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The transient receptor potential (TRP) cation channels are present in abundance across

the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary

transducers for G-protein coupled receptors. The activation of TRP channels triggers

neurogenic inflammation with related neuropeptides and initiates immune reactions by

extra-neuronally regulating immune cells, contributing to the GI homeostasis. However,

under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels

are involved in intestinal inflammation. An increasing number of human and animal studies

have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS)

and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the

VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel

therapeutic methods for IBD. In this review, we comprehensively summarize the functions

of TRP channels, especially their potential roles in immunity and IBD. Additionally, we

discuss the contradictory findings of prior studies and offer new insights with regard to

future research.

Keywords: transient receptor potential channels, gastrointestinal tract, neurogenic inflammation, immune cells,

inflammatory bowel disease

INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic relapsing GI inflammatory disorder, comprising
of Crohn’s disease (CD) and ulcerative colitis (UC). It is acknowledged that IBD is related to
inappropriate immunity, commensal bacteria, genetics, and environmental factors. The exact
pathogenesis of IBD, however, remains unknown (1). Nowadays, various receptors in the
gastrointestinal (GI) tract are proposed to play a role in the pathophysiology of IBD, amongst
which transient receptor potential (TRP) ion channels have been identified and are considered to
be potentially effective. TRP channels are polymodal ion channels that serve as sensors for chemical
noxious and physical stimuli. These channels are widely distributed in the GI tract and exert various
effects, contributing to the somatic and visceral nociception and the maintenance of physiological
function of the GI tact (2). The activation of TRP channels can evoke neurogenic inflammation,
namely the inflammation initiated by the local release of immunomodulatory neuropeptides,
including calcitonin-gene-related peptide (CGRP) and substance P (SP) released by unmyelinated
afferent neurons (3, 4). Some TRP channels are also expressed in multiple immune cells, and
are primarily responsible for modulating actions, such as cytokine release, cell migration, and
phagocytic activity (2). Therefore, numerous studies have indicated that TRP channels are mainly
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involved in the visceral hypersensitivity (VHS) and immune
pathogenesis of IBD due to their comprehensive functions of
sensors and immunomodulators. Different subtypes of TRP
channels seem to have distinct effects. Here, we briefly review
the correlation between TRP channels and IBD with a focus on
TRPV1, TRPA1, TRPV4, TRPM2, and TRPM8, which have been
documented to be the most relevant TRP channels in IBD.

TRP CHANNELS IN THE GI TRACT AND
RELATED NEUROPEPTIDES

In the GI tract, TRP channels are mainly expressed on the
extrinsic primary afferent nerves with some on epithelial,
endocrine cells, and intrinsic enteric neurons (5, 6). Intriguingly,
97% of TRPA1-positive (TRPA1+) afferents co-express TRPV1,
and 30% of the TRPV1-positive (TRPV1+) neurons co-express
TRPA1, hinting at the potential interaction between the two
channels (5, 7). Capsaicin is a significant agonist for TRPV1
with an exquisite selectivity and allyl isothiocyanate (AITC),
the pungent ingredient in garlic, is the prototypical agonist for
TRPA1 (8, 9). TRPV4 colocalizes with TRPV1, TRPA1, and
protease-activated receptors 2 (PAR-2) in the GI tract, in response
to strong acidosis, hypotonicity, warmth, and mechanical stimuli
(10, 11). TRPM2 is sensitive to heat stimulus while TRPM8
is essential to cold-induced pain (12). Most of TRP channels
are non-selective cation channels and show the permeability to
calcium ion (Ca2+). Upon stimulation, TRP channels in afferents
can lead to autonomic reflex responses by transmitting signals
to the central nervous system. Meanwhile, TRP channels can
transduce sensory signal of G-protein coupled receptors (GPCRs)
based on the phosphorylation sites in N-terminus for serine and
threonine protein kinases, such as protein kinase A (PKA) and
protein kinase C (PKC) (11, 13).

Additionally, TRP channels in the GI tract can mediate
the crosstalk between the nervous and immune systems by
modulating the release of neuropeptides. TRPV1, TRPA1, and
TRPV4 are especially often found to colocalize with CGRP and
SP (6, 14).

CGRP, which is generated from the alternative RNA
processing of the gene for calcitonin, serves as a potent peptide
vasodilator and is involved in the transmission of nociception
(15). CGRP plays a protective role in the inflammation and
inhibits the capacity of immune cells. For dendritic cells (DCs)
and macrophages, CGRP could restrain their ability in the
presentation of antigens and the secretion of pro-inflammatory
cytokines, such as tumor necrosis factor alpha (TNF-α) (16, 17).
CGRP also downregulated DCs’ responses to Toll-like receptor
4 (TLR4), a receptor for lipopolysaccharides (LPS) which is
an abundant outer wall glycolipid of Gram-negative bacteria
(18). CGRP can exert an inhibitory effect on the activation
and chemotaxis of neutrophils (19), and inhibit neutrophil-
mediated killing of bacteria mainly through suppressing the
activity of the bactericidal enzyme myeloperoxidase (MPO) in
a dose-dependent manner (20). CGRP was found to restrain
group 2 innate lymphoid cells proliferation and type 2 innate
immune responses (21), and be required for the induction

of protective innate type 17 immunity after the activation of
cutaneous TRPV1+ neurons (22). Furthermore, CGRP could
induce the upregulation of interleukin (IL)- 10 and was beneficial
in preserving mucosal integrity and limiting tissue damage (16).
These observations demonstrate the negative regulatory role
of CGRP in innate immunity and the benefits of CGRP in
the GI tract. Conversely, GRCP was reported to be capable
of stimulating T-cell migration and promoting the release of
interferon gamma (IFN-γ) and IL-2 from T-helper cells (23, 24).
In IBD patients, the expression of CGRP in the colonic mucosa
was significantly increased and was closely associated with the
severity of disease (25, 26). Therefore, CGRP might also play a
part in the pro-inflammatory process.

