remains to be determined
which of these pathways are central to microcephaly
pathogenesis.
In this review, we provide an overview of cerebral corti-

cal development and the centrosome genes that aremutat-
ed in microcephaly. We then discuss which cellular
processes are impacted by centrosome defects and high-
light which microcephaly models show evidence of de-
layed spindle assembly and prolonged mitosis. We follow
thiswith a summaryof recent advances in our understand-
ing of how cells sense and respond to time in mitosis. We
also review the evidence supporting the hypothesis that
prolongedmitosis is the central cause of impaired cortical
development inmicrocephaly caused bymutations in cen-
trosome and spindle genes. Finally, we extend our discus-
sion to additional microcephaly mutations that are not
thought to impact centrosome function, such as those in-
volved in DNA replication and repair.

Primary microcephaly

Microcephaly, derived from the Greek word for “small
head,” is a clinical term used to describe a cranium that
is significantly smaller than the average head size of the
population (three or more standard deviations below the
mean). Primary microcephaly (also known as congenital
microcephaly) refers to cases in which problems in
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prenatal developmental result in a reduced head circum-
ference and small brain at birth (Woods 2004; Woods
et al. 2005). This is distinct from secondarymicrocephaly,
which is associated with progressive neurodegeneration
and has postnatal onset.

Primary microcephaly can have both genetic and non-
genetic origins. Some examples of environmental factors
that can affect prenatal brain development and manifest
in reduced brain growth include Zika viral infection,
congenital infection with toxoplasma, and alcohol over-
consumption during pregnancy (Popova et al. 2016; Deva-
kumar et al. 2018; Antoniou et al. 2020). To distinguish
primary microcephaly caused by genetic defects from
environmentally induced congenital microcephaly, a sub-
class was established called microcephaly primary hered-
itary (MCPH), also known as autosomal recessive
microcephaly (Woods et al. 2005). The most common
clinical feature of MCPH is a reduction in size of the cere-
bral cortex without significant defects in cortical layering
architecture, although simplified cortical folding patterns
are observed in some patients. Depending on the severity
of cerebral growth impairment, MCPH patients can dis-
play mild to severe mental retardation. In some cases,
symptoms also include frequent spasticity or seizure.

In addition to MCPH, an additional group of disorders
referred to as microcephalic primordial dwarfism (MPD)
has been described in which autosomal recessive micro-
cephaly is accompanied by pre- and postnatal body growth
retardation. Syndromes classified under MPD include
Seckel syndrome, Meier-Gorlin syndrome, and microce-
phalic osteodysplastic primordial dwarfism (MOPD) (Khe-
tarpal et al. 2016). Strikingly, many MCPH- and MPD-
linked microcephaly genes encode centrosome proteins
(Table 1). Moreover, mutations in some centrosome genes
can cause either MCPH or MPD, further strengthening
the connection between these disorders and arguing for
a common cellular origin for the associated brain develop-
ment defects. Given the phenotypic and mechanistic
overlap, we discuss how mutations in MCPH- or MPD-
linked microcephaly genes (referred to here as “micro-
cephaly genes”) lead to defects in the brain, andmore spe-
cifically in cerebral cortical growth.

Cortical development and microcephaly pathogenesis

Cerebral cortical development starts with a rudimental
tubule with a single layer of highly proliferative neuroe-
pithelial cells known as the neural tube (Fig. 1A; Sauer
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Figure 1. Cortical development at different stages in humans and the equivalent time line in mice. (A) As the neural tube develops, it
enlarges into three vesicles corresponding to the forebrain, midbrain, and hindbrain regions of the adult brain. At this stage, the neural
tube wall has a single layer of neuroepithelial cells (NECs). These cells migrate to the lumen of the neural tube to divide, a phenomenon
also known as interkinetic nuclearmigration. (B) At themidstage of neurogenesis, apical radial glial cells (aRGCs) that derived fromNECs
can undergo either symmetric division to expand the progenitor pool size or asymmetric division, giving rise to basal RGCs (bRGCs) or
intermediate progenitors (IPs). Note that bRGCs are almost absent in rodents. bRGCs, IPs, and aRGCs will eventually generate postmi-
totic neurons that migrate toward the pial surface. (VZ) Ventricular zone, (SVZ) subventricular zone, (IZ) intermediate zone, (CP) cortical
plate. (C) The fully formed adult cerebral cortex consists of six layers of neurons.
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Table 1. MCPH- and MPD-linked genes

Gene OMIM classification Patient mutation reports

Centriole biogenesis
PLK4 Microcephaly and chorioretinopathy Martin et al. 2014; Shaheen et al. 2014
SASS6 MCPH Khan et al. 2014; Zhang et al. 2019b
STIL MCPH Kumar et al. 2009; Darvish et al. 2010; Papari et al. 2013;

Kakar et al. 2015
CEP152 MCPH/Seckel syndrome Guernsey et al. 2010; Kalay et al. 2011; Sajid Hussain et al.

2013
CEP135 MCPH Hussain et al. 2012; Farooq et al. 2016
CEP63 Seckel syndrome Sir et al. 2011
RTTN Microcephaly, short stature, and polymicrogyria

with seizures
Kia et al. 2012

CENPJ/SAS4/
CPAP

MCPH/Seckel syndrome Darvish et al. 2010; Sajid Hussain et al. 2013

NINEIN Seckel syndrome Dauber et al. 2012
PCM/spindle/microtubules
CDK5RAP2 MCPH Moynihan et al. 2000; Bond et al. 2005; Pagnamenta et al.

2012; Issa et al. 2013; Lancaster et al. 2013; Tan et al.
2014

PCNT MOPDII Griffith et al. 2008; Rauch et al. 2008; Willems et al. 2010;
Kantaputra et al. 2011; Weiss et al. 2020

TUBGCP4 Microcephaly and chorioretinopathy (Scheidecker et al. 2015)
TUBGCP6 Microcephaly and chorioretinopathy Puffenberger et al. 2012; Martin et al. 2014
NDE1 Microhydranencephaly/lissencephaly Kavaslar et al. 2000; Guven et al. 2012
ASPM MCPH Jamieson et al. 2000; Bond et al. 2002, 2003; Roberts et al.

2002; Pichon et al. 2004; Gul et al. 2006; Desir et al. 2008;
Muhammad et al. 2009; Nicholas et al. 2009; Passemard
et al. 2009; Darvish et al. 2010; Sajid Hussain et al. 2013;
Abdel-Hamid et al. 2016

WDR62 MCPH Roberts et al. 1999; Bilgüvar et al. 2010; Nicholas et al.
2010; Yu et al. 2010; Bhat et al. 2011; Murdock et al. 2011

KIF14 MCPH/Meckel syndrome Moawia et al. 2017; Makrythanasis et al. 2018
MAP11 MCPH Perez et al. 2019
KNL1 (CASC5) MCPH Jamieson et al. 1999; Genin et al. 2012; Saadi et al. 2016;

Zarate et al. 2016
CENP-E MCPH Mirzaa et al. 2014b
CIT MCPH Basit et al. 2016; Harding et al. 2016; Li et al. 2016a;

Shaheen et al. 2016
KIF11a Microcephaly with or without chorioretinopathy

lymphedema, or mental retardation
Ostergaard et al. 2012; Jones et al. 2014; Mirzaa et al. 2014a;
Robitaille et al. 2014; Hu et al. 2016; Li et al. 2016b; Rao
et al. 2017

Chromatin structure/DNA replication
MCPH1 MCPH Jackson et al. 2002; Neitzel et al. 2002; Trimborn et al.

