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Abstract
Full-likelihood implementations of the multispecies coalescent with introgression (MSci) model treat genealogical
fluctuations across the genome as a major source of information to infer the history of species divergence and
gene flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues,
whereby different models or parameters make the same predictions about the data and cannot be distinguished
by the data. Previous studies of unidentifiability have focused on heuristic methods based on gene trees and do
not make an efficient use of the information in the data. Here we study the unidentifiability of MSci models
under the full-likelihood methods. We characterize the unidentifiability of the bidirectional introgression (BDI)
model, which assumes that gene flow occurs in both directions. We derive simple rules for arbitrary BDI models,
which create unidentifiability of the label-switching type. In general, an MSci model with k BDI events has 2k

unidentifiable modes or towers in the posterior, with each BDI event between sister species creating within-
model parameter unidentifiability and each BDI event between nonsister species creating between-model
unidentifiability. We develop novel algorithms for processing Markov chain Monte Carlo samples to remove
label-switching problems and implement them in the BPP program. We analyze real and synthetic data to
illustrate the utility of the BDI models and the new algorithms. We discuss the unidentifiability of heuristic
methods and provide guidelines for the use of MSci models to infer gene flow using genomic data.
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Introduction
Genomic sequences sampled from modern species contain
rich historical information concerning species divergences
and cross-species gene flow. In the past two decades,
analysis of genomic sequence data has demonstrated the
widespread nature of cross-species hybridization or
introgression (Baack and Rieseberg, 2007; Harrison and
Larson, 2014; Mallet et al., 2016). A number of statistical
methods have been developed to infer introgression using
genomic data, most of which use data summaries such as
the estimated gene trees or genome-wide site-pattern
counts (Degnan, 2018; Elworth et al., 2019; Jiao et al.,
2021). Full-likelihood methods applied directly to
multilocus sequence alignments (Wen and Nakhleh, 2018;
Zhang et al., 2018; Flouri et al., 2020) allow estimation of
evolutionary parameters including the timing and
strength of introgression, as well as species divergence
times and population sizes for modern and extinct
ancestral species. These have moved the field beyond
simply testing for the presence of cross-species gene flow.

Models of cross-species introgression are known to cause
unidentifiability issues, whereby different introgression
models make the same probabilistic predictions about the
data, and cannot be distinguished by the data (Yu et al.,
2012; Pardi and Scornavacca, 2015; Zhu and Degnan, 2017;

Solis-Lemus et al., 2020). If the probability distributions of
the data are identical under model m with parameters Q
and under model m′ with parameters Q′, with

f(X |m, Q) = f (X |m′, Q′) (1)

for essentially all possible data X, the models are
unidentifiable by data X. Here we use the term
within-model unidentifiability if m = m′ and Q = Q′, or
cross-model unidentifiability if m = m′. In the former
case, two sets of parameter values in the same model
are unidentifiable, whereas in the latter, two distinct
models are unidentifiable. In Bayesian inference, the
prior f(m, Q) may be used to favor a particular model
or set of parameters. If the prior is only vaguely
informative and the posterior is dominated by the
likelihood, there will be multiple modes in the posterior
that are not perfectly symmetrical.

Several studies examined the unidentifiability of
introgression models when gene tree topologies (either
rooted or unrooted) are used as data (Pardi and
Scornavacca, 2015; Zhu and Degnan, 2017; Solis-Lemus
et al., 2020), and the results apply to heuristic methods
based on (reconstructed) gene trees. The issue has not
been studied when full-likelihood methods are applied,
which operate on multilocus sequence alignments
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directly. Note that unidentifiability depends on the data
and the method of analysis. An introgression model that
is unidentifiable by gene tree topologies alone may be
identifiable if gene trees with coalescent times are used
(Zhu and Degnan, 2017). Similarly, a model unidentifiable
using heuristic methods may be identifiable when
full-likelihood methods are applied to the same data. It is
thus important to study the problem when full-likelihood
methods are applied, because unidentifiability by a heuristic
method may reflect its inefficient use of information in the
data, while unidentifiability by full-likelihood methods
reflects the intrinsic difficulty of the inference problem
(Zhu and Yang, 2021).

Here we focus on models of episodic introgression
that assume that gene flow occurs between species at
fixed time points (Wen and Nakhleh, 2018; Zhang et al.,
2018; Flouri et al., 2020). These are known as
multispecies-coalescent-with-introgression model (MSci;
Flouri et al., 2020), hybrid species phylogenies (Kubatko,
2009), network multispecies coalescent model (NMSC;
Zhu and Degnan, 2017) or multispecies network
coalescent model (MSNC; Yu et al., 2012; Wen and
Nakhleh, 2018; Zhang et al., 2018). Another class of
models of cross-species gene flow is the continuous
migration model, which assumes that migration
occurs at a certain rate per generation over extended
time period. This is known as the multispecies
coalescent with migration (MSC+M; Jiao et al., 2021) or
isolation-with-migration (IM; Hey and Nielsen, 2004;
Zhu and Yang, 2012; Dalquen et al., 2017; Hey et al.,
2018) model. The IM model is suitable if gene flow
occurs over extended time periods, while the MSci
model is preferable if gene flow occurs in short bursts

of time. The IM model is in particular suitable for
analyzing data from different populations of the same
species. It has very different properties concerning
identifiability and is not dealt with in this study.

The bulk of the paper concerns the bidirectional
introgression (BDI) model (fig. 1), which was noted to
have an unidentifiability issue (Flouri et al., 2020). The
BDI model posits that two species coming into contact
at a certain time in the past exchange genes, while
the other MSci models assume introgression only in
one direction. Whether gene flow tends to occur in
one direction or in both directions is an interesting
empirical question that may be answered by real data
analyses. Here we note that recent analyses of genomic
data from North-American horned lizards (Finger et al.,
2022), the erato-sara group of Heliconius butterflies
(Thawornwattana et al., 2022), and North-American
chipmunks (Ji et al., 2021) have identified BDI events,
both between sister species and between nonsister
species (see also an example later). In the Anopheles
gambiae group of African mosquitoes, introgression
between A. gambiae and A. arabiensis in both directions
was suspected, but detailed analyses detected gene flow
from A. arabiensis to A. gambiae only but not in the
opposite direction (Thawornwattana et al., 2018). In
another example, Banker et al. (2022) detected
bidirectional introgression (with different rates) between
Mus spretus and wild populations of M. m. domesticus
from Europe, despite considerable postzygotic reproductive
isolation between the species. At any rate, BDI is one
of the most plausible introgression models and appears
to be one of the most common forms of cross-species
gene flow. The unidentifiability of MSci models with

(a) (b) (c)

FIG. 1. (a) Species tree or MSci model for two species (A and B) with a bidirectional introgression at time tX = tY , identifying nine parameters in
the model. We refer to a branch by its daughter node, so that branch XA is also branch A and is assigned the population size parameter uA . Both
species divergence/introgression times (ts) and population sizes (us) are measured in the expected number of mutations per site. (b,c) Two sets
of unidentifiable parameters Q and Q′ , with w′

X = 1− wX, w′
Y = 1− wY , u′X = uY , and u′Y = uX, while the other five parameters

(tR , tX = tY , uA , uB , and uR) are identical between Q and Q′ . Here a and b are two numerical values for the introgression probabilities (so
that wX = a in Q while wX = 1− a in Q′). The dotted lines indicate the main routes taken by sequences sampled from species A and B, if
both a and b are ≪ 1

2.
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unidirectional introgression (UDI) is simpler, and we
defer its discussion to the Discussion section. Similarly,
we discuss unidentifiability of heuristic methods later.

The basic BDI model between two species (fig. 1)
involves nine parameters, with Q = (uA, uB, uX , uY , uR,
tR, tX , wX , wY). An introgression model is similar to a
species tree except that it includes horizontal branches
representing lateral gene flow across species. Besides
speciation nodes representing species divergences, there
are hybridization nodes representing introgression events
as well. While a speciation node has one parent and two
daughters, a hybridization node has two parents and one
daughter. The “introgression probabilities” or “admixture
proportions” (w and 1− w) specify the contributions of
the two parental populations to the hybrid species.
When we trace the genealogical history of a sample of
sequences from the modern species backwards in time
and reach a hybridization node, each of the sequences
takes the two parental paths with probabilities w and
1− w. There are thus three types of parameters in an
MSci model: the times of species divergence and
introgression (ts), the (effective) population sizes of
modern and ancestral species (us), and the introgression
probabilities (ws). Both the divergence times (ts) and
population sizes (us) are measured in the expected
number of mutations per site.

The BDI model, in the case of two species (fig. 1), is
noted to have an unidentifiability issue (Flouri et al.,
2020). Let Q′ be a set of parameters with the same
values as Q except that w′

X = 1− wX , w′
Y = 1− wY ,

u′X = uY , and u′Y = uX . Then f(G |Q) = f (G |Q′) for any
gene tree G (fig. 1b and c). Here G represents both the
gene tree topology and branch lengths (coalescent
times). We assume multiple sequences sampled per
species at the same locus (see Discussion for
unidentifiability caused by sampling only one sequence
per species). Thus for every point Q in the parameter
space, there is a “mirror” point Q′ with exactly the same
likelihood. With Q, the A sequences take the left (upper)
path at X and enter population RX with probability
1− wX , coalescing at the rate 2/uX , while with Q′, the
same A sequences may take the right (horizontal) path
and enter population RY with probability w′

X = 1− wX ,
coalescing at the rate 2/u′Y = 2/uX . The differences
between Q and Q′ are in the labeling, with “left” and X
under Q corresponding to “right” and Y under Q′, but
the probabilities involved are the same. The same
argument applies to sequences from B going through
node Y, and to any numbers of sequences from A and B
considered jointly. Thus f (G |Q) = f(G |Q′) for essentially
all G. If the priors on wX and wY are symmetrical, say
w � beta(a, a), the posterior density will satisfy f(Q | X) =
f(Q′ | X) for all X. Otherwise the “twin towers” in the
posterior may not have exactly the same height.