SP belongs to tachykinin family. The receptor for SP is the
neurokinin 1 receptor (NK-1R) (15). Similar to GCRP, SP serves
as a potent vasodilator and the SP-induced vasodilatation is
based on nitric oxide (NO) release (27). Of interest, high-dose
CGRP was reported to restrain the SP-evoked vasodilation but
facilitate SP-evoked plasma protein extravasation (28), suggesting
a crosstalk between CGRP and SP. The expression of SP and NK-
1R has been well-documented in DCs, monocytes, eosinophils,
neutrophils, mast cells, natural killer cells, and T cells, enabling
SP to regulate functions of different types of immune cell (29).
SP also modulated the immune response to microbial infection
(29). It was recently demonstrated that SP could promote the
migration and activation of mast cells, inducing the release
of multiple pro-inflammatory cytokines and chemokines (30).
Noteworthy, SP directly caused the secretion of IL-8 in human
colonic epithelial cell lines (31), hinting at the potential pro-
inflammatory role of SP in intestine. SP was detected to be
elevated in tissue extracts from the colon and rectum of IBD
patients, and the level of SP was correlated with disease activity
(32). However, in animal studies, SP ameliorated dextran sulfate
sodium (DSS)-induced colitis by promoting the enrichment of
M2 macrophages and regulatory T cells, or maintaining barrier
structure and regulating immune response (33, 34). Such results
remind us of the possible protective effect of SP in colitis.
Taking these contradictory observations with regard to the
properties of CGRP and SP into consideration, we can conclude
that the neurogenic inflammation triggered by TRP channels
has bidirectional functions on immunity and colitis. However,
the exact function of neuropeptides on a certain physical or
pathological condition has not yet been discovered and further
studies are required.

TRP CHANNELS IN IMMUNE CELLS

Besides the roles in nervous system of the GI tract, TRP channels
are also expressed in immune cells and directly contribute
to immune responses. In bone marrow-derived macrophages,
the TRPV1 expression was increased and intracellular Ca2+-
transients were triggered after oxidized low-density lipoprotein
(ox-LDL)-stimulation (35). TRPV1 could dose-dependently
modulate the level of inducible NO synthase in stimulated
peritoneal macrophages through the inhibition of nuclear
factor kappa B (NF-κB), thus influencing the secretion of
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pro-inflammatory cytokines involved in this pathway (2). In
a sepsis model, the LPS-stimulated peritoneal macrophages
showed an impaired phagocytosis when TRPV1 was knock-
out (36), suggesting the putative role of TRPV1 to potentiate
macrophages. In CD4+ T cells, TRPV1 was associated with T cell
receptor (TCR) and facilitated TCR-induced Ca2+ inflow (37),
and the activity of CD4+ T cells was impaired via the inhibition
of TRPV1 (38). The activation of TRPV1 was also reported
to enhance leukocyte rolling and adhesion (39). These data
indicated the possible pro-inflammatory properties of TRPV1
in immune cells. Intriguingly, TRPV1 activation can trigger
the production of the endocannabinoid anandamide, which
increases the level of regulatory CX3CR1 (hi) macrophages in the
gut and enhances their immunosuppressive activity (40). In DCs,
TRPV1 mediates the downregulation of TLR4/NF-κB signaling
pathway that leads to the maturation of DCs (41). A recent
research concerning lethal Staphylococcus aureus pneumonia
stated that the activation of TRPV1+ nociceptors by capsaicin
could suppress cytokine release, inhibit the recruitment and
surveillance of neutrophils, and alter lung γδ T cell numbers;
thus impairing lung bacterial clearance (42). As discussed above,
TRPV1 is an important immunomodulator that regulates the
activation and function of immune cells.

As for TRPA1, its expression was increased in stimulated
T cells, and TRPA1 was vital for the T cell activation and
release of cytokines like TNF-α, IFN-γ and IL-2 (43). TRPA1
also expresses in mast cells and DCs (44). In TRPA1-knockout
(Trpa1−/−) mice, mast cells, leukocytes, and T cells, together
with the expression of IL-1β, IL-6, IL-17, IL-22, and IL-23 were
decreased in the lesions of skin (45), indicating the ability of
TRPA1 to induce inflammation through these immune cells.
In addition to its pro-inflammatory function, the activation
of TRPA1 could suppress the pro-inflammatory effect of LPS-
stimulated peritoneal macrophages by decreasing the level of
NO, which is an abundant pro-inflammatory mediator (46).
Taken together, TRPA1 has the ability to regulate immune cells
in diverse manner. The crosstalk between TRP channels and
bacteria is noteworthy. It was discovered that LPS interacted with
TLR4 on the TRPV1+ afferent neurons. This then activated or
sensitized TRPV1 via its phosphorylation binding sites through
PKC, thus resulting in an increased release of CGRP (17, 47).
Antagonists for TRPV1 and CGRP could reverse LPS-induced
motility disturbance of the intestine (48). Another study showed
that a probiotic bacterium named Lactobacillus reuteri and its
condition medium dose-dependently reduced the capsaicin- and
distension- evoked firing of jejunal spinal afferents in mice (49),
revealing the engagement of afferents in bacteria-induced GI
sensory-motor dysfunction. TRPA1 in nociceptive neurons could
be sensitized by LPS in a TLR4-independent manner during
inflammation, causing pain, CGRP release, and vasodilation (50).
Therefore, it was hypothesized that TRP channels may be able to
directly or indirectly interact with microbiota or their products
in the gut, thus influencing the release of neuropeptides and
contributing to the maintenance of gut homeostasis.

The activation of TRPV4 increased intracellular Ca2+

concentration in LPS-treated macrophages and potentiated
macrophage (51), while downregulation of TRPV4 subsequently

impaired the phagocytosis of macrophages (52). In neutrophils,
TRPV4 was essential for inflammatory responses, such as the
neutrophil adhesion, chemotaxis, and formation of reactive
oxygen species (53). TRPV4-mediated Ca2+ influx in T cells
was also capable of inducing the proliferation of T cells and
the secretion of TNF-α, IFN-γ, and IL-2 in vitro (54). Recent
data revealed that TRPV4 could promote the phagocytosis of
mouse CD11c+ bone marrow-derived cells (55). These findings
clearly highlight the critical pro-inflammatory role of TRPV4 in
immune cells.