2004; Garshasbi et al. 2006; Darvish et al. 2010
ORC1 Meier-Gorlin syndrome Bicknell et al. 2011a; Guernsey et al. 2011
ORC4 Meier-Gorlin syndrome Bicknell et al. 2011a; Guernsey et al. 2011
ORC6 Meier-Gorlin syndrome De Munnik et al. 2012; Shalev et al. 2015
CDC45 Meier-Gorlin syndrome Fenwick et al. 2016
CDT1 Meier-Gorlin syndrome Bicknell et al. 2011a; Guernsey et al. 2011
GMNNa Meier-Gorlin syndrome Burrage et al. 2015
NSMCE2 Seckel syndrome Payne et al. 2014
NCAPH MCPH Martin et al. 2016
NCAPD2 MCPH Martin et al. 2016; Reuter et al. 2017
NCAPD3 MCPH Martin et al. 2016
Minor intron splicing
U4ATAC MOPDI Edery et al. 2011; He et al. 2011; Abdel-Salam et al. 2012
CENATAC/
CCDC84

MOPDI Wolf et al. 2021

Nuclear envelope
LMNB1a Autosomal dominant primary microcephaly Cristofoli et al. 2020; Parry et al. 2021
LMNB2 MCPH Parry et al. 2021

Continued
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1935). During the early stages of neurogenesis, neuroepi-
thelial cells undergo rapid divisions to expand the stem
cell pool and thicken the wall of the neural tube (Fujita
1964; Rakic 1995). At the midstage of neurogenesis, the
neural progenitor cells (NPCs) within the neural tube
can be subdivided into apical and basal progenitors (Flo-
rio and Huttner 2014). Apical progenitor cells lie adja-
cent to the ventricle surface in a region known as the
ventricular zone (VZ). The subventricular zone (SVZ)
lies adjacent to the VZ and contains basal progenitor
cells (Fig. 1B).

The VZ contains several types of progenitors, including
apical radial glial cells (aRGCs), apical intermediate pro-
genitors, and subapical progenitors (Schultze and Korr
1981; Malatesta et al. 2003; Götz and Huttner 2005; Gal
et al. 2006; Pilz et al. 2013; Tyler and Haydar 2013).
Among these, aRGC is the predominant class of progeni-
tor within the VZ (Noctor et al. 2002). These cells are
named after their distinct morphology, where long radial
processes connect the cell body to the outer and inner bor-
der of the neural tube wall. During each cell cycle, the nu-
clei of aRGCs translocate toward the lumen of the neural
tube, a phenomenonknown as interkinetic nuclearmigra-
tion, where mitosis takes place (Sauer and Walker 1959;
Taverna and Huttner 2010). Once created, the two daugh-
ter nuclei migrate away from the ventricular surface.
aRGCs initially undergo several rounds of symmetric, or
proliferative, divisions to generate two identical daugh-
ters, further expanding the number of progenitors within
the developing cortex. As neurogenesis progresses, aRGCs
undergo asymmetric divisions, giving rise to one stem cell
and one fate-restricted daughter cell such as a basal pro-
genitor or postmitotic neuron (Götz and Huttner 2005;
Taverna et al. 2014). Cell divisions that give rise to neu-
rons are considered neurogenic or nonproliferative
divisions.

In rodents, basal progenitors mainly consist of interme-
diate progenitors (IPs) (Miyata et al. 2004; Noctor et al.
2004; Kowalczyk et al. 2009; Franco and Müller 2013).
IPs can undergo either one to two additional round of divi-
sion to generate more IPs or commit to terminal division,
generating two daughter neurons (Haubensak et al. 2004;
Wu et al. 2005). In primates such as humans, basal progen-
itors are comprised of IPs and a second cell type termed

the basal RGCs (bRGCs, also known as outer RGCs) (Fietz
et al. 2010; Hansen et al. 2010; Reillo et al. 2011). bRGCs
arise from divisions of aRGCs and retain their basal pro-
cesses that connect them to the pial surface. bRGCs are
highly neurogenic and are implicated in the development
of cortical folds or gyri (Penisson et al. 2019). The low
abundance of bRGCs is thought to contribute to the
lack of cortical folds in rodents, resulting in lissencephalic
(smooth) brains (Betizeau et al. 2013).

Once a cell has committed to a neuronal fate, it mi-
grates radially outward along the basal processes that at-
tach RGCs to the outer pial wall (Rakic 1971). Neurons
that are generated earlier in development are destined
for the deeper layers of the cortex, while later-forming
neurons migrate past pre-established sections to succes-
sively add the superficial layers (McConnell and Kaznow-
ski 1991). At the time of birth, the newborn neocortex has
a six-layer neuronal structure (Fig. 1C). At this stage, most
of the NPC population has been exhausted, and all the
neurons that contribute to cortical architecture and func-
tion have been produced. It is worth mentioning that to-
ward the end of neurogenesis, RGCs also participate in
generating cells of the glial lineage such as astrocytes
and microglial, a process termed gliogenesis (Qian et al.
2000). Glial cells are essential for proper neuronal func-
tion, as they are involved in both synaptic formation and
synaptic pruning to ensure proper neuronal connections
are generated (Jäkel and Dimou 2017).

The formation of a smaller brain and a thinner cerebral
cortex in microcephaly patients originates from defects
that arise during NPC development. Specifically, the
pool of NPCs is significantly depleted through either pre-
mature commitment to neurogenic division or death of
progenitors and their subsequent progeny. This eventual-
ly leads to the generation of fewer cells in the cerebral cor-
tex. Thus, understanding what triggers NPCs to undergo
these fate changes is fundamental to deciphering how cor-
tical development is impaired in microcephaly.

The molecular genetics of primary microcephaly

Studies in the past two decades have identified many ge-
netic mutations that are responsible for causing MCPH

Table 1. Continued

Gene OMIM classification Patient mutation reports

Other
ANKLE2 MCPH Yamamoto et al. 2014; Shaheen et al. 2019
CDK6 MCPH Hussain et al. 2013
ZNF335 MCPH Yang et al. 2012; Sato et al. 2016; Stouffs et al. 2018
PHC1 MCPH Awad et al. 2013
MFSD2A Neurodevelopmental disorder with progressive

microcephaly, spasticity, and brain abnormalities
Alakbarzade et al. 2015; Guemez-Gamboa et al. 2015; Harel

et al. 2018
WDFY3/ALFYa Autosomal dominant primary microcephaly Kadir et al. 2016
COPB2 MCPH DiStasio et al. 2017
RRP7A MCPH Farooq et al. 2020

a(AD) Autosomal dominant
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and MPD. These discoveries have revealed a strikingly
consistent theme: Cortical development is highly sensi-
tive to the disruption of mitotic structures such as the
centrosome or the mitotic spindle (Jayaraman et al.
2018; Naveed et al. 2018; Degrassi et al. 2020; Marthiens
and Basto 2020). Indeed, some of the earliest MCPH genes
identified included WDR62, CDK5RAP2, ASPM, CPAP
(CENPJ/SAS4), STIL, CEP135, and CEP152, all of which
encode proteins that localize and function at the centro-
some (Roberts et al. 1999; Moynihan et al. 2000; Pattison
et al. 2000; Leal et al. 2003; Kumar et al. 2009; Guernsey
et al. 2010; Hussain et al. 2012). In this section, we high-
light the microcephaly mutations that fall into two broad
functional categories:mutations in genes required for cen-
trosome function and those that operatewithin themitot-
ic spindle. We also discuss how microcephaly mutations
in these genes compromise protein function, and how
this in turn influences centrosome integrity, mitotic pro-
gression, and the outcome of cell division.