The situation is very similar to the label-switching
problem in Bayesian clustering (Richardson and Green,
1997; Celeux et al., 1998; Stephens, 2000; Jasra et al., 2005).
Consider data X = {xi} as a sample from a mixture of two

normal distributions, N(m1, 1) and N(m2, 1), with the
mixing proportions p1 and p2 = 1− p1. Let Q =
(p1, m1, m2) be the parameter vector. Then Q′ =
(p2, m2, m1) will have exactly the same likelihood, with
f(X |Q) = f (X |Q′) for essentially all data X, and Q and
Q′ are unidentifiable. Suppose the data suggest two
groups in proportions 10% and 90%, with means 100 and
1, so that there are two peaks in the posterior, around
Q : p1 = 0.1, m1 = 100, m2 = 1 and Q′ : p′1 = 0.9, m′

1 = 1,
m′
2 = 100. In a Bayesian cluster analysis using Markov

chain Monte Carlo (MCMC), the Markov chain may visit
both peaks, effectively switching the labels “group 1” and
“group 2” and changing the definitions of parameters in
the same MCMC run. This is known as a label-switching
problem. One may process the MCMC sample, and reflect
each Q′ with p′1 .

1
2 to its mirror point Q, to fix the

label-switching (but see later for problems involved with
imposing such simple constraints). In other words, we may
apply a relabeling algorithm to postprocess the MCMC
sample to fix the label-switching issue.

As an example of the label-switching issues in the BDI
model, consider the MCMC analysis using BPP of the first
500 noncoding loci on chromosome 1 from three
Heliconius butterfly species: H. melpomene, H. timareta,
and H. numata (Edelman et al., 2019; Thawornwattana
et al., 2022) (fig. 2a). Figure 3a shows the trace plots for
parameters wX and wY from an MCMC run. The Markov
chain moves between two peaks, centered around
(wX , wY) = (0.35, 0.1) and (0.65, 0.9), respectively. In
effect, the algorithm is switching between Q and Q′ and
changing the definition of parameters during the same
MCMC run. This is a label-switching problem, as occurs
in Bayesian clustering. The usual practice of estimating
parameters by their posterior means calculated using the
MCMC sample (0.54 for wX and 0.62 for wY in fig. 3a)
and constructing the credibility intervals is inappropriate.
Indeed the posterior distribution of Q is exactly
symmetrical with twin towers, and if the chain is run
long enough, the sample means of wX and wY will be
exactly 1

2, irrespectively of what values may fit the data
well. The results are similar when the first 500 exonic
loci are analyzed, in which the Markov chain moves
between two towers centered around (0.3, 0.1) and
(0.7, 0.9) (supplementary fig. S1a, Supplementary
Material online).

Results such as those of fig. 3a and supplementary fig.
S1a, Supplementary Material online raise two questions.
First, what are the rules concerning the unidentifiability
of general BDI models with, for example, more than two
species on the species tree and more than one BDI
event, or if the BDI event involves nonsister species.
Second, how do we deal with the problem of
label-switching and make the models useful for real data
analyses? We address those two problems in this paper.
We study the unidentifiability issue of BDI models for an
arbitrary number of species with an arbitrary species
tree, when a full-likelihood method is applied to
multilocus sequence data. It has been conjectured that
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(a) (b)

FIG. 2. Species tree or BDI model
for Heliconius melpomene,
H. timareta, and H. numata.
The branches are drawn to
represent the posterior means of
divergence/introgression times
obtained from BPP analysis of
(a) the 2,592 noncoding and
(b) the 3,023 exonic loci from
chromosome 1, while the
node bars represent the 95%
HPD CIs. See table 1 for
estimates of all parameters.
Photo of H. timareta courtesy
of James Mallet.

FIG. 3. Trace plots of MCMC samples and 2-D scatter plots for parameters wX (purple) and wY (green) (a) before and (b–d ) after the
postprocessing of the MCMC sample in the BPP analysis of the first 500 noncoding loci from chromosome 1 of the Heliconius data under the
MSci model of figure 2. The three algorithms used are (b) b–g, (c) CoGN , and (d ) CoG0.
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an MSci model is identifiable by full-likelihood methods
using data of multilocus sequence alignments if and only
if it is identifiable when the data consist of gene trees
with coalescent times (Flouri et al., 2020). We make use
of this conjecture and consider two BDI models to be
unidentifiable if and only if they generate the same
distribution of gene trees with coalescent times. We
emphasize that the unidentifiability discussed here
affects all methods of inference using genomic sequence
data, including heuristic methods based on summary
statistics (see Discussion). We identify general rules for
the unidentifiability of the BDI models. We then develop
new relabeling algorithms for postprocessing the MCMC
samples generated from a Bayesian analysis under the
BDI model to remove the label-switching. The algorithms
remove the label-switching issues but do not remove the
unidentifiability, which is the nature of the model and
data. While in the clustering problem, the labels
“group 1” and “group 2” are of no significance, Q and
Q′ under the unidentifiable BDI models may represent
different biological hypotheses, and one may want to
choose between them. This is discussed later in the
subsection “Estimation of introgression probabilities
despite unidentifiability” in Discussion. Our efforts

make the BDI models usable for real data analysis
despite their unidentifiability. We use the BPP program
(Flouri et al., 2018) to analyze synthetic datasets as
well as genomic data from Heliconius butterflies to
demonstrate the utility of the BDI models and the
new algorithms. After we have dealt with the BDI
models, we discuss the unidentifiability of UDI models
and of heuristic methods.

Theory
The Rule of Unidentifiability of BDI Models
In full-likelihood implementations of the MSci model, the
gene tree G for any given sample of sequences from the
modern species represents the complete history of
coalescence and introgression events for the sample,
including the gene tree topology, the coalescent times,
as well as the parental path taken by each sequence at
each hybridization node (e.g., Jiao et al., 2021, eq. 14).
The probability distribution of the gene tree G depends
on the species tree, species divergence times (ts), the
population sizes (us) which determine the coalescent
rates in the different populations (2/u), and the
introgression probabilities at the hybridization nodes (w).
It does not depend on the labels attached to the
internal nodes in the species tree.

Consider a part of the species tree or MSci model where
species A and B exchange migrants at time tX = tY (fig. 4).
To study the backwards-in-time process of coalescent and
introgression, which gives the probability density of the
gene tree f(G | S, Q), we can treat nodes X and Y as one
node, XY. When sequences from A reach node XY, each
of them has probability 1− wX of taking the left parental
path (RX) and probability wX of taking the right parental
path (SY). Similarly when sequences from B reach node
XY, they have probabilities wY and 1− wY of taking the
left (RX) and right (SY) parental paths, respectively. If we
swap branches A and B, carrying with them their
population size parameters (u) and introgression
probabilities (w), the probability density of the gene trees
remains unchanged. Thus the species tree-parameter
combinations (S, Q) and (S′, Q′) of figure 4b and c give
exactly the same probability distribution,

f (G | S, Q) = f(G | S′, Q′), for every gene tree G. (2)

In other words, (S, Q) and (S′, Q′) are unidentifiable (see
eq. 1).

Note that the processes of coalescent and introgression
before reaching nodes A and B (with time running
backwards) are identical between Q and Q′, as are the
processes past nodes X and Y. Thus the rule applies if
each of A and B is a subtree, with introgression events
inside, or if there are introgression events involving a
descendant of A and a descendant of B.

IfA and B are sister species or the parents R and S are one
node in the species tree, the species trees (A, B) and (B, A)

Table 1. Posterior means and 95% HPD CIs (in parentheses) for
parameters in the BDI model of figure 2 for the Heliconius data.

First 500 loci Chromosome 1 All autosomal loci

Noncoding L = 500 L = 2, 592 L = 31, 166
tR 4.73 (4.33, 5.13) 5.10 (4.89, 5.30) 5.03 (4.97, 5.10)
tS 3.12 (2.05, 4.19) 2.58 (2.12, 3.05) 2.50 (2.35, 2.65)
tX = tY 0.62 (0.21, 1.02) 0.25 (0.09, 0.40) 0.08 (0.05, 0.11)
uM 1.50 (0.62, 2.34) 0.69 (0.35, 1.10) 0.22 (0.14, 0.32)
uT 2.55 (1.40, 3.74) 1.23 (0.65, 1.84) 0.22 (0.14, 0.31)
uN 15.1 (12.0, 18.5) 23.0 (20.3, 25.7) 9.58 (9.36, 9.80)
uR 5.08 (4.12, 6.05) 5.74 (5.23, 6.24) 6.57 (6.40, 6.74)
uS 4.62 (1.85, 7.40) 6.92 (5.48, 8.37) 7.75 (7.23, 8.26)
uX 11.40 (2.83,

21.2)
12.90 (7.35, 19.6) 11.7 (10.4, 13.1)

uY 6.78 (2.42, 11.6) 8.74 (5.69, 12.0) 8.52 (7.50, 9.53)
wX 0.354 (0.022,

0.664)
0.124 (0.007,

0.243)
0.036 (0.001,

0.064)
wY 0.104 (0.000,

0.306)
0.048 (0.000,

0.139)
0.074 (0.032,

0.117)