Regarding TRPM2, it was demonstrated that the lack of
this channel in LPS-stimulated monocytes cell line reduced
the release of TNF-α, IL-6, IL-8, and IL-10 (56). TRPM2-
associated Ca2+ signaling was essential in the transmigration and
cytotoxicity of neutrophils (57, 58), the proliferation of T cells,
and the release of pro-inflammatory cytokines (59). For TRPM8,
the activation by menthol in murine peritoneal macrophages
increased IL-10 expression and decreased TNF-α release, thus
exerting an anti-inflammatory effect (60). TRPM8-knockout
(Trpm8−/−) peritoneal macrophages exhibited an impaired
phagocytic activity while the phagocytosis was enhanced in
WT peritoneal macrophages after the activation of TRPM8
(60). Consistently, the activation of TRPM8 was reported
to restrain the release of pro-inflammatory mediators in
monocytes and lymphocytes, and Trpm8−/− CD11c+ DCs
showed hyperinflammatory responses to TLR-stimulation (61,
62). In T cells, the inhibition of TRPM8 suppressed murine T-cell
activation and the release of IL-2 and IL-6 (63). Overall, TRPM2
appears to potentiate inflammatory effects of immune cells while
TRPM8 often performs anti-inflammatory roles.

TRP CHANNELS IN INFLAMMATORY
VISCERAL HYPERSENSITIVITY OF IBD

Due to their immunomodulatory function via neuropeptides and
immune cells, TRP channels are associated with GI immunity
and inflammation. Notably, it is found that their expression
has been altered in IBD patients and colitis models (Table 1),
suggesting an involvement of TRP channels in IBD. In particular,
IBD patients are associated with a visceral hypersensitivity
(VHS), which is featured of an aberrant and chronic visceral
pain (5, 12). As visceral nociceptors, TRP channels are proposed
to be responsible for VHS in IBD. Since TRP channels serve
as secondary transducers for GPCRs, some mediators that act
on GPCRs subsequently activate or sensitize TRP channels,
resulting in aberrant sensation. Through this mechanism,
pro-inflammatory mediators secreted during colitis, such as
bradykinin, serotonin (5-hydroxytryptamine, 5-HT), cytokines,
adenosine triphosphate, prostaglandins, and epinephrine can
lead to the inflammatory VHS (5). A number of researches have
been conducted to explore the definite role of TRP channels in
colitis and VHS (Table 2).

TRPV1
TRPV1 channel is closely linked to VHS. It was found that
some patients with quiescent IBD still complained about

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 180

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. TRPC and IBD

TABLE 1 | The expression of TRP channels in colonic tissue of IBD patients and colitis models.

TRPV1 TRPA1 TRPV4 TRPM2 TRPM8

IBD patients

UC UP (64–68)

NS (69)

DOWN (70, 71)

UP (68) UP (70, 72)

NS (73)

NA NA

CD UP (64–66)

DOWN (68, 71)

UP

(68, 71, 74, 75)

UP (72, 76)

NS (73)

NA UP (77)

Animal models

DSS-treated mice UP (68, 78–80)

NS (71)

UP (71) UP (73, 81) NA UP (77, 82)

DSS-treated rats UP (83) NA NA NA NA

TNBS-treated mice UP (84) NA UP (72) NA UP (77, 82)

DNBS-treated mice NA UP (85) NA NA NA

TNBS-treated rats UP (86)

NS (87)

UP (88, 89) NA UP (90) NA

Mustard oil-treated mice NS (91) UP (91) NA NA NA

UC, ulcerative colitis; CD, Crohn’s disease; DSS, dextran sulfate sodium; TNBS, 2,4,6-trinitrobenzenesulfonic acid; DNBS, dinitrobenzene sulfonic acid; UP, upregulated; DOWN,

downregulated; NS, no significant difference; NA, not available.

TABLE 2 | The function of TRP channels in VHS of colitis models.

Pro-VHS function

TRP channel Colitis model Result References

TRPV1 DSS-treated mice Increased VHS which could be enhanced by the agonist for TRPV1 (92)

DSS- and TNBS- treated rat Increased VHS which could be relieved by the antagonist for TRPV1 (83, 86, 87, 93)

Trpv1−/− mice with DSS-induced colitis Decreased VHS compared to WT mice (78)

TRPA1 DSS-treated mice Increased VHS which could be enhanced by the agonist or be relieved by the

antagonist for TRPA1

(94)

TNBS-treated rat Increased VHS which could be enhanced by the agonist or be relieved by the

antagonist for TRPA1

(88, 89, 95, 96)

Trpa1−/− mice with

TNBS-induced colitis

Decreased VHS compared to WT mice (97, 98)

TRPV4 TNBS-treated mice Increased VHS which could be relieved by the antagonist for TRPV4 (72)

Trpv4−/− mice Decreased VHS compared to WT mice (99)

TRPM2 TNBS-treated rat Increased VHS which could be relieved by the antagonist for TRPM2 (90)

Trpm2−/− mice with

TNBS-induced colitis

Decreased VHS compared to WT mice (90)

TRPM8 DSS- and TNBS- treated mice Increased VHS which could be enhanced by the agonist or be relieved by the

antagonist for TRPM8

(82)

Trpm8−/− mice VHS was only decreased under higher level of stimuli compared to Trpv1−/− and

Trpv4−/− mice

(100)

Anti-VHS function

TRPM8 WT mice The function of TRPV1 and TRPA1 was inhibited by TRPM8 activation (101)

TNBS-treated rat Increased VHS which could be relieved by the agonist for TRPM8 (102)

VHS, visceral hypersensitivity; DSS, dextran sulfate sodium; TNBS, 2,4,6-trinitrobenzenesulfonic acid; WT, wild-type.