Centrioles, centrosomes, and cilia

A centrosome is comprised of twomain components: cen-
trioles and the surrounding pericentriolar material (PCM)
(Fig. 2). Centrioles are microtubule-based structures with
an evolutionarily conserved ninefold rotational symmetry
that form the core of centrosomes and recruit the proteins
of the surrounding PCM. The PCM is a layered assembly
of proteins that recruits factors responsible for nucleating
and anchoring microtubules (Woodruff et al. 2014). Cen-
trioles, on the other hand, are the replicating unit of the
centrosome, and their duplication controls centrosome
copy number.
Centrioles have dual lives: In addition to forming the

core of centrosomes, centrioles are also required for the

formation of cilia and flagella (Breslow and Holland
2019). Cilia are hair-like projections that protrude from
the cell surface and are classified into either motile cilia
that drive fluid movement or nonmotile primary cilia
that function in signaling. In quiescent cells, centrioles
migrate to the plasmamembrane where the parent centri-
ole docks to act as a basal body that directs the assembly of
a cilium. Primary cilia are found inmost cell types and act
to sense extracellular cues and regulate intracellular sig-
naling pathways, including Hedgehog and Wnt signaling.
In cycling cells, cilia are formed in early G1 and disassem-
bled prior to mitosis so that the centrioles can be released
to form centrosomes that participate in organizing themi-
totic spindle.
Mutations in centriole genes are frequent inMCPH and

MPD patients. However, because centrioles play impor-
tant roles in the formation of both centrosomes and cilia,
it can be challenging to define to what extent microceph-
aly is caused by centrosome or cilium dysfunction. Prima-
ry cilia are present in most cells of the brain and play
important roles in early cortical patterning, expansion of
NPCs, and the specification of adult neural stem cells
(Hasenpusch-Theil and Theil 2021). Consequently, pa-
tients with primary cilium dysfunction, or ciliopathies,
often display a broad collection of brain phenotypes that
includesmicrocephaly (Andreu-Cervera et al. 2021). How-
ever, while microcephaly can occur in isolation in MCPH
patients, microcephaly that is linked to ciliopathies oc-
curs in the context of syndromes with wide-ranging phe-
notypes that manifest across multiple organ systems.
Furthermore, mutations in genes that are only required
to build cilia and not centrosomes have never been identi-
fied in MCPH patients, suggesting that cilium defects are
unlikely to be the only feature driving the pathology in
these patients.

Figure 2. Centrosome biogenesis cycle. G1 cells
contain a single centrosome comprising a pair of cen-
trioles surrounded by the pericentriolar material
(PCM). The mature parent centriole is decorated
with distal and subdistal appendages, while the im-
mature centriole lacks these structures. In S phase, a
single procentriole forms on both parent centrioles.
Throughout S and G2 phases, the procentrioles elon-
gate, and in late G2, the two centrosomes separate
and undergo PCM expansion. During mitosis, the
two centrosomes act to catalyze the assembly of the
bipolarmicrotubule spindle apparatus onwhich chro-
mosomes are segregated. Themature parent centriole
can also dockat the cellmembrane and initiate the as-
sembly of a primary cilium in early G1 in the case of
dividing cells, or during G0 phase in quiescent cells.

Molecular mechanisms of primary microcephaly
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Mutations in genes required for centriole assembly

Centriole copy number is tightly regulated in proliferating
cells. At the beginning of the cell cycle, each cell has a sin-
gle centrosome containing a pair of centrioles (Fig. 2). In
G1, the two parent centrioles differ in age and structure,
with the older parent centriole possessing distal and sub-
distal appendages at the distal end. The distal appendages
are required for the docking of the centriole to the plasma
membrane and building a cilium, while the subdistal ap-
pendages are involved in microtubule anchoring. In cy-
cling cells, the two parent centrioles duplicate once in S
phase to produce two procentrioles. Work in multiple
model systems has revealed that centriole assembly is
controlled by a conserved subset of proteins that includes
PLK4, SASS6, STIL, CPAP (CENPJ), CEP135, CEP152,
and RTTN (Nigg and Holland 2018). Centriole duplica-
tion begins in S phase, when PLK4, the master regulator
of centriole biogenesis, is recruited to the wall of the
two parent centrioles by its receptor proteins, CEP152
and CEP192 (Cizmecioglu et al. 2010; Hatch et al. 2010;
Kim et al. 2013; Sonnen et al. 2013; Park et al. 2014).
Through mechanisms that are still not understood,
PLK4 coalesces into a single site on each parent centriole
to mark the site for future procentriole assembly. Local
PLK4 kinase activity helps recruit STIL, followed by addi-
tional proteins required to assemble the procentriole such
as SASS6, CEP135, CPAP, and RTTN (Dzhindzhev et al.
2014; Ohta et al. 2014; Arquint et al. 2015; Kratz et al.
2015; Moyer et al. 2015; Sharma et al. 2016). This process
ensures that by the time the cell reachesmitosis, there are
two centrosomes, each of which contains a pair of centri-
oles. At the end ofmitosis, the two centrosomes are divid-
ed equally so that each daughter cell inherits a single copy.
Thus, a single cycle of duplication followed by the equal
partitioning of the centrioles during cell division ensures
that centriole and centrosome copy number is strictly
maintained in dividing cells.

Strikingly,manyof the central regulators of centriole as-
semblyhavebeen found tobemutated inmicrocephalypa-
tients (Fig. 3A). In all cases where it has been tested,
complete loss of these genes leads to embryonic or perina-
tal lethality in mice, and consequently patient mutations
in the core centriole assembly factors are likely to be hypo-
morphic (Izraeli et al. 1999; Hudson et al. 2001; Smart
2002; Ko et al. 2005; Basto et al. 2006; Pfaff et al. 2007;
Kia et al. 2012; Bazzi andAnderson 2014; González-Martí-
nez et al. 2021). Many microcephaly mutants of centriole
assembly genes are nonsense or frameshift mutations
that introduce a premature termination codon and pro-
duce truncated proteins that lack key functional domains
(Fig. 3B). In some cases, microcephaly mutations reduce
protein abundance or generate point mutations within in-
teraction domains required for centriole biogenesis (Bond
et al. 2005; Papari et al. 2013; Chen et al. 2017; Khan
et al. 2017). For instance, an MCPH-linked E1235Vmuta-
tion in CPAP significantly reduces its binding to STIL and
consequently disrupts procentriole assembly (Tang et al.
2011; Cottee et al. 2013; Hatzopoulos et al. 2013; Zheng
et al. 2014). Microcephaly mutations can also alter RNA

splicing, through either deletion of known splice sites or
the creation of new splice acceptors (Farooq et al. 2016;
Dinçer et al. 2017). Thus, disruption of centriole assembly
and a subsequent reduction in centriole number appear to
be common consequences of microcephaly mutations.

Nevertheless, microcephaly mutations in centriolar
genes do not always lead to centriole loss. Two different
nonsense mutations in STIL have been found to increase
protein stability and cause centriole amplification
(Arquint and Nigg 2014). Furthermore, driving centriole
amplification in the brains of mice can also lead to NPC
depletion and microcephaly (Marthiens et al. 2013). In ad-
dition, some microcephaly mutations that have been ex-
perientially tested do not have a clear impact on
centriole number, although alterations in centriole struc-
ture were not examined (Chen et al. 2017). Importantly,
there are few examples where centriole number has
been examined in cells derived from patients with micro-
cephaly-linked mutations. This underscores the impor-
tance of functionally characterizing more microcephaly
mutations to obtain insight on how they cause disease
in human patients.

Microcephaly mutations in PCM and spindle proteins

In addition tomutations in genes directly involved in cen-
triole assembly, a second class of MCPH mutations is
found in genes involved in mitotic spindle organization
and microtubule dynamics. This includes genes encoding
PCM proteins, proteins that regulate mitotic spindle as-
sembly or microtubule dynamics, and those that localize
to kinetochores. Despite having diverse functional roles,
all these proteins contribute to timely and faithful pro-
gression through mitosis.