Exonic L = 500 L = 3, 023 L = 36, 138
tR 4.39 (3.98, 4.81) 4.71 (4.54, 4.88) 5.04 (4.98, 5.10)
tS 1.95 (1.07, 2.82) 1.78 (1.38, 2.19) 1.54 (1.43, 1.64)
tX = tY 0.20 (0.03, 0.37) 0.13 (0.05, 0.24) 0.05 (0.04, 0.07)
uM 0.38 (0.08, 0.70) 0.32 (0.14, 0.52) 0.14 (0.11, 0.16)
uT 0.79 (0.13, 1.28) 0.63 (0.32, 0.94) 0.13 (0.10, 0.15)
uN 11.2 (9.11, 13.5) 12.4 (11.4, 13.4) 7.80 (7.65, 7.95)
uR 5.76 (4.83, 6.70) 6.68 (6.24, 7.11) 7.72 (7.57, 7.87)
uS 5.31 (3.38, 7.36) 7.50 (6.51, 8.49) 9.99 (9.64, 10.4)
uX 8.04 (1.67, 15.4) 5.80 (3.60, 8.36) 6.63 (6.12, 7.17)
uY 4.03 (0.60, 7.51) 3.49 (2.56, 4.50) 5.20 (4.81, 5.59)
wX 0.280 (0.002,

0.547)
0.161 (0.070,

0.264)
0.045 (0.022,

0.069)
wY 0.116 (0.000,

0.318)
0.019 (0.000,

0.056)
0.016 (0.000,

0.037)

NOTE.—Estimates of ts and us are multiplied by 103. MCMC samples are processed
using the b–g algorithm before they are summarized.

Estimation of Introgression Rates Using Genomic Data · https://doi.org/10.1093/molbev/msac083 MBE

5

https://doi.org/10.1093/molbev/msac083


will be the same so that S = S′ in equation (2). ThenQ and
Q′ (fig. 4) will be two sets of parameter values in the same
model and we have a case of within-model unidentifiability.
Otherwise the unidentifiability is cross-model.

Canonical Cases of BDI Models
Here we study major BDI models to illustrate the rule of
unidentifiability and to provide reference for researchers
who may apply those models to analyze genomic datasets.

If we add subtrees onto branches XA, YB, or the root
branch R in the two-species tree of figure 1a, so that
the BDI event remains to be between two sister
species, the model will exhibit within-model parameter
unidentifiability (supplementary fig. S2, Supplementary
Material online), just like the basic model of figure 1a.

If the BDI event is between nonsister species, the model
exhibits cross-model unidentifiability. Supplementary
figure S3a and a’, Supplementary Material online show a
model with a BDI event between cousins, while in
supplementary figure S3b and b’, Supplementary Material
online, the two species involved in the BDI event are
more distantly related.

Supplementary figures S4a, S4b and S4c, Supplementary
Material online show three models each with a BDI event
between nonsister species. In supplementary figure S4a,
Supplementary Material online, X and Y are nonsister
species on the original binary species tree. In supplementary
figure S4b and c, Supplementary Material online, X and Y
are nonsister species because there are introgression
events involving branches RX and/or RY. In all three
cases, there is cross-model unidentifiability, with the
twin towers shown in supplementary figure S4a’, b’ and
c’, Supplementary Material online.

The case of two nonsister BDI events for three species is
illustrated in supplementary figure S5, Supplementary
Material online. According to our rule, there are four

unidentifiable models in the posterior, with parameter
mappings shown in supplementary figure S5, Supplementary
Material online. One way of seeing that the four models
are equivalent or unidentifiable is to assume that the
introgression probabilities (wX , wY , wZ, and wW) are all
, 1

2, and then work out the major routes taken when we
trace the genealogical history of sequences sampled from
modern species. In such cases, all four models of
supplementary figure S5, Supplementary Material online
predict the following: most sequences from A will take
the route RZ at node ZW with probability 1− g; most
sequences from B will take the route WX at node XY
(with probability 1− a), then the route WS at node ZW
(with probability 1− d), before reaching RS; and most
sequences from C will take the route SY at node XY
(with probability 1− b), before reaching RS. Of course
the four models are unidentifiable whatever values the
introgression probabilities take. Those models have been
used to analyze genomic data from Texas Horned Lizards
(Phrynosoma cornutum) (Finger et al., 2022, figure S9).

Figure 5 shows two models for five species, each model
involving three BDI events. In figure 5a, all three BDI events
involve sister species, so that there are 23 = 8
unidentifiable within-model towers in the posterior. In
figure 5b, one BDI event involves nonsister species while
two involve sister species, so that there are two
unidentifiable models, each of which has four
unidentifiable within-model towers in the posterior.

In general, if there are m BDI events between sister
species and n BDI events between nonsister species,
there will be 2n unidentifiable models, each having 2m

within-model unidentifiable towers.

Unidentifiability of Double-BDI Models
Figure 6a shows two BDI events between species A and B,
which occurred at times tX = tY and tZ = tW ,

(a) (b) (c)

FIG. 4. A part of a species tree (MSci model) for illustrating the rule of BDI unidentifiability. (a) In the BDI model, species RXA and SYB exchange
migrants at time tX = tY . Treat X and Y as one node with left parent RX with population size uX and right parent SY with population size uY .
When a sequence from A reaches XY, it takes the left and right parental paths with probabilities 1− wX and wX , respectively. When a sequence
from B reaches XY, it goes left and right with probabilities wY and 1− wY , respectively. (b,c) Placing the two daughters in the order (A, B) as in Q
or (B, A) as in Q′ does not affect the distribution of gene trees, and constitutes unidentifiable towers in the posterior space. If X and Y are sister
species and have the same mother node (with R and S to be the same node), the unidentifiability is within-model; otherwise it is cross-model.
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respectively. To apply the rule of figure 4, we treat Z andW
as one node so that X and Y are considered sister species.
There are then four within-model unidentifiable towers in
the posterior space, shown as Q1−Q4 in figure 6. The
parameter mappings are given in the table above.

In general, with k BDI events between two species,
which occurred at different time points in the past,
there will be 2k unidentifiable within-model towers in
the posterior. There may be little information in
practical datasets to estimate so many parameters: if all
sequences have coalesced before they reach the ancient
introgression events near the root of the species tree,
the introgression probabilities (ws) and the associated
population sizes (us) will be nearly impossible to
estimate. Thus we do not consider more than two BDI
events between two species. Note that even the model
with one BDI event is not identifiable by heuristic
methods that use gene tree topologies only. A small
simulation is conducted to illustrate the feasibility of
applying the double-BDI model (fig. 6) to genomic
datasets; see Results.

Addressing Label-switching Issues and Difficulties
with Identifiability Constraints
According to our rule, MSci models with BDI events can
create both within-model and cross-model unidentifiability.
Cross-model unidentifiability is relatively simple to
identify and deal with. If the MCMC is run with the MSci
model fixed (Flouri et al., 2020), only one of the models

(e.g., model S1 with parameters Q1 in supplementary
fig. S5, Supplementary Material online) is visited in the
chain. One can then summarize the posterior distribution
for parameters under that model (which may be smooth
and single-moded), and the posterior summary may be
mapped onto the other unidentifiable models according
to the rule. See Finger et al. (2022) for such an application
of BDI models of supplementary figure S5, Supplementary
Material online. If the MCMC is trans-model and visits
different models in the chain (Wen and Nakhleh, 2018;
Zhang et al., 2018), the posterior space is symmetrical
between the unidentifiable models (such as models S1–S4
of supplementary fig. S5, Supplementary Material online).
However, such symmetry is unlikely to be achieved in the
MCMC sample due to well-known mixing difficulties of
trans-model MCMC algorithms. One may choose to focus
on one of the models (e.g., S1 of supplementary fig. S5,
Supplementary Material online) and postprocess the
MCMC sample to map the sample onto the chosen
model before producing the within-model posterior
summary. Oftentimes the MCMC may explore the
within-model posterior space very well, despite difficulties
of moving from one model to another. In all cases, the
researcher has to be aware of the unidentifiable models
which are equally good explanations of the genetic data
(see Discussion).

Our focus here is on within-model unidentifiability
created by BDI events between sister species. When
there are multiple modes in the posterior, each mode
may offer a sensible interpretation of the data, but it is
inappropriate to merge MCMC samples from different
modes, or to construct posterior summaries such as the
posterior means and credibility intervals (CIs) using
MCMC samples that traverse different modes. It is
instead more appropriate to summarize the samples for
each mode.

A common strategy for removing label-switching is to
apply so-called identifiability constraints. In the simple
BDI model of figure 1, any of the following constraints
may be applicable: wX ,

1
2, wY , 1

2, and uX , uY . Such
identifiability constraints may be imposed during the
MCMC or during postprocessing of the MCMC samples.
As discussed previously (Celeux et al., 1998; Stephens,
2000), such a constraint may be adequate if the
posterior modes are well separated, but may not work
well otherwise. For example, if wX is far away from

1
2 in all

MCMC samples, it will be simple to postprocess the
MCMC sample to impose the constraint wX ,

1
2. This is

the case in analyses of the large datasets in this paper,
for example, when all noncoding and exonic loci
from chromosome 1 of the Heliconius data are
analyzed (table 1). However, when the posterior modes
are not well-separated (either because the true
parameter value is close to the boundary defined by
the inequality or because the data lack information so
that the CIs are wide), different identifiability
constraints can lead to very different parameter posteriors
(Richardson and Green, 1997), and an appropriate

(a) (b)

FIG. 5. Two species trees (MSci models) for five species each with
three BDI events. (a) Three BDI events between sister species
create 23 = 8 within-model towers in the posterior. (b) Two BDI
events between sister species and one BDI event between
nonsister species create two unidentifiable models each with four
within-model unidentifiable towers in the posterior space.