abdominal pain, and the severity of their symptoms was
correlated to the increased TRPV1+ fibers in colonic mucosa
(64). In animal studies, the behavioral responses to intracolonic
capsaicin administration and the expression of spinal cord
neuronal c-Fos, which is a marker of neuronal excitation,
were increased in DSS-treated mice (92). Yang et al. (83)
reported that an oral administration of curcumin, which is

clinical valuable for the treatment of IBD (103), in DSS-treated
rats could significantly ameliorate visceral hyperalgesia through
inhibiting phosphorylation of TRPV1, indicating a nociceptive
effect of TRPV1. Likewise, Phillis et al. (93) revealed that
TRPV1 antagonist remarkably reduced the mechanosensory
response to the stimulus in a dose-dependent manner in rats
with DSS-induced colitis. Visceral hyperalgesia and increased
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visceromotor response (VMR) were also confirmed in rats
with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis
(86, 87), while TRPV1 antagonist (JYL1421) could prevent
and relieve the VHS (86). Additional studies exhibited that
TRPV1-knockout (Trpv1−/−) mice conferred a resistance to
colorectal distension (78, 104), and VHS was enhanced by
inflammatory mediators, such as bradykinin, 5-HT, histamine,
and prostaglandin E2 (PGE2) in WT mice but not in Trpv1−/−

mice (12). SP was demonstrated to enhance the sensitivity
and function of TRPV1 in DSS-induced colitis and in vitro
(78), suggesting the engagement of neuropeptides in VHS.
Noteworthy, the augmented activity of pelvic nerve afferents after
TRPV1 activation in DSS-treated rats was more prominent on
the first day post DSS-treatment, in comparison to the eighth
day (92). Similarly, the levels of TRPV1 and TRPA1 messenger
RNA (mRNA) in mice were upregulated in mustard oil (MO)-
induced colitis within 6 h but decreased 24- and 72-h after
MO-injection (91). Therefore, it can be hypothesized that the
excitatory mechanism modulated by TRPV1 mainly particulate
during early stage of experimental colitis.

TRPA1
TRPA1 could contribute to colorectal contraction and enhanced
VMR to intracolonic AITC, which were detectable in TNBS-
induced colitis. These actions could be suppressed by intrathecal
pretreatment with a TRPA1 antisense oligodeoxynucleotide, and
were absent in Trpa1−/− mice (88, 89, 97, 98). Likewise, AITC
enhanced the sensitivity of colon and the expression of c-
Fos in spinal cord of DSS-treated mice (94). During TNBS-
induced colitis, the production of hydrogen peroxide (H2O2) was
enhanced due to the infiltration of white blood cells and the
presence of oxidative stress. The increased H2O2 then activated
TRPA1 and led to the hypersensitivity of VMR (95). The aberrant
GI motility might result from the effects of PGE2 induced by
TRPA1 activation (105). Similarly, inflammatory mediators, such
as bradykinin and 5-HT could lead to an increased visceral
mechano-sensitivity in a TRPA1-associated manner (97, 106).
These data suggest a close link between TRPA1 and pro-
inflammatory cytokines, both of which contribute to visceral
hyperalgesia. Of interest, Vermeulen et al. (96) reported that
a combined application of antagonists for TRPV1 and TRPA1
could reduce the VMR more effectively in TNBS-induced colitis,
in comparison to targeting either TRPV1 or TRPA1 alone. Such
evidence appears to provide an inspiring therapeutic method for
inflammatory VHS.

TRPV4
TRPV4 is vital for a mechanically-evoked visceral pain in the GI
tract (76). It was found that TRPV4 co-expressed with PAR-2
and pretreatment of PAR-2 agonist enhanced TRPV4 activity and
hypersensitivity, while the inhibition of PKA and PKC restrained
this effect (99, 107). Also, 5-HT and histamine improved
TRPV4-induced hypersensitivity for colorectal distention in
mice (108). These results indicate the responses of TRPV4 to
inflammatory mediators through GPCR signaling pathway. A
selective blockade of TRPV4was subsequently evident to alleviate
intestinal inflammation and pain in TNBS-treated mice (72).

Therefore, the pro-hypersensitivity function of TRPV4 during
colitis is relatively clear.

TRPM2
In TNBS-induced rat colitis, the VMR was enhanced and could
be ameliorated by an oral administration of TRPM2 antagonist
(econazole) (90). However, in TRPM2-knockout (Trpm2−/−)
mice, the TNBS-induced VMR was less severe compared to WT
mice (90), showing a potential facilitating role of TRPM2 in VHS.

TRPM8
Menthol, serving as the agonist for TRPM8, has been applied
to relieve abdominal discomfort and pain in traditional Chinese
medicine, suggesting that TRPM8 activation can diminish
visceral pain perception (12). In TNBS-induced colitis, the
colonic mechano-hypersensitivity was remarkably suppressed by
a combined adoption of peppermint and caraway oil, which are
agonists for TRPM8 (102). Harrington et al. (101) demonstrated
that TRPM8 activation restrained the downstream chemosensory
and mechanosensory actions of TRPA1 and TRPV1 to agonists
in colonic afferents, stating the potential function of TRPM8 for
inhibiting TRPV1 and TRPA1. In contrast, it was showed that the
TRPM8 agonist (WS-12) enhanced visceral pain response while a
pretreatment of TRPM8 antagonist inhibited the hypersensitivity
(82). Another study reported that in Trpm8−/− mice, VMR
only decreased when the pressure level of colorectal distension
was quite high; but in Trpv1−/− and Trpv4−/− mice, VMR
was remarkably decreased in all pressure ranges (100). Of note,
both bradykinin and histamine were found to suppress TRPM8
mainly via the G-protein subunit Gαwhich inhibited ion channel
activity of TRPM8 (109), indicating the ability of inflammatory
mediators to desensitize TRPM8 and inhibit its function. Such
a mechanism may account for the TRPM8-associated enhanced-
VHS during inflammation.

TRP CHANNELS IN IMMUNE
PATHOGENESIS OF IBD

In addition to the roles in inflammatory VHS, the potential
engagement of TRP channels in the immune pathogenesis of IBD
has been highlighted in human and animal studies (Table 3).

TRPV1
The TRPV1+ fibers were increased in the colonic mucosa of IBD
patients, along with non-neuronal TRPV1 immunoreactivity (65,
66). Further study confirmed an increased expression of TRPV1
in inflamed tissue of active UC patients compared with non-
inflamed tissue, being associated with a relapse and continuous
activity of disease (64, 67). However, a downregulated expression
of TRPV1 was also revealed in colonic biopsies from UC and
CD patients (68, 70, 71), and Rizopoulos et al. (70) found no
significant correlation between TRPV1 expression and clinical
features in UC patients. In experimental colitis models, TRPV1
expression was also found to be altered (68, 78–80, 83, 84, 86)
(Table 1). Kihara et al. (110) subcutaneously injected noxious-
dose capsaicin into neonatal rats to chemically denervate the
TRPV1 channel, revealing that the denervated rats exhibited a
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TABLE 3 | The function of TRP channels in pathophysiology of colitis models.