Following centriole duplication in S phase, centrosomes
undergo PCM expansion in G2 in preparation for mitotic
spindle formation (Fig. 2). This is marked by both the in-
creased recruitment of the PCM scaffolding proteins
PCNT, CDK5RAP2, and CEP192 and the increased dock-
ing of microtubule-nucleating γ-Tubulin complexes
(Woodruff et al. 2014). In mitosis, the two centrosomes
catalyze the formation of a bipolar spindle on which chro-
mosomes are segregated. Mutations in PCM scaffolding
proteins have been shown to cause microcephaly. For ex-
ample, mutations in CDK5RAP2 are linked toMCPH and
Seckel syndrome, while MOPD type II is caused by muta-
tions in PCNT (Fig. 3B; Bond et al. 2005; Hassan et al.
2007; Rauch et al. 2008; Pagnamenta et al. 2012; Pachajoa
et al. 2014; Li et al. 2015; Yigit et al. 2015; Dehghan Tezer-
jani et al. 2020). Intriguingly, the depletion of the PCM
scaffolding proteins in cultured cells showed that
CEP192, but not PCNT and CDK5RAP2, is essential for
bipolar spindle assembly (Watanabe et al. 2020; Chinen
et al. 2021), providing an explanation for why no micro-
cephaly mutations in CEP192 have been identified to
date. In addition to alterations in PCNT and CDK5RAP2,
mutations in components of the γ-Tubulin complex have
also been identified in MPD patients (Puffenberger et al.
2012; Scheidecker et al. 2015; Martin et al. 2016). Mean-
while, mutations in NINEIN, a protein that recruits the
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Figure 3. The molecular genetics of primary microcephaly. (A) Genes implicated in MCPH andMPD classified by functional group and
subcellular localization. (B) Schematic of representative centrosome and spindle proteins mutated in microcephaly. Protein domains and
regions of interactions are depicted based on studies by Gillingham and Munro (2000), Kohlmaier (2009), Carvalho-Santos et al. (2010),
Hatch et al. (2010), Holland et al. (2010), Van Breugel et al. (2011), Issa et al. (2013), Kim et al. (2013), Lin et al. (2013), Sonnen et al.
(2013), Arquint et al. (2015),Mori et al. (2015), Chen et al. (2017), and Patwardhan et al. (2018). (SMC-A/B) Structuralmaintenance of chro-
mosomes (SMC)-like domain A/B, (PBD) polo-box domain, (CR1/2) conserved region 1/2, (CC) coiled-coil region, (STAN) Stil/Ana2
domain, (PISA) present in SAS-6, (TCP) T complex protein 10 domain, (CH) calponin homology domain, (MBD)MKK7β1 binding domain,
(JBD) JNK binding domain, (LHD) loop helix domain.
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γ-Tubulin complex to the subdistal appendages of thema-
ture parent centriole, are linked to Seckel syndrome
(Dauber et al. 2012). Although the effect of these micro-
cephaly mutations on PCM function have yet to be evalu-
ated, it is plausible that they function to reduce the
microtubule-nucleating activity of centrosomes while
still allowing spindle assembly and chromosome segrega-
tion to take place.

Some proteins mutated in MCPH and Seckel patients,
such as WDR62 and ASPM, localize to the spindle poles
but are not part of the PCM. ASPM or WDR62 knockout
animals are viable (Pulvers et al. 2010; Jayaraman et al.
2016; Johnson et al. 2018), which may explain why muta-
tions in these two genes are prevalent in human micro-
cephaly patients (Bond et al. 2002; Kumar et al. 2004;
Shen et al. 2005; Saadi et al. 2009; Bilgüvar et al. 2010;
Nicholas et al. 2010; Yu et al. 2010; Bhat et al. 2011; Mur-
dock et al. 2011). Indeed, many ASPM or WDR62 MCPH
mutations are frameshifting or nonsense mutations dis-
tributed across the entire length of both genes (Fig. 3B).
Considering that both genes are nonessential, it is plausi-
ble that at least some of these mutations create true null
alleles. In cells, loss of ASPM orWDR62 leads to multiple
mitotic abnormalities, including defective spindle orien-
tation (Fish et al. 2006; Higgins et al. 2010; Bogoyevitch
et al. 2012; Gai et al. 2016; Miyamoto et al. 2017), delayed
spindle assembly and mitotic progression (Bogoyevitch
et al. 2012; Chen et al. 2014b), and an increased frequency
of lagging chromosomes (Guerreiro et al. 2021).

Other MCPH and MPD genes with clear mitotic func-
tions include genes encoding the kinetochore proteins
KNL1 (or CASC5) and CENPE (Jamieson et al. 1999;
Genin et al. 2012; Mirzaa et al. 2014b; Saadi et al. 2016;
Zarate et al. 2016), the microtubule motor proteins
KIF11 and KIF14 (Ostergaard et al. 2012; Jones et al.
2014; Robitaille et al. 2014; Li et al. 2016b; Moawia
et al. 2017; Makrythanasis et al. 2018), citron kinase
(CIT), and the microtubule-associated protein MAP11
(DiCunto et al. 2000; Basit et al. 2016; Gai et al. 2016;Har-
ding et al. 2016; Li et al. 2016a; Shaheen et al. 2016; Perez
et al. 2019). Kinetochore proteins such as KNL1 and
CENPE function to ensure the correct attachment of chro-
mosomes to microtubules of the mitotic spindle, and
knockout of these genes increases the frequency of chro-
mosome missegregation and aneuploidy. Widespread an-
euploidy is not tolerated in vivo, explaining why
knockout of KNL1 or CENPE is embryonic lethal in
mice (Weaver et al. 2003; Shi et al. 2019). Studies of several
microcephaly mutations in KNL1 have shown signifi-
cantly reduced protein levels (Saadi et al. 2016; Zarate
et al. 2016), while similar analyses suggest that some mi-
crocephaly mutations in CENPE have impaired kineto-
chore localization (Mirzaa et al. 2014b). KIF11 (or EG5)
is an essential kinesin required for the formation of the
mitotic spindle (Blangy et al. 1995). Inhibition of KIF11
prevents bipolar spindle assembly and arrests cells in
prometaphase, while mutations in its motor domain
slow down progression through mitosis (Kwok et al.
2004; Skoufias et al. 2006). MAP11, KIF14, and CIT have
all been described to function at the midbody where

they play important roles in cytokinesis (Gruneberg
et al. 2006; Basit et al. 2016; Moawia et al. 2017; Perez
et al. 2019). Consistently, microcephaly-linkedmutations
in KIF14 and CIT are reported to increase the frequency of
cytokinesis failure and the generation of polyploid proge-
ny (Bianchi et al. 2017; Moawia et al. 2017). Polyploidy
can be tolerated in certain tissues such as the liver but
has yet to be reported in patients or animal models of mi-
crocephaly (Sladky et al. 2021).

As the list of causative mutations in MCPH and MPD
patients continues to grow, more effort will be required
to characterize these mutations and how they impact pro-
tein abundance and function. Much of the current re-
search has modeled microcephaly mutations with the
knockout of gene function in cell culture systems. The
ability to generate precise edits at the endogenous locus
now opens the exciting possibility of modeling micro-
cephaly mutations in vivo to investigate their impact in
the context of cortical development. Together with the
emergence of newmodel systems such as ferrets and brain
organoids that more closely mimic human brain develop-
ment, we can look forward to a better understanding of
howmutations in primarymicrocephaly genes link to dis-
ease phenotypes.

Centrosome and spindle dysfunction in microcephaly

The abundance ofmicrocephalymutations in centrosome
genes strongly suggests thatbraindevelopment is especial-
ly susceptible to disruptions in this organelle. In the fol-
lowing section, we explore the ways in which
centrosomes contribute to normal cortical development
and howmutations in centrosome genes can perturb these
processes (Jayaraman et al. 2018; Naveed et al. 2018;
O’Neill et al. 2018; Marthiens and Basto 2020; Yang
et al. 2021).We also outline the variousmodels for howde-
fects in centrosome proteins lead to premature differentia-
tion or cell death in NPCs. Considering that centrosomes
are present in many cell types, we discuss how alterations
in ubiquitously expressed centrosome proteins can, in
some cases, cause selective defects in brain development.