Θ wX wY θX θY wZ wW θZ θW

Θ1 : wX ,
1
2, wZ , 1

2 α β θX θY γ δ θZ θW
Θ2 : wX ,

1
2, wZ . 1

2 α β θX θY 1 − γ 1 − δ θW θZ
Θ3 : wX .

1
2, wW , 1

2 1 − α 1 − β θY θX δ γ θW θZ
Θ4 : wX .

1
2, wW . 1

2 1 − α 1 − β θY θX 1 − δ 1 − γ θZ θW

(3)
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constraint may not exist. Imposing identifiability constraints
may then generate posterior distributions over-represented
near the boundary, with seriously biased posterior means
(Celeux et al., 1998; Stephens, 2000). For example, wX may
have substantial density mass both below and above 1

2,
and imposing the constraint wX ,

1
2 will artificially

generate high density mass close to wX = 1
2. Similarly the

posterior distributions of uX and uY may overlap, so that
the constraint uX , uY may not be appropriate.

New Algorithms to Process MCMC Samples from the
BDI Model to Remove Label Switching
One approach to dealing with label-switching problems
in Bayesian clustering is relabeling. The MCMC is run
without any constraint, and the MCMC sample is then
postprocessed to remove label switching, by attempting
to move each point in the MCMC sample to its
alternative unidentifiable positions in order to, as far as
possible, make the marginal posterior distributions
smooth and unimodal (Celeux et al., 1998; Stephens,
2000). The processed sample is then summarized to
generate the posterior of the parameters. Here we follow
this strategy and implement three relabeling algorithms
to postprocess the MCMC samples generated under the
BDI model.

Let Q = (wX , wY , uX , uY), which has a mirror point
Q′ = (w′

X , w
′
Y , u

′
X , u

′
Y) = (1− wX , 1− wY , uY , uX) (fig. 1).

The other parameters in the model are not involved in
the unidentifiability and are simply copied along. Let
Qt , t = 1, . . . , N, be the N samples of parameters
generated by the MCMC algorithm. Each sample is a
point in the 4-D space. Let zt be a transform for point t,
with zt(Qt) = Qt to be the original point, and zt(Qt) =
Q′

t to be the transformed or mirror point (fig. 1b and

c). With a slight abuse of notation, we also treat zt as
an indicator, with zt = 0 and 1 representing Qt and Q′

t,
respectively. For each sample t, we choose either the
original point or its mirror point, to make the posterior
of the parameters look smooth and single-moded as far
as possible. The first two algorithms, called
center-of-gravity algorithms CoG0 and CoGN, loop
through two steps.

Algorithms CoG0 and CoGN. Initialize. For each point t,
t = 1, . . . , N, pick either the original point (Qt) or its
mirror point (Q′

t). We set zt to 0 (for the original point
Qt) if wX + wY , 1 or 1 (for the mirror point Q′

t)
otherwise.

• Step 1. Determine the center of gravity, given
by the sample means of the parameters,
m = (�wX ,�wY , �uX , �uY).

• Step 2. For each point t = 1, . . . , N, compare the
current and its mirror positions and choose the one
closer to the center of gravity (m).

In step 2, we use the Euclidean distance

d0(Qt, m) =
∑4
j

(jj − mj)
2

[ ]1/2

, (4)

where jj are the four parameters inQt : wX , wY , uX , uY . This
is algorithm CoG0.

If we consider different scales in the different dimensions
(for example, wX and uX may have very different posterior
variances), we can calculate the sample variances n (in
addition to the sample means m) in step 1 and use them

(a) (b) (c) (e)(d)

FIG. 6. Species trees (MSci models) for two species (A and B) with double-BDI events creating four within-model towers, represented byQ1,Q2,
Q3, and Q4. (a) The model involves 14 parameters: 7 us, 3 ts, and 4 ws, with eight of them involved in the label-switching unidentifiability,
Q = (wX, wY , uX , uY , wZ, wW , uZ, uW). (b–e) Four unidentifiable towers showing the mappings of parameters (eq. 3). To apply the rule of
figure 4, we treat each pair of BDI nodes as one node, so that X and Y have the same node ZW as the parent, and the unidentifiability
caused by the BDI event at node XY is within-model, as is the unidentifiability for the BDI event at node ZW.
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as weights to normalize the differences in step 2, with

dN(Qt, m) =
∑4
j

1

nj
(jj − mj)

2

[ ]1/2

. (5)

We refer to this as algorithm CoGN.
Each MCMC sample point Qt can be in either of two

positions (represented by zt = 0 or 1). Step 1 calculates
the center of attraction (m), which represents the current
“location of most points.” Step 2 then moves each point to
its mirror position it is closer to the current center of
attraction. If there are only two modes in the posterior
(due to label switching) but no other modes, one of the
unidentifiable modes will become the center of attraction
and all points will move to its neighborhood as the
algorithm progresses. Which of the two modes becomes
the center of attraction is arbitrary, influenced by the initial
positions when the algorithm runs.

The third algorithm, called the b–g algorithm, follows
the relabeling algorithm for Bayesian clustering of
Stephens (2000). We use maximum likelihood (ML) to fit
the sample {Qt} to independent beta distributions for
wX and wY and gamma distributions for uX and uY :

f(Q; v) = b(wX ; pX , qX) · b(wY ; pY , qY)

× g(uX ; aX , bX) · g(uY ; aY , bY),
(6)

where

b(j; p, q) = 1

B(p, q)
j p−1(1− j)q−1,

g(j; a, b) = ba

G(a)
ja−1e−bj

(7)

are the beta and gamma densities and where v = (pX , qX ,
pY , qY , aX , bX , aY , bY) is the vector of parameters in those
densities.

The log likelihood, as a function of the parameters v
and the transforms z = {zt}, is

ℓ(v, z) =
∑N
t

ℓt(v, zt(Qt)) =
∑N
t

log f(zt(Qt); v), (8)

where the density f is given in equation (6).
We have implemented the following iterative algorithm

to estimate v and z by maximizing ℓ.
Algorithm b–g. Initialize zt, t = 1, . . . , N. As before, we

set zt to 0 (for Qt) if wX + wY , 1 or 1 (for Q′
t) otherwise.

• Step 1. Choose v̂ to maximize the log likelihood ℓ
(eq. 8) with the transforms z fixed.

• Step 2. For t = 1, . . . , N, choose zt = 0 or 1 to
maximize ℓt(v̂ , zt(Qt)) with v = v̂ fixed. In other
words, compare Qt and Q′

t and choose the one that
better fits the beta and gamma distributions.

Step 1 fits two beta and two gamma distributions byML
and involves four separate 2-D optimization problems. The

maximum-likelihood estimates (MLEs) of p and q for the
beta distribution b(j; p, q) are functions of

∑
t log jt and∑

t log (1− jt), whereas the MLEs of a and b for the
gamma distribution g(j; a, b) are functions of

∑
t jt and∑

t log jt . These optimization problems are simple,
which we solve using the BFGS algorithm in the PAML

program (Yang, 2007). Step 2 involves N independent
optimization problems, each comparing two points
(zt = 0 and 1), with v fixed. It is easy to see that the
algorithm is nondecreasing (that is, the log likelihood ℓ
never decreases) and converges, as step 1 involves ML
estimation of parameters in the beta and gamma
distributions, and step 2 involves comparing two points.

Note that the b–g algorithm becomes the CoG0 and
CoGN algorithms if the beta and gamma densities are
replaced by normal densities (with the same or different
variances for CoG0 and CoGN, respectively).

For illustration we applied the CoG0 algorithm to a
“thinned” sample of 1,000 points from the MCMC
sample of figure 3a generated in the BPP analysis of the
500 noncoding Heliconius loci. We used three initial
conditions (three rows in supplementary fig. S6,
Supplementary Material online). The last plot on each
row is a summary of the final processed sample. Thus
the first two runs produced the same posterior, while
the third run produced its mirror image.

Algorithms CoG0, CoGN, and b–g for the double-BDI
model. Under the double-BDI model (fig. 6a), eight
parameters are involved in the unidentifiability, with
Q = (wX , wY , uX , uY , wZ, wW , uZ, uW). There are four
within-model unidentifiable towers, so that zt takes four
values (0, 1, 2, 3), as follows (eq. 3)

• zt = 0: if the parameters are in Q1, do nothing.
• zt = 1: if in Q2, let wZ = 1− wZ, wW = 1− wW , and
swap uZ and uW .

• zt = 2: if in Q3, let wX = 1− wX , wY = 1− wY , swap
uX and uY , swap wZ and wW , and swap uZ and uW ;

• zt = 3: if in Q4, let wX = 1− wX , wY = 1− wY , swap
uX and uY , and let wZ = 1− wW and wW = 1− wZ.

We use the same strategy as in the BDI model and
implement the three algorithms (CoG0, CoGN, and b–g)
as before. For b–g, we fit four beta distributions to ws
and four gamma distributions to us, with 16 parameters
in v. We prefer the tower in which the introgression
probabilities are small and initialize the algorithm
accordingly. The algorithm similarly loops through two
steps. In step 1, we calculate the center of gravity
(represented by the means) or estimate parameters v̂ to
fit the beta and gamma densities, with the transforms z
fixed. For CoG0 and CoGN, this step involves calculating
the sample means and variances for the eight
parameters in Q, while for b–g, it involves a 16-D
optimization problem (or eight 2-D optimization
problems) for fitting the beta and gamma distributions
by ML. In step 2, we compare the four positions for each
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sample point when the center of gravity or parameters v̂
are fixed.