Pro-inflammatory function

TRP channel Colitis model Result References

TRPV1 DSS-treated mice Chemically denervation of TRPV1, the antagonist for TRPV1, and the

Trpa1-knockout alleviated colitis

(110–114)

TNBS-treated rat The antagonist for TRPV1 alleviated colitis (115)

TLR-4−/− mice with TNBS-induced colitis Downregulated TRPV1 expression and alleviated colitis compared to WT mice (84)

Toxin-A treated isolated rat ileal segment Aggravated inflammation which could be enhanced by the agonist or be

alleviated by the antagonist for TRPV1

(116)

T cell-transfer mice colitis Genetic or pharmacological inhibition of TRPV1 in T cell or colonic tissue resulted

in less severe colitis

(117, 118)

TRPA1 DSS-treated mice The Trpa1-knockout and the antagonist for TRPA1 alleviated colitis (119)

TNBS-treated mice The Trpa1-knockout and the antagonist for TRPA1 alleviated colitis (119)

TRPV4 DSS-treated mice The agonist for TRPV4 aggravated colitis and the Trpv4-knockout alleviated

colitis

(73, 81)

TNBS-treated mice The antagonist for TRPV4 alleviated colitis (72)

TRPM2 DSS-treated mice The Trpm2-knockout alleviated colitis (120)

Anti-inflammatory function

TRPV1 DSS-treated rat The agonist for TRPV1 alleviated colitis and chemically denervation of TRPV1

aggravated colitis

(121)

TNBS-treated rat The agonist for TRPV1 alleviated colitis (122, 123)

DNBS-treated mice The Trpv1-knockout aggravated colitis (124)

Oxazolone-treated mice Chemically denervation of TRPV1 aggravated colitis (125)

Iodoacetamide-treated rat Chemically denervation of TRPV1 aggravated colitis (126)

Formalin-treated rabbit Chemically denervation of TRPV1 aggravated colitis (127)

TRPA1 DSS-treated mice The Trpa1-knockout and the antagonist for TRPA1 aggravated colitis; the

agonist for TRPA1 alleviated colitis

(71, 85)

T cell-transfer mice colitis TRPV1+TRPA1− T cells induced more severe colitis compared to

TRPV1+TRPA1+ T cells

(68)

TNBS-treated mice The Trpa1-knockout aggravated the fibrosis in colitis (57, 67)

DNBS-treated mice The agonist for TRPA1 alleviated colitis (85)

TRPM8 TNBS-treated mice The agonist for TRPM8 alleviated colitis (77)

DSS-treated mice The Trpm8-knockout aggravated colitis and the agonist for TRPM8 alleviated

colitis; adoptive transfer of TRPM8−/− macrophages in mice induced more

severe colitis compared to WT macrophages

(60, 77)

DSS, dextran sulfate sodium; TNBS, 2,4,6-trinitrobenzenesulfonic acid; DNBS, dinitrobenzene sulfonic acid; WT, wild-type.

lower severity of DSS-induced colitis compared with the control
group. Similarly, it was showed that an oral administration of
capsazepine (CPZ), which is a specific antagonist for TRPV1,
significantly reduced the overall macroscopic epithelial damage
in mice colonic tissue after intraperitoneal DSS-administration
(111). In Trpv1−/− mice, the DSS-induced colitis was less severe
(112, 113), and a DSS-associated upregulation of SP-positive
fibers was reduced (114), demonstrating a crosstalk between
TRPV1 and neurogenic inflammation in colitis. In addition, it
was reported that rats with TNBS-induced colitis exhibited a
reduction of macroscopic damage score and MPO activity after
CPZ enema (115). Recent data pointed that TLR4-knockout
mice showed a less inflammatory infiltration and a decreased
expression of TRPV1 in TNBS-induced colitis, indicating one
possible function of TLR4 for mediating TRPV1 signaling under
inflammatory conditions (84). As for other animal models,
McVey et al. (116) suggested that an intraluminal administration
of capsaicin in isolated ileal segments of rats led to an intestinal

inflammation which could be reduced by CPZ. In T-cell-transfer
colitis model, the activation of TRPV1 tended to exacerbate
the intestinal inflammation, while the colitis was less severe
when the TRPV1 in T cell was genetically or pharmacologically
inhibited. The pro-inflammatory property of TRPV1 in T cells
may be associated with the release of TNF-α, IFN-γ, IL-
2, IL-4, IL-10, and IL-17 (117). In another study, capsaicin-
induced TRPV1+ fibers-denervation ameliorated the intestinal
inflammation in the T-cell-transfer colitis model (118), but the
suppressive effect of noxious-dose capsaicin pretreatment only
existed in 7–8 weeks old mice for several weeks after T-cell
transfer, and these mice eventually developed colitis (128). It was
further revealed that the severity of TNBS-induced colitis in the
TRPV1+ fibers-denervated rats was drastically increased within
3–7 days after TNBS administration. Nevertheless, no significant
difference of the colitis was found between denervated rats and
normal rats in 14–21 days (129), reinforcing the concept that
TRPV1+ fibers are involved in the early steps of colitis. Taken
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together, these reports indicate that the activation of TRPV1 in
colon is essential for the propagation of intestinal inflammation,
and it might be a proximal event in the inflammatory process.

Noteworthy, several publications have reported the protective
effects of TRPV1 in experimental colitis. It was exhibited that
a local application of capsaicin and exogenous administration
of CGRP ameliorated the colonic lesions in TNBS-induced rat
colitis (122, 123). Massa et al. (124) stated that Trpv1−/− mice
exhibited a worse outcome of colitis and lower expression of
anti-inflammatory neuropeptides, such as vasoactive intestinal
peptide (VIP) and pituitary adenylate cyclase-activating peptide
(PACAP), while the NF-κB and STAT3 signaling pathways were
demonstrated to be enhanced (130). Moreover, TRPV1 was
reported to restrain the initiation and progression of colon cancer
(130). In DSS-treated rats, a daily administration of capsaicin was
able to reduce the severity of colitis, while a desensitization of
TRPV1+-fibers dramatically worsened the inflammation (121).
A protective role of TRPV1 was also identified in oxazolone-
induced mice colitis, iodoacetamide-induced rat acute colitis,
and formalin-induced rabbit acute colitis (125–127). The rather
ambiguous findings concerning the roles of TRPV1 in colitis
required further scrutiny.