Spindle orientation, centrosome positioning,
and asymmetric centrosome inheritance

In the developing mammalian cortex, aRGCs initially di-
vide symmetrically to produce identical daughter cells
that can continue to proliferate through many rounds of
division. As cortical development progress, these cells
start switching to asymmetric divisions, with only one
of the two daughter cells maintaining the original aRGC
identity (Götz and Huttner 2005; Taverna et al. 2014).
The timing of this commitment to asymmetric division
has a direct impact on how long RCGs continue to self-re-
new, and subsequently how many neurons are generated.

Previous studies of cortical development have proposed
that cells that dividewith their spindle oriented parallel to
the ventricular surface undergo symmetric division,while
cells with spindles that deviate from this angle divide
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asymmetrically (Chenn and McConnell 1995; Kosodo
et al. 2004; Sanada and Tsai 2005). Since centrosome posi-
tioning dictates the orientation of the mitotic spindle, it
seems reasonable to assume that mutations in centro-
some genes could deplete NPCs by disrupting spindle
alignment and affecting the onset and/or frequency of
asymmetric divisions. Nevertheless, this model has
been challenged by several studies in mice where disrup-
tion of the epithelial architecture changes spindle orienta-
tion but does not lead to microcephaly (Imai et al. 2006;
Rašin et al. 2007). Moreover, knockout of LGN, a protein
that links astral microtubules to the cell cortex, random-
izes spindle orientation in aRGCs without affecting the
rate of neuron production (Konno et al. 2008). Finally, sev-
eral mouse models that lack microcephaly genes exhibit
microcephaly without showing changes in spindle orien-
tation or the ratio of symmetric to asymmetric cell divi-
sions (Table 2). This argues that spindle misorientation
is unlikely to be a common cause of neuronal reduction
and cortical thinning in microcephaly.
In addition to the cleavage plane orientation, spindle

size asymmetry has also been proposed to influence the
outcome of NPC divisions.Drosophila neuroblasts gener-
ate an asymmetric mitotic spindle that leads to the pro-
duction of a highly proliferative neuroblast and a smaller
transit-amplifying ganglionmother cell that is committed
to generating neurons or glial cells (Kaltschmidt et al.
1999). This led to the hypothesis that spindle asymmetry
in neuroblasts helps determine the asymmetric fate
choice of the two daughter cells. A similar model has
been proposed forNPCdivision inmice, though the asym-
metry in spindle size in NPCs is much less pronounced
(Delaunay et al. 2014). Thus, whether asymmetric spindle
size strongly correlates with cell fate inmouse cortical de-
velopment remains unclear.
An alternative proposal for how centrioles can influ-

ence the outcome of aRGC division is through the asym-
metric inheritance of the two parent centrioles. In G1-
phase cells, only the older mature parent centriole is dec-
orated with distal appendage proteins required for cilium
assembly. Each aRGC possesses a single primary cilium
that connects its apical process to the ventricular sur-
face. When aRGCs undergo cell division, their primary
cilia disassemble, and the parent centriole undocks
from the membrane through endocytosis and remains as-
sociated with ciliary membrane remnants (Paridaen et al.
2013). The centriole-associated ciliary membrane retains
receptors for Sonic Hedgehog signaling that persist
through mitosis and are inherited by the daughter cell
that acquires the older mature parent centriole. In the
following cell cycle, the ciliary remnants are thought
to allow the rapid reassembly of a primary cilium. Dur-
ing the peak of neurogenesis, the older parent centriole
is preferentially inherited by the aRGC, while the youn-
ger parent centriole is selectively passed on to the differ-
entiating progeny (Wang et al. 2009). This led to the
proposal that preferential inheritance of the older centri-
ole promotes the early reassembly of a primary cilium
that is used to maintain aRGC identity (Paridaen et al.
2013). Despite being an attractive model for asymmetric

cell fate determination, this model does not readily ex-
plain how aRGCs undergo symmetric divisions to gener-
ate daughter cells with the same fate, since centriole
inheritance is always asymmetric. This suggests that ad-
ditional mechanisms must exist to regulate the fate of
aRGC progeny.
A recent study reported that mice lacking CEP83, a dis-

tal appendage protein required for docking of the centriole
at the plasma membrane, overproduce NPCs, leading to
megacephaly or brain overgrowth (Shao et al. 2020). In
this case, the loss of centrosome anchorage at the ventri-
cle surface increases the stiffness of the apical membrane,
which in turn activates mechanically sensitive HIPPO
signaling to induce excessiveNPC proliferation. This sug-
gests that centrosomes can regulate the mechanical prop-
erties of NPCs to influence the size of the developing
cortex.

Cell cycle regulation

Is has long been appreciated that the cell cycle length of
NPCs increases with the progression of cortical develop-
ment, and this coincides with an increase in neurogenic
divisions (Schultze and Korr 1981; Dehay et al. 1993;
Takahashi et al. 1995; Kornack and Rakic 1998). In
mice, this increase in total cell cycle length is predomi-
nantly due to the lengthening of G1 phase. This has led
to the “cell cycle length hypothesis” (Calegari et al.
2005; Lange et al. 2009; Pilaz et al. 2009), which postulates
that differences in G1 duration determine whether NPCs
continue to proliferate or commit to differentiation. In
support of this theory, extending time in G1 through
down-regulation of CDK activity was sufficient to induce
neuronal differentiation in whole-embryo mouse cultures
(Calegari and Huttner 2003).
This raises the question of whether G1 lengthening

could be responsible for the onset of precocious neurogen-
ic divisions in microcephaly patients. Studies in patient-
derived fibroblasts carrying a CPAP truncating mutation
revealed defects in cilium disassembly in G1/G0, which
in turn delayed cell cycle progression (Gabriel et al.
2016). Brain organoids generated from these fibroblasts
showed evidence of premature neuronal differentiation,
supporting a model in which the lengthening of G1
through delayed cilium resorption could contribute to re-
duced neuronal production. Similar defects in cilium dis-
assembly and cell cycle re-entry have also been reported
from studies in mice lacking WDR62 (Sgourdou et al.
2017). An additional component of the cilium disassem-
bly complex NDE1 has also been implicated in micro-
cephaly accompanied by lissencephaly but whether
microcephaly-linked mutations in NDE1 alter cell cycle
length is unclear (Alkuraya et al. 2011).
It is important to note that a correlation between chang-

es in the cell cycle and neuronal fate is not just limited to
variation in the length of G1. Studies in the developing
mouse cortex have revealed that S phase becomes shorter
as progenitor cells commit to neurogenic divisions (Arai
et al. 2011). In addition, studies using ferret models have
revealed that shortening of S phase, rather than an

Molecular mechanisms of primary microcephaly
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extension of G1, is the main source of cell cycle variation
during neocortical development (Turrero García et al.
2016), while similar work performed in macaques show
a combination of shorter S phase and longer G1 (Betizeau
et al. 2013). This indicates that theremay be differences in
how cell cycle regulation dictates cell fate in lissence-
phalic mouse brains versus gyrencephalic animals such
as ferrets and primates. Furthermore, premature neuronal
differentiation because of cell cycle lengthening cannot
account for the cell death commonly observed in micro-
cephaly models (Table 2), suggesting that additional
mechanisms are likely involved.

Spindle assembly and delay in mitosis

Centrosomes serve as a major site of microtubule nu-
cleation in most dividing cells and were originally
thought to be critical for spindle assembly. However,
it is now clear that although centrosomes are a domi-
nant source of microtubule nucleation in mitosis, mi-
totic spindle assembly and cell division can still
occur in the absence of centrosomes. In other words,
cells have additional microtubule nucleation pathways
that can also contribute to mitotic spindle formation
(Petry 2016). One centrosome-independent source of
microtubule nucleation emanates from chromosomes
and relies on the generation of Ran-GTP from chroma-
tin that leads to the release of spindle assembly factors
in the vicinity of chromosomes (McKim and Hawley
1995; Heald et al. 1996). New microtubules can also
be generated from existing microtubules within the mi-
totic spindle. This amplification pathway depends on
the Augmin complex, which binds to the microtubule
wall and nucleates a new microtubule parallel to the
template fiber (Goshima et al. 2008; Kamasaki et al.
2013). How the centrosome, chromatin, and Augmin-
mediated microtubule nucleation pathways are coordi-
nated to generate a functional spindle is an area of ac-
tive research.