Implementation. To apply the rule and the algorithms
developed here, we need to identify the BDI event and
the parameters involved in the unidentifiability, that is,
(wX , wY , uX , uY) under the BDI model, or
(wX , wY , uX , uY ,wZ, wW , uZ, uW) under double-BDI. The
algorithm is then used to process the MCMC sample. If
there are multiple BDI or double-BDI events between
sister species, one may simply apply the postprocessing
algorithm multiple times. For instance, three rounds of
postprocessing may be applied for the model of figure
5a (for the BDI events between A and B, between D and
E, and between S and U, respectively), while the model
of 5b requires two rounds (for the BDI between D and
E, and between S and U).

The algorithms are implemented in C and require
minimal computation and storage. Processing 5× 105

samples takes several rounds of iteration and a few
seconds of running time, mostly spent on reading and
writing files. The algorithms are integrated into the BPP

program (Flouri et al., 2018) so that MCMC samples from
various BDI models are postprocessed and summarized
automatically. We also provide a stand-alone program
in the github repository abacus-gene/bpp-msci-
D-process-mcmc/.

Results
Introgression between Heliconius melpomene and
H. timareta
We fitted the BDImodel of figure 2 to the genomic sequence
data from three species of Heliconius butterflies: H.
melpomene, H. timareta, and H. numata (Edelman et al.,
2019; Thawornwattana et al., 2022). When we used the
first 500 loci, either noncoding or exonic, there was
substantial uncertainty in the posterior of wX and wY , and
the MCMC jumped between the twin towers, and the
marginal posteriors had two modes, due to label switching
(fig. 3a and supplementary figure S1a, Supplementary
Material online). Postprocessing of the MCMC sample
using the new algorithms led to single-moded marginal
posterior distributions (fig. 3b–d and supplementary
fig. S1b–d, Supplementary Material online). The three
algorithms produced extremely similar results for both
datasets. For example, the posterior mean and 95% CI
for wX from the noncoding data were 0.356 (0.026,
0.671) by CoG0, 0.357 (0.026, 0.674) by CoGN, and
0.354 (0.022, 0.664) by b–g, while those for wY were
0.103 (0.000, 0.304) by CoG0 and CoGN, and 0.104
(0.000, 0.306) by b–g.

We then analyzed all the noncoding and exonic loci on
chromosome 1, and then all the autosomal loci (table 1).
With the large datasets, the parameters were better
estimated with narrower CIs and the unidentifiable
towers were well separated. In fact, the MCMC visited
only one of the two towers, but the visited tower was

well explored so that multiple runs produced highly
consistent results after label-switching was removed
using the relabeling algorithms. When we started the
MCMC with small values for wX and wY , postprocessing
of the MCMC samples often had no effect.

Estimates of parameters from all six datasets are
summarized in table 1. The introgression probabilities
had overlapping CIs in datasets of different sizes, but wX
was smaller in the larger datasets, with posterior means
and 95% highest-probability-density (HPD) CIs for the
noncoding data to be 0.354 (0.022, 0.664) at L = 500,
0.124 (0.007, 0.243) for chromosome 1, and 0.036
(0.001, 0.064) for all autosomal loci. Results for the
exonic loci showed the same pattern. The rate
appeared to be higher for chromosome 1 than the rest
of the autosome. Introgression probability wY was
more similar among the datasets, at about � 10%. We
note that w in the MSci model reflects the long-term
effects of gene flow and selection purging introgressed
alleles, influenced by linkage to gene loci under natural
selection (Martin and Jiggins, 2017). As a result, the
introgression rates are expected to vary across the
chromosome or genome. It will be interesting to analyze
larger datasets with more samples per species to examine
the variation in the rate of gene flow across the genome.

Note that H. melpomene has a widespread geographical
distribution whereas H. timareta is restricted to the Eastern
Andes. The small uM estimates are most likely due to the
fact that the H. melpomene sample was from a partially
inbred strain to avoid difficulties with genome assembly.
Estimates of us and ts were smaller for the coding loci
than for the noncoding loci, presumably due to purifying
selection removing deleterious nonsynonymous mutations
(Shi and Yang, 2018).

Analysis of Data Simulated under the Double-BDI
Model of figure 6a
We conducted a small simulation to illustrate the
feasibility of the double-BDI model (fig. 6), simulating 10
replicate datasets of L = 500, 2,000, and 8,000 loci. The
three algorithms were used to process the MCMC
samples, before they were summarized.

For the case of L = 500, a typical case is shown in figure 7.
While there are four unidentifiable towers in the 8-D
posterior space (eq. 3), the MCMC visited only two of
them, with different values for parameters around the
BDI event at the node ZW. The dataset of L = 500 loci
are very informative about the parameters for the BDI
event at node XY (wX , wY , uX , uY), so that these had
highly concentrated posteriors with well-separated
towers. We started the Markov chains with small
values (e.g., 0.1 and 0.2) for wX and wY , so that the
sampled points were all around the correct tower for
those parameters. If the chain started with large wX
and wY , it would visit a “mirror” tower. Thus,
postprocessing of the MCMC samples mostly affected
parameters around the BDI event at ZW (wZ, wW , uZ,
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uW). Figure 7 shows the effects on parameters wZ and wW
using the b–g algorithm. The CoG0 and CoGN

algorithms produced nearly identical results, and all
algorithms were effective in removing label switching.
The postprocessed samples were summarized to
calculate the posterior means and the HPD CIs (fig. 8).

At L = 2,000 or 8,000 loci, the four towers were well
separated and the MCMC visited only one of them.
Applying the postprocessing algorithms either had no
effect or, in rare occasions, moved all sampled points
from one tower to another.

Posterior means and the 95% HPD CIs for all parameters
were summarized in figure 8. Parameters around the BDI
event at ZW (wZ, wW , uZ, uW) are the most difficult to
estimate. Nevertheless, the CIs for all parameters were
smaller at L = 8, 000 than at L = 500 or 2,000, and the
posterior means were converging to the true values. Note
that while the simulation was conducted using one set of
correct parameter values (say, Q1 of fig. 6), we considered
the estimates to be good if they were close to any of the
four unidentifiable towers (say, Q2, Q3, or Q4). This is
analogous to treating the estimate as correct in Bayesian
clustering if the true model includes two groups in
proportions p1 = 10% and p2 = 90% with means m1 =
100 and m2 = 1, while the method of analysis infers two
groups in proportions p′1 = 90% and p′2 = 10% with
means m′

1 = 1 and m′
2 = 100. Just as Q = (p1, m1, m2)

and Q′ = (p2, m2, m1) are unidentifiable towers and
equally correct answers in the clustering problem, here
Q1, Q2, Q3, and Q4 are equally correct answers.

Analysis of Data Simulated with One BDI Event with
Poorly Separated Modes
We simulated a challenging dataset for the relabeling
algorithms, with L = 500 loci, under the BDI model of

figure 1a with (wX , wY) = (0.7, 0.2) (see supplementary
table S1, Supplementary Material online). As wX and wY
were not too far away from 1

2 and the dataset was small,
the posterior modes were poorly separated, with
considerable mass near ( 12 ,

1
2 ). In the unprocessed MCMC

sample, wX had two modes around 0.8 and 0.2 and the
chain was switching between them (supplementary fig. S7a,
Supplementary Material online). The posterior means were
at 0.51 for wX and 0.50 for wY , close to 1

2 (supplementary
fig. S7a, Supplementary Material online). These are
misleading summaries, as the sample was affected by label
switching. In the processed samples (supplementary
fig. S7b–d, Supplementary Material online), label
switching was successfully removed and both wX and wY
were single-moded. The three algorithms (b–g, CoGN,
and CoG0) produced similar results, with single-moded
posterior, around the tower (wX , wY) = (0.7, 0.2). The
posterior means of (wX , wY) were (0.755, 0.447), (0.766,
0.461), and (0.765, 0.462) for the three algorithms, b–g,
CoGN, and CoG0, respectively (supplementary table S1,
Supplementary Material online). The estimates from b–g
were slightly closer to the true values than those from
CoGN and CoG0. The three relabeling algorithms worked
well even when the posterior modes were poorly separated.

Parameters not involved in label-switching, such as
the species divergence and introgression times (tR, tX)
and the population sizes for the modern species and
for the root (uA, uB, uR), were well estimated, with the
posterior means close to the true values and with narrow
CIs (supplementary table S1, Supplementary Material
online). However, parameters involved in label switching
(wX , wY , uX , uY) were poorly estimated at this data size
(with L = 500 loci), because of the difficulty to separate
the two towers and the influence of the priors. The
estimates should improve if more loci are used in the
data. To confirm this expectation, we simulated two

FIG. 7. Trace plots of MCMC samples and 2-D scatter plots for parameters wZ (purple) and wW (green) (a) before and (b) after the postprocessing
of theMCMC samples for the double-BDI model of figure 6a. Postprocessing used the b–g algorithm (b), while CoGN and CoG0 produced nearly
identical results (not shown). This is for replicate 2 for L = 500 loci (see fig. 8).
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more datasets with L = 2,000 and 8,000 loci, respectively.
In those two datasets, parameters not involved in label
switching (tR, tX , uA, uB, uR) had very narrow CIs
(supplementary table S1, Supplementary Material online).
At L = 8,000, the posterior means of Q = (wX , wY) were
closer to the true values (0.7, 0.2) and the 95% CIs were
narrower than in the small dataset of L = 500
(supplementary table S1, Supplementary Material online).
Note that ancestral population sizes (such as uX and uY)
are hard to estimate even in models of unidirectional
introgression which do not have label-switching issues
(Huang et al., 2020).