Intriguingly, the expression of the TRPV1 was increased in the
distal colon and rectum compared to the proximal colon in mice,
and similar proximodistal gradient of CGRP/SP was detected (79,
131). Considering the anatomical distribution pattern of UC that
often exhibits an ascending inflammation from rectal to proximal
colon (4), the increased activity of TRPV1 and neuropeptides
in distal colon might give rise to the increased susceptibility
of distal colon to colitis and promote the spread of ascending
inflammation. Such observations hint at the correlation between
the diverse expression of TRP channels in the GI tract and the
anatomical distribution pattern of IBD. Differences of microbial
composition in certain gut regions and the crosstalk between
microbiota and TRP channels are also likely to underlie the IBD
anatomical distribution (6, 132). Likewise, it is reasonable to
hypothesize that the diverse function of TRP channels in immune
cells may be responsible for the distinct pathological pattern of
UC and CD. A clear elucidation of this issue can facilitate a better
understanding of the TRP channels and pathogenesis involved
in IBD.

TRPA1
The studies regarding the role of TRPA1 in IBD all showed
a upregulated TRPA1 expression in the colonic tissue of IBD
patients (Table 1). In animal studies, mice with experimental
colitis exhibited an increased TRPA1-mediated colonic
neuropeptide release, while the experimental colitis appeared to
be less severe after the inhibition of TRPA1 by the antagonist
or genetic depletion (119). Additional studies suggested a
protective role of TRPA1 in the GI tract. Pagano et al. (85)
demonstrated that Cannabidivarin, a potent agonist of TRPA1,
was able to attenuate the intestinal inflammation in biopsies from
pediatric patients with active UC. In dinitrobenzene sulfonic
acid (DNBS)- and DSS-treated mice, Cannabidivarin could
also ameliorate neutrophil infiltration, intestinal permeability,
cytokine production, and alter the dysregulation of gut

microbiota (85). Kun et al. (71) reported that the ablation of
TRPA1 aggravated DSS-induced colitis and the activation of
TRPA1 reduced the release of neuropeptides, cytokines, and
chemokines, such as IL-1β and macrophage chemoattractant
protein-1 (MCP-1). Further support showed that TRPA1
activation reduced the level of TNF-α in colitis (2). Given
that macrophage is the major producer for TNF-α, it may
be that the TRPA1 in macrophages can suppress the release
of TNF-α and modulate the anti-colitogenic effect, albeit the
definite mechanism remains unclear. In addition, some evidence
indicated that the expression of TRPA1 was increased in
colonic stenotic regions of CD patients. The extent of intestinal
inflammation and fibrotic changes in TNBS-treated TRPA1−/−

mice were more prominent compare to WT mice and the
fibrosis could not be suppressed by inhibitors. The underlying
mechanismwas considered to be based on the anti-fibrotic role of
TRPA1 in intestinal myofibroblasts (74, 75). These observations
hint a novel therapeutic target to relieve the fibrosis in IBD.

Whilst considering the highly co-expressive nature of TRPV1
and TRPA1 in colonic afferents, it is interesting to shed light
on the interaction between TRPV1 and TRPA1 in colitis.
A stimulation of TRPA1 in dorsal root ganglia could result
in the activation of PKA and subsequent phosphorylation of
TRPV1 (133), while the activation of TRPV1 in afferents could
desensitize TRPA1 through phosphatidylinosital biphosphate
(PIP2) depletion (134). In IBD patients, a vast infiltration of
TRPV1+TRPA1+ T cells had been identified in inflamed colonic
tissue (68). Bertin et al. (68) found that TRPV1+TRPA1− T cells
were able to enhance T-cell receptor-induced Ca2+ influx and
aggravated intestinal inflammation in IL-10 knockout mice and
T-cell-transfer colitis models compared to TRPV1+TRPA1+ T
cells. However, the colitogenic properties of TRPV1+TRPA1− T
cells were abrogated with pharmacological inhibition or genetic
deletion of TRPV1 (68, 117), suggesting that TRPA1 inhibited
TRPV1 activity in CD4+ T cells and consequently restrained the
activity of CD4+ T cells. Thus, the role of TRPA1 in colitis could
be either protective or damaging.

TRPV4
The TRPV4 mRNA expression and TRPV4 immunoreactivity
in colon were remarkably upregulated in IBD patients (70, 72,
76), in particular, serosal blood vessels with active inflammation
were more densely innervated by TRPV4-positive fibers, which
often co-localized with the infiltrating CD45+ cells (73, 76).
Meanwhile, TRPV4 activation could recruit macrophages and
other immune cells through the induction of chemokines, such
as IL-8 and MCP-1 (73). D’Aldebert et al. (73) indicated the
upregulated colonic TRPV4 expression in DSS-treated mice.
Intracolonic administration of the TRPV4 agonists (4alpha-
phorbol-12,13-didecanoate or GSK1016790A) in mice activated
NF-κB and activator protein 1 (AP-1) signaling pathway,
resulting in exacerbated DSS-induced colitis and even transiently
increased the paracellular permeability of epithelium and blood
vessel, while TRPV4-knockout mice conferred a strong resistance
to the colitis (73, 81). These results prove the deleterious
effects of TRPV4 on mucosal inflammation. Conversely, a
systemic or local administration of RN1734, a selective TRPV4
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antagonist, remarkably relieved the TNBS-induced colitis (72),
suggesting the benefit of attenuating inflammation through
blocking TRPV4. The medications aiming at TRPV4 might be
capable of alleviating intestinal inflammation in IBD.