It is worth asking: If cells can use several pathways to
build a mitotic spindle, what advantage does the centro-
some provide? One advantage of centrosome-mediated
spindle assembly is that centrosomes increase the fidelity
of chromosome transmission during cell division by
ensuring the formation of exactly two spindle poles.
In addition, centrosomes promote efficient microtubule
nucleation through PCM activity and thereby act to speed
up progression through mitosis. As a result, cells lacking
centrosomes have delayed spindle assembly and take, on
average, two to three times longer to complete mitosis
(Fong et al. 2016; Lambrus et al. 2016; Meitinger et al.
2016). InNPCs, spindle assembly occurs rapidly andmito-
sis generally completes in ≤30min (Pilaz et al. 2016; Phan
et al. 2021). Therefore, mutations in centrosome proteins
or other factors that participate in mitotic spindle assem-
bly are expected to delay NPC progression through cell
division and possibly increase the frequency of cell divi-
sion errors. In the following section, we outline the evi-
dence that suggests a mitotic delay may be a common

mechanism by which microcephaly mutations lead to
the depletion of NPCs in the developing cerebral cortex.

The mitotic surveillance pathway

Mitosis is a highly dynamic phase of the cell cycle when
cells are susceptible to genomic alterations through the
breakage or missegregation of chromosomes (Levine and
Holland 2018). Cells reduce the risk of these defects by
carefully monitoring DNA integrity and kinetochore–mi-
crotubule attachments with quality control checkpoints
(Barnum and O’Connell 2014). A well-established exam-
ple of this is the spindle assembly checkpoint (SAC),
which functions to delay the onset of anaphase until all
chromosomes are correctly attached to the mitotic spin-
dle. Recently, an additional mitotic fail-safe was identi-
fied, known as the mitotic surveillance pathway (MSP),
which prevents the growth of cells that had undergone a
prolonged mitosis (Uetake and Sluder 2010; Fong et al.
2016; Lambrus et al. 2016; Meitinger et al. 2016). Specifi-
cally, nontransformed cells in culture that arise from a de-
layed mitosis (∼120 min or longer instead of the average
∼30 min) undergo a G1 arrest even if cell division errors
are avoided. This suggests that there exists an optimal
window of time for the completion of mitosis: At their
quickest, cells need to be inmitosis long enough to satisfy
the SAC and accurately segregate their chromosomes;
however, there is an upper threshold for how long cells
can stay in mitosis before the MSP is activated, and fur-
ther proliferation is suppressed.

A central question is why a pathway would evolve to
curb the growth of cells that experience prolonged mito-
sis, even in the absence of cell division errors. An attrac-
tive possibility is that cells use mitotic length as a
surrogate for cell health and/or mitotic fidelity (Lambrus
and Holland 2017). Although mitotic errors that produce
complex karyotypeswith altered chromosomal structures
trigger a P53-dependent cell cycle arrest, modest levels of
whole-chromosome segregation errors often fail to acti-
vate this response (Santaguida et al. 2017; Soto et al.
2017). Thus, the MSP may serve as an additional fail-
safe to prevent the growth of cells with an increased risk
of accumulatingmitotic errors. This fits with the observa-
tion that the frequency of cell division errors typically in-
creases with mitotic duration.

Components of the mitotic surveillance pathway

Through several genome-wide screens, three central play-
ers in the MSP have been identified: 53BP1, USP28, and
P53. 53BP1 directly interacts with both USP28 and P53
through distinct interfaces in 53BP1’s C-terminal BRCT
repeats. Knockout of 53BP1 or USP28 prevents the stabili-
zation of P53 in cells that experience prolonged mitosis,
indicating that 53BP1 and USP28 lie upstream of P53 in
this signaling axis (Fong et al. 2016; Lambrus et al. 2016;
Meitinger et al. 2016). While it remains unclear how cells
monitor mitotic length and activate the MSP, a mitotic
timekeeper that relies on post-translational modifications
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of 53BP1 and/or USP28 remains an attractive hypothesis
(Gliech and Holland 2020).
Although 53BP1 and P53 play established roles in DNA

damage signaling, several lines of evidence from work in
cultured cells argue that their role in the MSP is indepen-
dent of DNA damage signaling. First, while cells that un-
dergo extreme increases in mitotic length (≥6 h)
accumulate extensive DNA damage as a result of telo-
mere deprotection (Hayashi et al. 2012), short mitotic de-
lays (<1.5 h) do not induce detectable levels of DNA
breaks, despite triggering robust activation of the MSP
(Uetake and Sluder 2010). Second, the loss of other compo-
nents involved inDNAdamage signaling does not prevent
the cell cycle arrest following amitotic delay, arguing that
inactivation of the MSP and ablation of DNA damage sig-
naling are genetically separable (Lambrus et al. 2016).
Third, preventing the recruitment of 53BP1 to sites of
DNA damage does not affect MSP signaling (Fong et al.
2016; Lambrus et al. 2016). Finally, the BRCT domain of
53BP1 is dispensable for DNA double-strand break repair
(Ward et al. 2006), but is required for MSP function (Fong
et al. 2016). Taken together, the available evidence argues
that DNA damage is not the trigger for the activation of
the MSP in cells that delay in mitosis.

The function of the mitotic surveillance pathway
in vivo

An interesting question is under what circumstances
cells in vivo would experience mitotic delays that then
activate the MSP. Mitosis normally occurs rapidly, and
perturbation of any process that alters the levels or activ-
ity of mitotic proteins will often result in a mitotic de-
lay. Exposure to environmental toxins or spontaneous
genetic alterations are two possible sources of MSP acti-
vation. Moreover, heritable mutations in proteins that
are required for efficient mitotic progression can also
slow down mitosis. A good example of this is primary
microcephaly, where mutations in genes that encode
proteins functioning at the centrosome or the spindle ap-
paratus result in an increased mitotic length in NPCs
(Chavali et al. 2014). NPCs harboring these mutations of-
ten complete mitosis normally, but their progeny differ-
entiate prematurely or undergo apoptosis (Phan et al.
2021).
In mice, 53BP1 and USP28 are expressed in the early

stages of embryogenesis (E5.5), but functional signaling
through the MSP is thought to be established around gas-
trulation (E7.5) (Xiao et al. 2021). The timing of MSP acti-
vation coincides with the centrosome taking over as a
dominant source of microtubule-nucleating activity, sug-
gesting that MSP signaling is closely linked to centroso-
mal MTOC function. 53BP1 plays an important role
outside of the MSP in DNA damage signaling, and mice
lacking 53BP1 are radiation-sensitive, exhibit immune de-
ficiencies, and are cancer-prone. In contrast, USP28
knockout mice do not display an obvious phenotype (Die-
fenbacher et al. 2014), though there is accumulating evi-
dence to suggest that USP28 could act as a tumor
suppressor in humans (Richter et al. 2018). Importantly,

in the context of brain development, knockout of USP28
or 53BP1 does not lead to an overproduction of neurons,
arguing that the MSP does not globally suppress NPC
proliferation.