Discussion
Data Size, Precision of Parameter Estimation, MCMC
Convergence, and the Utility of the Relabeling
Algorithms
We have observed three kinds of behaviors of the MCMC
algorithm and the relabeling algorithms depending on the
data size. In small datasets, the parameters are poorly
estimated with large uncertainties, and the posterior
modes (the unidentifiable towers) are not well separated.
In such cases, applying simple constraints (such as wX ,

1
2)

is problematic because the truncation distorts the
marginal summaries of the posterior, with different
constraints producing different posterior summaries
(Richardson and Green, 1997; Celeux et al., 2000; Stephens,
2000). The relabeling algorithms are preferable. An
example is the small dataset of L = 500 loci simulated
under the model of one BDI event (supplementary fig. S7
and table S1, Supplementary Material online).

In intermediate datasets, the parameters are well
estimated, the posterior modes are well separated, but
the MCMC algorithm jumps between the modes,
switching labels. In such cases, any of the relabeling
algorithms will work well. If the posterior modes are far
away from the boundary defined by the constraints

(such as wX ,
1
2), even imposing simple constraints will

work as well. Examples include the two small butterfly
datasets with L = 500 loci (fig. 3 and supplementary fig.
S1, Supplementary Material online), and the datasets
simulated under the double-BDI model (fig. 7).

Finally, in very large datasets, the parameters are
extremely well estimated with very narrow CIs, and the
posterior modes are so sharply concentrated that the
MCMC algorithm stays on one of the unidentifiable
towers and never moves to the mirror towers.
Furthermore, in multiple runs of the same analysis the
MCMC may be “stuck” on different towers. In such cases,
the relabeling algorithms will either not move any sample
points at all or move all points from one tower to
another, and any of the algorithms will work well. This
scenario is common in analyses of large genomic datasets
with thousands of loci, such as the large noncoding and
exonic datasets from the Heliconius butterflies (fig. 2); See
Finger et al. (2022) and Thawornwattana et al. (2022) for
many more examples.

We note that in all three scenarios, the relabeling
algorithms (in particular, the b–g algorithm) were either
better or not worse than the alternatives such as
imposing simple constraints. Given that even the b–g
algorithm involves minimal computation, we recommend
its automatic use in all cases. Samples from different runs
visiting different unidentifiable modes may be merged
before postprocessing using the relabeling algorithm.

In theory, if the MCMC has converged and is mixing well
and the algorithm is run long enough, it should visit the
unidentifiable towers with exactly the same probability
and the means of introgression probabilities from the
unprocessed samples should be 1

2. One might expect this to
provide a useful criterion for diagnosing the convergence
of MCMC algorithms. Indeed Jasra et al. (2005) regarded
it “a minimum requirement of convergence for a mixture
posterior to be such that we have explored all possible
labellings of the parameters.” Here the labelings
correspond to the unidentifiable towers. We suggest that

    

  

 

FIG. 8. Posterior means and the 95% HPD CIs in 10 replicate datasets of L = 500, 2,000, and 8,000 loci, simulated and analyzed under the
double-BDI model of figure 6a. The MCMC samples are postprocessed using the b–g algorithm before they are summarized (e.g. fig. 7).
Eight parameters are involved in the label-switching unidentifiability: wX , wY , uX, uY , wZ, wW , uZ , and uW (see fig. 6).
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this requirement is too stringent and unnecessary. As
discussed above, in large genomic datasets, the posterior
may be highly concentrated, and the chain may never
jump between the towers even in very long MCMC runs.
While the chain may be visiting different mirror towers in
different runs of the same analysis, each chain may be
exploring the space around the visited tower thoroughly,
and after label switching is removed, the MCMC samples
from the different runs may produce nearly identical
posterior summaries, suggesting that reliable inference is
possible. In simulations of large datasets, the posterior
estimates after label-switching problems are removed
converge to the true values (e.g., Flouri et al., 2020, fig.
S10A). One could include a random permutation step in
each MCMC iteration, so that the unidentifiable towers
are visited with equal probabilities, but this does not
eliminate the need for postprocessing the MCMC sample
to remove label switching. We suggest that exploration of
all unidentifiable towers is unnecessary for correct
inference and should not be used as a criterion for
diagnosing MCMC convergence. Instead convergence
diagnosis should be applied after the MCMC sample is
processed to remove label switching. For example, one
should run the same analysis multiple times and confirm
that the posterior summaries when the MCMC samples
are processed and mapped onto the same tower are
consistent between runs. The efficiency of the MCMC
algorithm or the effective sample size (ESS) (Yang and
Rodríguez, 2013) should also be calculated using the
processed samples.

Identifiability of MSci Models with Unidirectional
Introgressions
The identifiability of MSci models involving unidirectional
introgression (UDI) events appears to be simpler than for
BDI models (Flouri et al., 2020; Jiao et al., 2021). MSci model
A (Flouri et al., 2020, figure 1) is consistent with three
different biological scenarios (fig. 9a–c). In scenario A1,

two species SH and TH merge to form a hybrid species
HC, but the two parental species become extinct after the
merge. This scenario may be rare. In scenario A2, species
SUX contributes migrants to species THC at time tH and
has since become extinct or is unsampled in the data. In
scenario A3, TUX is the extinct or unsampled ghost
species. The three scenarios are unidentifiable using
genomic data. Model B1 assumes introgression from
species RA to TC at time tS = tH (fig. 9d). This is
distinguishable using genetic data from the alternative
model B2 in which there is introgression from RB to
SC (fig. 9e). Note that models B1 and B2 are both special
cases of model A1 with different constraints (that is, tS =
tH , tT for model B1 and tS . tH = tT for model B2).

Note that the sampling configuration may affect the
identifiability of parameters in the model (Yu et al., 2012;
Zhu and Degnan, 2017). The simplest such example may
be the population size parameter (u). If at most one
sequence per locus is sampled from a species, the
population size for that species will be unidentifiable.
Similarly, if no more than one sequence per locus can
enter an ancestral population when we trace the
genealogy of the sampled sequences backwards in time,
u for that ancestral species will be unidentifiable. Such
unidentifiability disappears when multiple sequences per
species are sampled. Note that a diploid sequence is
equivalent to two haploid sequences. Similarly
introgression models that are unidentifiable with one
sampled sequence per species may become identifiable
when multiple sequences per species are sampled (Zhu
and Degnan, 2017).

An interesting example concerns the UDI model in the
case of two species with one sequence sampled per species
per locus, which creates a cross-model unidentifiability
(fig. 10a and b). In both the A�B and B�A
introgression models, five parameters are estimable, but
the two models are unidentifiable, because they produce
exactly the same distribution of the coalescent time
between the two sequences at any locus. In other words,

(a) (b) (c) (e)(d)

FIG. 9. Species trees for three species (A, B, and C) illustrating MSci models of types A and B defined by Flouri et al. (2020, figure 1). (a–c) Three
interpretations of MSci model A (Flouri et al., 2020, figure 1) are indistinguishable/unidentifiable. (d,e) Two versions of MSci model B (Flouri et al.,
2020, figure 1) are identifiable.
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with a pair of sequences per locus, one can estimate the
timing and strength of introgression, but not its
direction. If multiple sequences are available per species
per locus, the two models are identifiable, as are the
eight parameters in each model.

Even if the model is mathematically identifiable with
one sequence per species per locus, including multiple
samples per species (in particular, for species that are
descendants of a hybridization node in the species tree)
can boost the information content in the data
dramatically. Thus, we recommend the use of multiple
samples per species in studies of cross-species gene flow,
and suggest that the most interesting scenario for
studying unidentifiability of models of gene flow should
be full-likelihood analysis of multilocus sequence data,
with multiple sequences sampled per species.

It is noteworthy that many parameter settings and data
configurations exist in which some parameters are hard to
estimate, because the data lack information about them.
For example, ancestral population sizes for short and
deep branches in the species tree are hard to estimate,
because most sequences sampled from modern species
may have coalesced before reaching that population
when we trace the genealogy of the sample backwards in
time (Huang et al., 2020). Similarly, if few sequences
reach a hybridization node, there will be little
information in the data about the introgression
probabilities at that node. In such cases, even if the
model is identifiable mathematically, it may be nearly
impossible to estimate the parameters with any
precision even with large datasets.

In some cases, certain parameters may be nearly at the
boundary of the parameter space, and this may create near
unidentifiability with multiple modes in the posterior. For

example, two speciation events that occur in rapid
succession will generate a very short branch in the
species tree with a near trichotomy in the species tree.
Then MSci models that posit the same introgression
events but different histories of species divergences will
fit the data nearly equally well and become multiple
modes in the posterior space (see Finger et al., 2022 for
an example). Similarly introgression probabilities near 0
or 1 can also create nearly equally good explanations of
the data and become multiple modes in the posterior. In
such situations, the MCMC samples around different
modes should be summarized separately.

Unidentifiability of Heuristic Methods
As mentioned in Introduction, the unidentifiability
discussed in this paper concerns the intrinsic nature of
the inference problem when introgression models are
applied to genomic sequence data, and thus applies to
not only full-likelihood methods but also heuristic
methods based on summaries of the sequence data.
Indeed a model that is unidentifiable by a full-likelihood
method must be unidentifiable by any heuristic method.
In contrast, a model that is identifiable by a full-likelihood
method may still be unidentifiable by a heuristic method
as the heuristic method may not be using all information
in the data. Here we briefly discuss a few heuristic
methods, focusing on their common features. Interested
readers may consult the recent reviews by Elworth et al.
(2019) and Hibbins and Hahn (2021). Heuristic methods
developed up to now are mostly of two kinds, based on
either genome-wide averages or estimated gene trees for
genomic segments (loci).