TRPM2
The expression of TRPM2 in distal colon was increased in TNBS-
treated rats (90). In Trpm2−/− mice, Yamamoto et al. (120)
exhibited that the infiltration of immune cells and the severity
of intestinal inflammation were ameliorated in DSS-induced
colitis. The underlying mechanism might be that the Ca2+ influx
was impaired in Trpm2−/− macrophages, thus affecting the
activation of NF-κB pathway (120). This evidence reminds us that
TRPM2 can exert pro-inflammatory effects in the colitis via its
essential role in macrophages and NF-κB signaling pathway.

TRPM8
TRPM8 expression was demonstrated to be upregulated in IBD
patients and in DSS- or TNBS-treated mice (77). The activation
of TRPM8 with icilin significantly attenuated the experimental
colitis, but Trpm8−/− mice were quite susceptible to colitis
(62, 77). It was considered that TRPM8 performed its protective
role in the intestine via restraining the release of TNF-α, IL-
1, IL-6, and MCP-1, and inducing the release of CGRP (62,
77). TRPM8 activation could also reduce the TRPV1-dependent
CGRP release in the gut (77), showing the ability of TRPM8
to suppress the TRPV1-associated inflammatory cascade. The
reconstitution of Trpm8−/− macrophages in mice exerted a
deleterious effect on DSS-induced colitis (60), exhibiting a
protective property of TRPM8 in macrophages. These findings
reinforce the anti-colitogenic function of TRPM8. Agonists for
TRPM8 possibly serve as therapeutic strategies for alleviating
intestinal inflammation.

POSSIBLE FACTORS BEHIND PRIOR
CONTRADICTORY RESULTS

According to aforementioned researches, the roles of a certain
type of TRP channels in IBD and experimental colitis tended to
be bidirectional or even conflicting.

The human studies mainly concentrated on the expression of
TRP channels in the colonic tissue of IBD patients, however, the
results of these studies appeared to be contradictory, especially
concerning the expression of TRPV1. Actually, TRP channels are
widely but anatomically distinctly distributed in various tissues
and cell types in the GI tract (6). The expression and function
of TRP channels may also be diverse in different subtypes and
phases of IBD, and vary among individuals (79). However, the
tissue samples of previous studies were acquired at multiple
sites of the GI tract and the sample sizes were relatively small.
Therefore, further researches that collect sufficient samples from
a certain GI region and separately analyze the expression of TRP
channels in UC and CD are warranted. Noteworthy, in IBD
genome-wide association studies (GWAS), no single nucleotide
polymorphism of TRP channel- related genes has been identified
in correlation with IBD (135). However, the functions of TRP
channels in the GI tract are tightly associated with the content in

GI lumen and molecules that possess significant polymorphisms
in IBD GWAS, such as TLR4 (136). Additional IBD GWAS
studies are needed to uncover specific factors including dietary
intake or microbiota in IBD patients in order to explore the
definite role of TRP channels polymorphisms in IBD.

Amongst the animal studies regarding TRP channels,
researches on TRPV1 and TRPA1 were dominated, thus the
majority of conflicting data was related to the functions of
these two channels in experimental colitis. Many elements were
probably responsible for the paradox.

First, the limitations of the animal models and experimental
methods applied in the studies should be considered.
Unfortunately, the ideal IBD models that completely
mimic the multifactorial chronic disease do not exist and
the pathophysiological mechanisms underlying different models
are diverse. Also, animals of different strains, species, or ages
have their distinct susceptibility to the stimulus, resulting in
various demonstrations in experimental colitis (137). Due to
the variety of animals and colitis models being used in prior
studies, the animal models with distinct characteristics per se
might accidentally account for the discrepant actions of TRP
channels. Meanwhile, the different experimental methodology
and drug administration could lead to opposing results. For
example, capsaicin, the agonist for TRPV1, has dual effects
that the low-dose capsaicin only affects a variable number
of TRPV1-expressing nerves, while the high-dose capsaicin
results in nerve desensitization (6), indicating the influence of
the dose of stimuli on TRP channels. Moreover, the function
of TRP channels might be affected by the changes in the
microenvironment of the gut induced by agonists or antagonists
(138), thus masking the true effects of TRP channels. It was
revealed that TRP channels activation could be achieved via
overexpression, phosphorylation, or recruitment to the plasma
membrane (68). Additional experiments regarding the mode
of TRP channels activation induced by specific stimulus may
provide a rational view on the interaction between the stimulus
and TRP channels.

Second, in addition to the exogenous stimuli applied in
studies, there appears to be various endogenous ligands acting
on TRP channels, thus influencing the results of experiments.
Compounds, such as prostaglandin metabolites, nerve growth
factor, and products of oxidative stress can mediate TRPV1 and
TRPA1 (5, 95, 139), making it difficult to attribute the results
observed in studies to the stimulation of exogenous chemicals
or to the stimulation of endogenous mediators. Actually, besides
the administration of exogenous stimuli for TRP channels,
the activation of TRP channels in IBD is also based on the
stimulating effects of multiple endogenous mediators which are
synthesized and released within the progress of colitis. Some of
these compounds may potentialize TRP channels via the GPCR
pathway (5). Hence, it is likely that TRP channels play a role not
only in the initiation but also in the regulation of the intestinal
inflammation, while the exact mechanism is unclear and needs
further explorations.

Third, the functions of neurogenic inflammation and immune
responses triggered by TRP channels activation are complicated.
The neurogenic inflammation is featured of the release of
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CGRP and SP, but the effects of these two neuropeptides on
intestinal inflammation were not clearly elucidated and tended
to be contradictory. The differences in the concentration of
neuropeptides and the expression of receptors might contribute
to the discrepancy (4). SP was reported to sensitize TRPV1 during
colitis and affect the functions of TRPV1 (78), suggesting a
possible feedback sensitization loop between neuropeptides and
TRP channels. In addition, a range of evidence showed that
neuropeptides, such as somatostatin, galanin, opioid peptides,
VIP, and PACAP could participate in the inflammation and
regulate the inflammatory responses (130, 140). It is warranted
to explore whether there is an association between these
neuropeptides and TRP channels in colitis. As for immunity,
besides the TRP channels-expressing immune cells, some non-
immune cells may have TRP channels in the colitis. For
example, the expression and function of TRPA1 were identified
in fibroblasts which could transform into myofibroblasts and
contribute to the regulation of intestinal inflammation (74,

75, 105). However, the definite involvement of myofibroblasts
in colitis was poorly understood. Additional explorations are
necessary to reveal other TRP channels-expressing cells that play
a role in colitis.