Role of themitotic surveillance pathway inmicrocephaly

Prolongedmitosis has been observed across many different
animal models of microcephaly, including most models
where genes encoding centriole assembly proteins, PCM
proteins, or spindle pole proteins are knocked out (Table
2). In addition, several studies using brain organoids gener-
ated from patient-derived cells as models for microcephaly
have also reported evidence of extended mitotic duration
(Bershteyn et al. 2017; Zhang et al. 2019a). A delay inmito-
sis has often been considered a secondary consequence of
microcephaly mutations. However, pioneering work from
the Silver group (Pilaz et al. 2016; Mitchell-Dick et al.
2020; Sheehan et al. 2020) revealed that delaying NPC pro-
gression through mitosis, either genetically or pharmaco-
logically, is sufficient to induce premature neurogenic
divisions, while exceedingly longmitoses result in the pro-
ductionof apoptotic progeny. These data suggest that an in-
creased mitotic duration could be a cause of the NPC
depletion observed in microcephaly.
The demonstration that the fate of NPCs is tightly cor-

related with the duration of mitosis raised the question of
whether a causal link exists between activation of the
MSP and the altered neurogenesis observed in microceph-
aly. Microcephaly mutations in mitotic genes are fre-
quently observed to trigger P53 activation in NPCs, and
knockout of P53 is sufficient to suppress cell death and re-
store cortical size in mouse models (Insolera et al. 2014;
Marjanović et al. 2015). However, P53 activation is a com-
mon outcome of signaling pathways that respond to geno-
mic instability, and thus the nature of the upstream
trigger for P53 remained unclear. Recently, it was shown
that loss of USP28 or 53BP1, two upstream components
of MSP, can rescue NPC proliferation in microcephaly
models with centrosome defects (Phan et al. 2021). Fur-
thermore, knockout of USP28 prevented P53 up-regula-
tion, consistent with the notion that P53 activation in
these microcephaly models occurs through MSP signal-
ing. Deletion of theMSP genes restoredNPC proliferation
and cortical size without correcting the upstream centro-
some defects or the extended mitosis. This suggests that
mutations in centrosome genes, and possibly other genes
that function in mitosis, trigger pathological activation of
the MSP in NPCs, leading to microcephaly.
One may expect that inactivation of the MSP will res-

cue NPC loss and restore cortical size in all microcephaly
models that exhibit a mitotic delay. However, while the
loss of some mitotic regulators leads to catastrophic cell
division errors, the removal of centrosomes does not dra-
matically impact the fidelity of chromosome segregation
in NPCs (Phan et al. 2021). As a result, inactivation of
the MSP in NPCs with centrosome defects enables the
continued proliferation of the euploid daughter cells gen-
erated following a prolonged mitosis. In contrast, ablating
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theMSP inNPCs that exhibit an extendedmitosis accom-
panied by significant mitotic errors suppresses cell death
but results in the accumulation of aneuploid daughter
cells. Cells with aneuploidy exhibit defects in cell cycle
progression, proteotoxic stress, and genome instability
(Chunduri and Storchová 2019) and are often outcompet-
ed or eliminated in vivo (Bolton et al. 2016; Pfau et al.
2016; Singla et al. 2020). This likely explains why the
loss of P53 in microcephaly models with significant aneu-
ploidy fails to fully restore brain growth (Marthiens et al.
2013; Shi et al. 2019; Viais et al. 2021).

An interesting contrast between NPCs and cultured
RPE1 cells is their different responses to MSP activation.
In RPE1 cells, daughter cells that have activated the
MSP arrest in G1 and undergo senescence in a P21-depen-
dent manner (Lambrus et al. 2016). Transcriptomic analy-
sis of NPCs following an acutemitotic delay suggests that
in addition to P21, there is up-regulation of other proapop-
totic P53 target genes (Mitchell-Dick et al. 2020). The
same study also reported an up-regulation of transcripts
associated with neuronal differentiation, but this occurs
prior to an increase in P53 expression. Futurework analyz-
ing changes to the proteome and/or post-translational
modifications in NPCs that undergo mitotic delays may
provide additional insight into themolecular players link-
ing time in mitosis to MSP activation.

Why is the brain preferentially impacted by mutations in
centrosome genes?

In contrast to MCPH, where a reduction in brain size usu-
ally occurs without a substantial alteration in stature, in
Seckel syndrome, microcephaly occurs in combination
with severe body growth retardation. Several of the genes
linked to Seckel syndrome function in centriole duplica-
tion such as CPAP, CEP152, and CEP63 (Al-Dosari et al.
2010; Kalay et al. 2011; Sir et al. 2011). In addition, some
centriole proteins are classified as bothMCPH and Seckel
syndrome genes (Table 1), further arguing that these disor-
ders exist within a phenotypic spectrum where micro-
cephaly can occur with varying degrees of body size
reduction. This raises the question of why mutations in
centrosome proteins have a variable impact on prenatal
growth. A simple explanation is that the proliferation of
NPCs in the cortex is more sensitive to defects in centro-
some function than dividing cells in other tissues. As a re-
sult, weaker hypomorphic mutations in centrosome
genes would selectively affect brain size, whilemore com-
plete loss-of-function alleles would impact the growth of
the brain and other tissues.

Mice lacking CEP63 offer a useful model to study Seckel
syndrome since they exhibit both microcephaly and pri-
mordial dwarfism. Importantly, while inactivation of the
MSP rescued cortical growth in CEP63-deficient mice,
loss of this pathway failed to restore body size (Marjanović
et al. 2015; Phan et al. 2021). This indicates that themicro-
cephaly and dwarfism phenotypes are caused by activation
of different cellular pathways: Microcephaly can be caused
by activation MSP, while dwarfism may be a result of de-

layed progression through the cell cycle, leading to a gene-
ral defect in cell proliferation. This reinforces the view that
the brain may be uniquely sensitive to centrosome defects
because only a modest mitotic delay is required to activate
the MSP. Indeed, work in mouse NPCs has shown that an
average increase of ∼30 min in mitotic duration can pro-
mote a dramatic shift in the fate of the progeny, leading
to cell death or premature differentiation (Pilaz et al. 2016).

An alternative, nonmutually exclusive hypothesis is
that the variability in response to a mitotic delay arises
from differences in tissue-specific sensitivity to P53 acti-
vation. A study using a series of mousemodels to generate
different magnitudes of P53 activation during develop-
ment found that neuronal lineages are highly sensitive
to P53-driven apoptosis (Bowen et al. 2019). Therefore,
the unique susceptibility of the brain to centrosome ab-
normalities may arise from NPCs’ hypersensitivity to
even modest P53 activation. Finally, to generate the ∼16
billion neurons of the human neocortex, NPCs must un-
dergo massive proliferation in a restricted period during
embryonic development (Azevedo et al. 2009). With few
cell divisions occurring later in life, there is little opportu-
nity to rescue cortical size if too few cells are created em-
bryonically. Thus, the narrow developmental window for
neurogenesis offers an additional explanation for the dis-
proportionate effect of mutations that reduce cell prolifer-
ation on cortex size.

Microcephaly caused by mutations in genes
that do not function at the centrosome or
mitotic spindle

Besides mutations in genes that function at the centro-
some or mitotic spindle, there are several other broad
pathways into which MCPH and MPD genes can be orga-
nized (Fig. 3A). Belowwediscuss these pathways and high-
light what is currently known about how defects in these
processes contribute to microcephaly.

Replication defects

Along with mutations in centrosome proteins, Seckel
syndrome can also be caused by mutations in DNA
damage signaling proteins, including ATR and two pro-
teins required for its activation, TRAIP and RBBP8
(O’Driscoll et al. 2003; Qvist et al. 2011; Ogi et al.
2012). ATR is an essential gene that promotes progres-
sion through S phase by facilitating recovery from repli-
cation fork stalling. Mutations in DONSON, which
functions to stabilize stalled replication forks and acti-
vate ATR-dependent signaling in response to replica-
tion stress, also cause MPD (Evrony et al. 2017;
Reynolds et al. 2017). This suggests that chronic repli-
cation stress is a driver of MPD. A pathogenic role of
DNA replication defects in MPD is further implicated
in Meier-Gorlin syndrome, a subclass of MPD caused
by mutations in the prereplication complex proteins
ORC1, ORC4, ORC6, CDC45, CDT1, and GMNN
(Bicknell et al. 2011a,b; Guernsey et al. 2011; Burrage
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et al. 2015; Fenwick et al. 2016). Taken together, the
available data suggest that mutations that reduce the ef-
ficiency of DNA replication in MPD patients cause a ge-
neral impairment of cell proliferation that leads to
reduced cell number and global growth failure.