The popular ABBA-BABA test (Durand et al., 2011) uses
the parsimony-informative site patterns across the
genome to detect gene flow. Consider three populations/
species S1, S2, and S3, with the given phylogeny
((S1, S2), S3), plus an outgroup species O. There are three
parsimony-informative site patterns: ABBA, BABA, and
BBAA. Here A and B represent any two distinct
nucleotides and BBAA means S1 and S2 have the same
nucleotide while S3 and O have another. For very closely
related species, one may consider nucleotide A in the
outgroup as the ancestral allele and B the derived allele.
Site pattern BBAA matches the species tree, while ABBA
and BABA are the mismatching patterns. Given the
species tree with no gene flow, the two mismatching
patterns have the same probability, but when there is
gene flow between S1 (or S2) and S3, they will have
different probabilities. The difference between the two
mismatching site-pattern counts can then be used to test
for the presence of gene flow (Durand et al., 2011):

D = nABBA − nBABA
nABBA + nBABA

. (9)

The D-statistic may also be seen as a comparison between
the number of derived alleles shared by S2 and S3 with

(a) (b)

FIG. 10. The unidirectional introgression model for two species, given
multilocus sequence data with one sequence per species per locus, is
unidentifiable, with parameter mappingsQ = (tR , tX , uX, uR , wY) in
(a) andQ′ = (tR , tX, uY , uR , wX) in (b). Note that with one sequence
per species, uA , uB , uY in the A�B model are unidentifiable, as are
uA , uB , uX in the B�A model. If multiple sequences are available
per species per locus, all parameters are identifiable and the two
models with gene flow in different directions are identifiable as well.
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that shared by S1 and S3. It can test for the presence of gene
flow, but provides no information about its direction,
timing, or strength.

The site pattern counts can also be used to estimate the
introgression probability, as in the program HYDE (Blischak
et al., 2018; Kubatko and Chifman, 2019):

ŵ = nBBAA − nBABA
nBBAA − 2nBABA + nABBA

. (10)

This is based on the hybrid speciation model (assuming
tS = tH = tT and uS = uT in model A1 of fig. 9). The
estimate may be biased if this symmetry assumption
does not hold. Instead of the parsimony-informative site
patterns, the average sequence distance between species
may be similarly used to construct a test (Hahn and
Hibbins, 2019). Furthermore, the D-statistic has been
extended to the case of five species, with a symmetric
species tree assumed, in the so-called DFOIL test, with
the aim to detect the direction of gene flow (Pease and
Hahn, 2015).

Note that both the site-pattern counts and
between-species distances are genome-wide averages. If
the data consist of multilocus sequence alignments, they
can be merged (concatenated) into a super-alignment to
calculate those statistics. A great advantage of those
methods is that they involve minimal computation. A
serious drawback is that they do not make use of
information in genealogical variations across the genome
(Lohse and Frantz, 2014; Shi and Yang, 2018). Like the
coalescent process, gene flow between species creates
stochastic fluctuations in the genealogical history (gene
tree topology and coalescent times) across the genome,
with the probability distribution given by the parameters
in the multispecies coalescent model with gene flow,
including species divergence times, effective population
sizes for modern and ancestral species, and the directions
and rates of gene flow. As a result, there is important
information about those parameters in such genomic
variation, but this information is ignored by those
methods. In other words, those methods use the total or
mean site-pattern counts but fail to use information in
the variances in the site-pattern counts among loci. As a
result, most parameters in the coalescent model with
introgression are unidentifiable by the heuristic methods
mentioned above. None of them can detect signals of
gene flow between sister species, and for nonsister
species, none of them can estimate the introgression
probabilities when gene flow occurs in both directions
(e.g., wX and wY in fig. 1a or a and b in supplementary
fig. S3a, Supplementary Material online).

The second kind of heuristic methods use reconstructed
gene tree topologies for multiple loci as the input data.
Consider again the species quartet S1, S2, S3, and O
(outgroup), with the given phylogeny ((S1, S2), S3), and
one sampled sequence per species. The two mismatching
gene trees ((S2, S3), S1) and ((S3, S1), S2) have the same
probability if there is coalescence but no gene flow, but

different probabilities if there is in addition gene flow
between the nonsister species (between S1 and S3 or
between S2 and S3). Thus the frequencies of gene tree
topologies can be used to estimate the introgression
probability, as in the SNAQ method (Solis-Lemus and
Ane, 2016, see also Yu et al., 2012). As there are only two
free quantities (frequencies of three gene trees with the
sum to be 1), the approach can estimate the internal
branch length in coalescent units and the introgression
probability, but not any other parameters in the model.

In the general case, the probabilities of gene tree
topologies under any introgression model can be
calculated by summing over the compatible coalescent
histories (Yu et al., 2012, 2014). The probability
distribution of gene tree topologies can then be used to
distinguish among different introgression models and to
estimate the parameters in the introgression model by ML
(as in PhyloNet; Wen et al., 2018), treating gene tree
topologies as data. A concern with the two-step method is
that the estimated gene trees may involve uncertainties or
errors, in particular when the species are closely related.
Including gene tree branch lengths (coalescent times)
makes many introgression models that are unidentifiable
based on gene tree topologies alone become identifiable
(Yu et al., 2012; Zhu and Degnan, 2017). However,
two-step methods that make use of estimated branch
lengths was found to perform poorly as the large
uncertainties and errors in the estimated branch lengths
can have a major impact on inference of species
divergence and cross-species gene flow (Degnan, 2018).

There is currently a wide gap between likelihood and
heuristic methods. Heuristic methods are computationally
orders-of-magnitude faster than likelihood methods,
which in particular do not scale well for large genomic
datasets. The statistical properties of heuristic methods
are also incomparably poorer than those of likelihood
methods: heuristic methods are simply unable to provide
any estimates for many fundamental population
parameters for characterizing the evolutionary history of
the species, such as the species divergence/introgression
times and the population sizes of extant and extinct
species. There is an acute need for improving the
statistical performance of the heuristic methods and the
computational efficiency of the full-likelihood methods.

Given the limitations of the heuristic methods, one
should apply caution when using them to draw
biological conclusions concerning gene flow between
species. For example, does gene flow occur more often
between sister species or between nonsister species?
When gene flow occurs between two species, does it
often involve one direction (UDI) or both directions
(BDI)? Most heuristic methods cannot identify or detect
gene flow between sister species or gene flow in both
directions, but it may be erroneous to conclude that
such gene flow never occurs in nature. Whether BDI or
UDI is more common is an interesting empirical
question, but both models provide important biological
hypotheses testable using genomic sequence data. In a
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recent analysis of genomic sequence data from the
North-American chipmunks (Tamias quadrivittatus),
the use of the D-statistic and HYDE detected no
evidence of gene flow affecting the nuclear genome
despite widespread mitochondrial gene flow (Sarver
et al., 2021). However, a reanalysis of the same data
using BPP revealed robust evidence for multiple ancient
introgression events, involving both sister and nonsister
species (Ji et al., 2021).

Displayed Species Trees and Identifiability of MSci
Models
Pardi and Scornavacca (2015) studied the unidentifiability
of network models using data of gene tree topologies
“displayed” by the network (fig. 11). Binary species trees
generated by taking different parental paths at
hybridization nodes are called “displayed species trees”
(Pardi and Scornavacca, 2015) or “parental species trees”
(Kubatko, 2009). For example, the two network models
N1 and N2 of figure 11a are unidentifiable when only
one sequence is sampled per species because they
induce the same three displayed species trees with the
same branch lengths (Pardi and Scornavacca, 2015).
However, as pointed out by Zhu and Degnan (2017), N1

and N2 are identifiable using gene tree topologies if
multiple sequences are sampled from B.

Previously Kubatko (2009, eq. 3; see also Meng and
Kubatko, 2009) formulated the probability distribution
of gene trees (topology alone or topology with coalescent
times) as a mixture over the displayed species trees. To
simulate gene trees or sequence data at a locus, one
samples a displayed species tree first and then simulates
the gene tree and sequence alignment according to the
simple MSC model (Gerard et al., 2011). This formulation
is in general incorrect as it forces all sequences at the
locus to take the same parental path at each
hybridization node, whereas correctly there should be
a binomial sampling process when two or more
sequences reach a hybridization node. In model N1 of
figure 11a, when multiple B sequences reach species X,
it should be possible for some sequences to take the
left parental path while the others take the right path.
The formulation is correct in the special case where
each hybridization node on the species tree has at
most one sequence from all its descendant populations
(Zhu and Degnan, 2017).

Even though the notion that gene trees are displayed by
a phylogenetic network has played a central role in many
studies that attempt to use gene tree topologies to
construct the phylogenetic network, examination of the
displayed gene trees is not a reliable approach to
studying the unidentifiability of phylogenetic network
models (Zhu and Degnan, 2017). The most probable
gene tree may even have a topology that is different
from all of the displayed trees (Zhu and Degnan, 2017).
Note that both MSci models corresponding to networks
N1 and N2 are identifiable when genomic sequence data

with multiple samples per species are analyzed using
full-likelihood methods (fig. 11d and e), as are all
parameters in each models (fig. 11a’ and b’). In summary,
we suggest that the idea of displayed species trees may
not be a very useful one either for calculating the density
of gene trees or for studying the identifiability of MSci
models when there are multiple samples per species in
the data. Instead, one should explicitly treat the biological
process of coalescent and introgression in the model (Zhu
and Degnan, 2017). We suggest that multiple sequences
be sampled per species (in particular from species
involved in hybridization or from descendant species of
hybridization nodes) when genomic data are used to infer
gene flow.