Mutations in SMC complex protein

The structural maintenance of chromosomes (SMC) pro-
tein complexes play critical roles in maintaining chromo-
some structure and have been strongly linked to
microcephaly pathogenesis. There are three SMC com-
plexes: cohesin, condensin, and SMC5/6. Cohesin is crit-
ical for sister chromatid cohesion, while condensin
functions to promote chromosome compaction. The third
SMC complex, SMC5/6, is less well understood but has
been proposed to function in DNA repair and promoting
fork restart after replication stress. Mutations in the
SMC5/6 complex subunit NSMCE2 cause MPD in hu-
mans (Payne et al. 2014). Patient cells with NSMCE2mu-
tations showed increased chromatin bridges, elevated
micronucleation, and delayed recovery following replica-
tion stress. Mutations in genes that encode subunits of
the condensin complex were recently shown to cause
MCPH (Martin et al. 2016). Condensins have essential
roles in cell division, and thus the condensin mutations
observed in MCPH patients are all functionally hypomor-
phic. Patient-derived primary fibroblasts carrying MCPH-
linked condensin mutations showed defective decatena-
tion of the replicated sister chromatids and an increase
in lagging anaphase chromosomes and micronucleation.
Moreover, a hypomorphic condensin II mutant mouse ex-
hibited reduced brain size and an increased frequency of
chromatin bridges in NPCs. Intriguingly, MCPH1 was
the first characterized MCPH gene and encodes a protein
that binds and inhibits condensin II (Trimborn et al. 2006;
Yamashita et al. 2011). Premature chromosome condensa-
tion is one of the phenotypes observed in cells carrying an
MCPH1 mutation (Pfau et al. 2013), suggesting that de-
fects in this process due to misregulated condensin activ-
ity may also contribute to the reduced brain size in these
patients. Notably, knockout of MCPH1 leads to an in-
creased mitotic index in murine NPC (Gruber et al.
2011). In the future it would be interesting to determine
the effect of condensinmutations on the duration ofmito-
sis in NPCs.

DNA damage signaling

NPCs are especially sensitive to DNA damage, perhaps
because of their low threshold for initiating apoptosis in
response to P53 activation (McKinnon 2013). Mutations
in several DNA damage repair genes produce syndromes
that feature developmental microcephaly, often in con-
junction with increased cancer predisposition and immu-
nodeficiency (Carney et al. 1998; Matsuura et al. 1998;
Varon et al. 1998; Seemanová and Jarolím 1999; O’Dris-
coll et al. 2001, 2003; Ben-Omran et al. 2005; Buck et al.
2006a,b; Matsumoto et al. 2011). Work in mouse models
has shown that DNA lesions activate P53 through the

ATM–CHK2 and/or ATR–CHK1 pathway to induce cell
death in the developing cortex (Frappart et al. 2005; Foster
et al. 2012; Li et al. 2012). This suggests that increased
rates of DNA damage or defective DNA repair can con-
tribute to NPC attrition in the developing cortex. In addi-
tion to controlling chromatin compaction through
regulation of condensin activity, MCPH1 has also been
implicated in DNA damage signaling and DNA repair
(Jackson et al. 2002; Lin et al. 2010). However, the relative
contribution of theDNAdamage response and other func-
tions of MCPH1 to the development of microcephaly re-
mains to be established.

Defects in the minor spliceosome

MOPD type I is caused by mutations in the U4atac
snRNA component of the minor spliceosome that is re-
sponsible for recognizing and excising a small subset of in-
trons (He et al. 2011; Farach et al. 2018; Hallermayr et al.
2018; Wang et al. 2018). Additionally, mutations in the
minor spliceosome subunit CENATATC/CCDC84 have
also been identified in patients withmosaic variegated an-
euploidy, a syndrome characterized by microcephaly,
high rates of aneuploidy, and childhood cancers (Wolf
et al. 2021). In these cases, deficiencies in the splicing of
minor introns likely results in defective RNA processing
of multiple mitotic regulators, leading to an increased fre-
quency of chromosome segregation errors. Interestingly,
brain-specific knockout of the minor spliceosome com-
ponent Rnu11 in mice leads to misregulated splicing of
several cell cycle genes, an extended mitosis, and accom-
panying microcephaly in mice (Baumgartner et al. 2018).
This illustrates a crucial link between minor intron splic-
ing, mitotic progression, chromosome segregation fideli-
ty, and brain development.

Nuclear envelope defects

A final pathway implicated inMCPH pathogenesis are de-
fects in the integrity of the nuclear lamina. Mutations in
the nuclear lamina proteins LMNB1 and LMNB2 cause
a form of autosomal dominant primary microcephaly
(Cristofoli et al. 2020; Parry et al. 2021). Knockout of ei-
ther LMNB1 or LMNB2 in the forebrains of mice leads
to reduced brain growth and accompanying defects in neu-
ronalmigration and cortical layering (Coffinier et al. 2010;
Kim et al. 2011). Defects in B-type lamins impair nuclear
envelope integrity and may interfere with the reassembly
of the nuclear envelope following mitosis. B-type lamins
are also associated with the mitotic spindle, raising the
possibility that mutations in these genes could lead to
spindle defects that contribute to the microcephaly phe-
notype (Tsai et al. 2006).
Additional MCPH genes that have been identified in-

clude CDK6, ANKLE2, ZNF335, PHC1, MFSD2A,
WDFY3 (ALFY), COPB2, and RRP7A (Table 1). As yet,
there are no common pathways that functionally link
these genes, and it remains unclear how mutations in
these genes cause microcephaly.
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Perspective

In the past two decades, our understanding of primarymi-
crocephaly has greatly expanded thanks to the identifica-
tion of many new causative mutations. The striking
frequency of microcephaly mutations in genes that en-
code centrosome proteins has led to several proposals for
how centrosome dysfunction can impair brain develop-
ment. These models include mitotic spindle misorienta-
tion, deregulation of centrosome inheritance, cell cycle
delays, and defects in mitotic progression and fidelity
(Fig. 4).While thesemodels are in keepingwith the known
roles of centrosomes in cortical development, recent stud-
ies have indicated that some of these defects are correlated
with, but may not be causative of, microcephaly.

In this review, we highlight evidence in support of an
emergingmodel for howmutations in centrosome andmi-
totic spindle-associated proteins can lead tomicrocephaly

(Table 2). This model postulates that mutations in these
proteins slow down progression through mitosis and trig-
ger pathological activation of theMSP to induce cell death
and differentiation of NPC progeny. So far, this model has
only been tested in two mouse microcephaly models, and
whether this holds true for other models of microcephaly
remains to be seen. In addition, many primarymicroceph-
aly mutations do not lie in genes encoding proteins that
function at the centrosome or mitotic spindle. Therefore,
activation of the MSP is only one of several possible path-
ways that can result in reduced cortical size. In fact, it was
shown that microcephaly caused by loss of SMC5 in the
brains of mice is independent of the MSP and thus cannot
be rescued by knocking out the MSP signaling compo-
nents 53BP1 and USP28 (Atkins et al. 2020; Phan et al.
2021). However, this same microcephaly model can be
rescued by knocking out CHK2 or P53, indicating that
DNA damage signaling is predominantly responsible for

Figure 4. Cellular processes disrupted in neural progenitor cells bymicrocephalymutations in centrosomal proteins.Mutations in genes
that encode centrosome proteins have been proposed to cause microcephaly through several mechanisms. This includes deregulating of
cell cycle progression, altering spindle orientation, increasing the frequency of chromosomemissegregation, disrupting asymmetric cen-
trosome inheritance, and delaying mitotic spindle assembly.
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the impaired cortical growth in these animals (Atkins
et al. 2020). Identifying which microcephaly mutations
activate the MSP and which trigger other pathogenic
pathways is an important area of future research. These
studies will not only aid our understanding of primarymi-
crocephaly and its etiology but also cast light on funda-
mental mechanisms that are important for normal brain
development.
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