Estimation of Introgression Probabilities Despite
Unidentifiability
The three relabeling algorithms for postprocessing
MCMC samples under the BDI model produced very
similar results in the applications in this study. In
particular, the simple center-of-gravity algorithms
produced results that appear to be as good as the
more elaborate b–g algorithm, despite the fact that
the normal distribution is a poor approximation to the
posterior of introgression probabilities (wX and wY).
This is due to the fact that the distributions (or the
distances in the CoG algorithms) are used to compare
the unidentifiable mirror positions of sample points
only, but are not used to approximate the posterior
distribution of those parameters, which are estimated
by using the processed samples. For the same reasons,
if there exist multiple modes in the posterior that are
not due to label switching, such genuine multimodality
will not be removed by the relabeling algorithms
(Stephens, 2000). Similarly, while we fit independent
distributions for parameters in the algorithms (eq. 6), there
is no need to assume independence in the posterior for
the algorithms to work.

A model with a label-switching type of unidentifiability
is still useful for real data analysis. In the clustering
problem, the Bayesian analysis may reveal the existence
of two groups, in proportions p1 and p2 = 1− p1 with
means m1 and m2, and it does not matter if it cannot
decide which group should be called “group 1.” The twin
towers Q and Q′ under the BDI model (fig. 1) constitute
a mathematically similar label-switching problem.
However, Q and Q′ under BDI may represent different
biological scenarios or hypotheses. Suppose that species
A and B are distributed in different habitats (dry for A
and wet for B, say), and suppose the ecological
conditions have changed little throughout the history of
the species. Q with wX ,

1
2 and wY , 1

2 may mean that
species A has been in the dry habitat over the whole
time period since species divergence at time tR, while
species B has been in the wet habitat, and they came
into contact and exchanged migrants at time tX . In
contrast, Q′ with w′

X .
1
2 and w′

Y . 1
2 may mean that
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species A was in the wet habitat and species B was in the
dry habitat since species divergence at time tR, but when
they came into contact at time tX they nearly replaced
each other, switching places, so that today species A is
found in the dry habitat while B in the wet habitat. The
two sets of parameters Q and Q′ may thus mean
different biological hypotheses. As genomic data from
modern species provide information about the order
and timings of species divergences and cross-species
introgressions, but not about the geographical
locations and ecological conditions in which the
divergences and introgressions occurred, such biological
scenarios are unidentifiable using genomic data and
become unidentifiable towers in the posterior distribution
in Bayesian analysis of genomic data under the MSci
model. Unidentifiable models discussed in this paper are
all of this nature. The algorithms we developed in this
paper remove label switching in the MCMC sample, but
do not remove the unidentifiability of the BDI models.

The researcher has to be aware of the unidentifiability
and use external information (such as fossil evidence or
ancient climate data) to choose between such equally
supported explanations of the genomic data.

In the above example, the scenario of near-complete
replacement represented by Q′ may be implausible and
the model with small introgression probabilities may be
preferable for most systems. In our relabeling algorithms,
we start with small wX and wY as much as possible
(through the initial condition wX + wY , 1). When the
introgression probabilities are intermediate, the biological
interpretations may not be so clear-cut, but unidentifiability
exists nevertheless. In the example of supplementary figure
S7 and table S1, Supplementary Material online for the
simulated data with one BDI event, the choice between the
two unidentifiable towers Q = (wX , wY) = (0.7, 0.2) and
Q′ = (0.3, 0.8) may not be easy.

Another strategy may be tomodify the BDI model so that
it becomes identifiable. In the current implementation in BPP,

FIG. 11. (a,b) Two phylogenetic
networks for four species
(A, B, C, D), each with two
hybridization events from Pardi
and Scornavacca (2015) that
are unidentifiable using gene
tree topologies with one
sequence sampled per species.
(c) Network N1 gives rise to
three ‘displayed species trees’ in
probabilities a, (1− a)b, and
(1− a)(1− b), while N2 gives
rise to the same three displayed
species trees with probabilities
(1− g)(1− d), (1− g)d, and
g. The two networks thus
give the same distribution of
gene tree topologies, and are
thus unidentifiable. However,
N1 and N2 are identifiable
when multiple samples are
taken from species B. (d,e)
MSci models corresponding
to networks N1 and N2. With
information from branch
lengths (coalescent times) and
using multilocus sequence data,
those models are identifiable
by full-likelihood method, as
are the 18 parameters in
each model, including five
species divergence/introgression
times (ts), 11 population sizes
(us), and two introgression
probabilities.

(a) (b)

(d) (e)

(c)
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each branch in the species tree is assigned its own
population size parameter (Flouri et al., 2020). We note
that if all species on the species tree are assumed to
have the same population size (u), unidentifiability
persists. However, if we assume that the population size
remains unchanged by the introgression event: for
example, uX = uA and uY = uB in figure 1, the model
becomes identifiable. The assumption of the same
population size before and after an introgression event
appears to be plausible biologically. It reduces the
number of parameters by two for each BDI event, and
removes unidentifiability. It may be worthwhile to
implement such models.

Methods and Materials
Introgression in Heliconius Butterflies
We fitted the BDI model to the genomic sequence data for
three species of Heliconius butterflies: H. melpomene,
H. timareta, and H. numata (Consortium, 2012; Martin
et al., 2013). The species tree or MSci model assumed is
shown in figure 2, with introgression between H. melpomene
and H. timareta. The two species are known to hybridize,
although no attempt has yet been made to infer the
direction or strength of introgression (except for
colour-pattern genes; Martin et al., 2013). There are
31,166 autosomal noncoding loci and 36,138 autosomal
exonic loci, with one diploid sequence sampled per species
per locus. The sequence length ranges from 11 to 991 bps
(median 93) for the noncoding loci and from 11 to 10,672
bps (median 112) for the exonic loci. The data were
prepared using the same procedure and filters as in
Thawornwattana et al. (2022). We analyzed six datasets
under the same model, with the noncoding and exonic
loci in separate datasets: the first 500 loci on chromosome
1, all loci on chromosome 1 (2,592 noncoding or 3,023
exonic loci), and all autosomal loci (table 1).

Note that a diploid sequence from each species is
equivalent to two haploid sequences, so that the
population size parameter (u) for that species is
estimable. Heterozygotes in the diploid sequence are
represented by IUPAC ambiguity codes (e.g., with Y
meaning a T/C heterozygote) and resolved into
compatible nucleotides in BPP using an analytical
integration algorithm (Gronau et al., 2011; Flouri et al.,
2018), which averages over all possible genotypic
phase resolutions of heterozygote sites, weighting
them according to their likelihood based on the
sequence alignment at the locus. In simulations, this
approach had indistinguishable performance from
analysis of fully and correctly phased genomic
sequences (Gronau et al., 2011; Huang et al., 2021).

We used gamma priors for the population sizes (u) and
for the age of the root (t0): u � G(2, 400) with the mean
0.005 substitution per site, and t � G(2, 400) with mean
0.005. The introgression probabilities were assigned beta
priors wX , wY � B(1, 1), which is the uniform U(0, 1). We

used a burn-in of 16,000 iterations, and then took 2×
105 samples, sampling every five iterations. Running
time on a server using nine threads of Intel Xeon Gold
6154 CPU (3.0GHz) was about one hour for the small
datasets or L = 500 loci, �10 h for the datasets of
chromosome 1, and �4 days for the datasets of all
autosomal loci.

Convergence of the MCMC algorithms was assessed by
checking for consistency between independent runs,
taking into account possible label-switching issues.

Simulation under the Double-BDI Model
We simulated and analyzed data under the double-BDI
model of figure 6. Gene trees with branch lengths
(coalescent times) were simulated under the MSci model
and given the gene trees, sequences were evolved along
the branches on the gene tree under the JC model (Jukes
and Cantor, 1969). The parameters used were wX = 0.1,
wY = 0.2, wZ = 0.2, wW = 0.3, tR = 0.005, tZ = tW
= 0.0025, tX = tY = 0.00125, uR = uZ = uX = uA = 0.005,
and uW = uY = uB = 0.02. Each dataset consisted of
L= 500, 2,000, and 8,000 loci, with S= 16 sequences per
species per locus, and with the sequence length to be
500 sites. The number of replicate datasets was 10.

The data were then analyzed using BPP under the
double-BDI model (fig. 6) to estimate the 14 parameters.
We use gamma priors t0 � G(2, 400) for the root age
with the mean to be the true value (0.005), and u �
G(2, 200) with the mean 0.01 (true values are 0.005 and
0.02). We used a burn-in of 32,000 iterations, and then
took 5× 105 samples, sampling every two iterations.
Analysis of each dataset took �10 h for L = 500 and
�130 h for L = 8,000, using eight threads on a server. The
MCMC samples were processed to remove label-switching
problems before they were summarized to approximate
the posterior distribution.

Simulation under a BDI Model with Poorly Separated
Towers
We simulated a small dataset, with L = 500 loci, under the
BDI model of figure 1a, with (wX , wY) = (0.7, 0.2) (see
supplementary table S1, Supplementary Material online
for the true values of all parameters). As wX and wY were
not far away from 1

2 and the dataset was small, the
posterior of the parameters was expected to be diffuse,
and the posterior modes for parameters involved in the
label-switching (or the two unidentifiable towers) to be
poorly separated, posing a challenge to our relabeling
algorithms.

We assigned gamma priors t0 � G(2, 200) for the root
age with the mean to be the true value (0.01), and u �
G(2, 400) with the mean 0.005 (true values are 0.002 and
0.01). We used a burn-in of 32,000 iterations, and then
took 2× 105 samples, sampling every 10 iterations. We
ran the same analysis twice to confirm consistency
between runs, after the MCMC samples were processed
to remove label switching.

Yang and Flouri · https://doi.org/10.1093/molbev/msac083 MBE

18

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac083#supplementary-data
https://doi.org/10.1093/molbev/msac083


Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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