Fourth, the TRP channels may interact with various
cellular pathways. For instance, the inhibition of TRPV1
could lead to an increased availability of anandamide, and
then induced downstream effects on NF-κB and TNF-α and
affected bowel motility via the receptor for anandamide (78,
124). Meanwhile, anandamide could also act on TRPV1
and regulate a protection against intestinal inflammation (78,
124), suggesting a potential synergy between TRP channels
and other cellular pathways in some settings. Similar to
the interaction between TRPV1 and TRPA1, the possible
crosstalk between other subtypes of TRP channels is also
worth noting. Further studies are warranted to elucidate the
comprehensive regulatory network induced by the stimulation of
TRP channels in colitis.

FIGURE 1 | The overview of TRP channels involved in IBD. The TRP channels mainly express themselves on extrinsic primary afferents in the intestine. TRP channels

directly detect various stimuli in the intestinal lumen and act as secondary transducers for GPCR. Specially, TRPV1 and TRPA1 can crosstalk with microbiota through

TLR4 or in a TLR4-independent manner. Upon activation, TRP channels transduce the sensory signal to the central nervous system and lead to autonomic reflex

responses. This mechanism could be enhanced by inflammatory mediators and be responsible for the visceral hypersensitivity on pathological conditions. Meanwhile,

the activation of TRP channels triggers neurogenic inflammation with neuropeptides, such as CGRP and SP, which can interact with immune cells. On the other hand,

TRP channels express on multiple immune cells and regulate their functions, thus promoting or restraining the initiation or process of inflammation. Therefore, based

on the immunomodulatory effects, TRP channels play a role in the immune pathogenesis of IBD. GPCR, G-protein coupled receptors; TLR4, Toll-like receptor 4; SP,

substance P; CGRP, calcitonin-gene-related peptide; TNF-α, tumor necrosis factor alpha; IFN-γ, interferon gamma; MCP-1, macrophage chemoattractant protein-1;

MPO, myeloperoxidase; ROS, reactive oxygen species.
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In general, the stimulation of TRP channels and a serial
cascade of events are like double-edged swords in the intestinal
inflammation that exert colitogenic or anti-colitogenic effects
in different situations, influenced by a myriad of interactions
amongst stimuli, neuropeptides, and the immunity. It is a
challenge to figure out the accurate action of a certain type
of TRP channels in a specific immune or cellular pathway.
Intriguingly, Cohen et al. (22) applied in vivo optogenetic strategy
to selectively stimulate cutaneous TRPV1+-neuron and showed
that the afferent activation was based on a nerve reflex. In this
study, the activation of TRPV1 was in the absence of other
inflammatory stimuli, thus specifically demonstrating the precise
role of TRPV1 in the afferents and its immunity-triggering
effects. Considering the intense interactions amongst various
factors in previous researches, utilizing novel technologies that
can efficiently eliminate interferences is a promising strategy for
further studies on TRP channels.

THERAPEUTIC VALUES OF TRP
CHANNELS FOR IBD

As discussed, the effects of TRP channels in IBD have been
increasingly appreciated, it is intriguing for researchers to
explore their therapeutic values for relieving inflammatory VHS

and intestinal inflammation. Pharmacologically, the modulating
agents for TRP channels include antagonists and stimulant
agonists (141). In particular, antagonists for TRP channels
exert a specific effect on modification of ion channel, and
stimulant agonists facilitate the desensitization of sensitive
afferents (142). However, owing to the wide distribution and
various physiological roles of TRP channels within and outside
the GI tract (143), the modulation of TRP channels may
result in pronounced side effects, such as hyper-thermic effect
and impaired injurious-heat perception generated by TRPV1
antagonists (144, 145). Therefore, it is vital to develop the
stimulus-specific blockers for TRP channels that specifically act
on the aberrant function while sparing the physiological function.

Besides targeting TRP channels directly, it is worth noting
that aiming at the stimulus and downstream pathways for
GPCRs tends to be another valuable method of restraining the
action of TRP channels, especially in the inflammatory process.
A novel class of endogenous lipid mediators named resolvin,
which are generated from immune cells, such as eosinophils
and neutrophils, are of particular interest and have the ability
to suppress the function of TRP channels including TRPV1,
TRPA1, and TRPV4 (146, 147). The anti-inflammatory effects of
resolvin are likely based on the activation of inhibitory GPCR
that subsequently suppresses the GPCR-associated sensitization
or activation of TRP channels (148), showing the feasibility for

FIGURE 2 | The stimulation of TRP channels and the downstream regulatory network in IBD. TRP channels, together with other primary factors, play a role in the

pathogenesis of IBD. The stimulation of TRP channels is based on the exogenous stimuli and the endogenous stimuli. The latter mainly refer to the mediators

synthesized and released within the progress of colitis. The activated TRP channels can induce the release of neuropeptides and cytokines, thus leading to the pro- or

anti-inflammatory effects. In addition to neurons and immune cells, there are other TRP channels-expressing cells and cellular pathways contributing to regulate the

intestinal inflammation, while the definite functions of these cells and pathways are unclear. The complicated crosstalk amongst the neuropeptides, cytokines, TRP

channels-expressing cells, and diverse cellular pathways results in the various but elusive effects induced by the stimulation of TRP channels in IBD.

Frontiers in Immunology | www.frontiersin.org 10 February 2020 | Volume 11 | Article 180

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. TRPC and IBD

inhibiting TRP channels through regulating GPCRs. Overall,
treatment strategies targeting TRP channels and their signaling
pathways predict a promising future for alleviating the symptoms
and improving the prognosis of IBD. More studies are warranted
to identify the efficacy and safety of these therapeutic approaches.

To conclude, TRP channels are not only widely distributed
on neurons in the GI tract, functioning as detectors for stimuli
and triggers for neurogenic inflammation, but also expressed
in multiple immune cells and modulate immune responses
(Figure 1). Accumulated evidence has supported an important
association between TRP channels and IBD. Although different
types of TRP channels exert distinct effects, it is evident that
TRP channels are involved in the VHS and the pathogenesis
of IBD through a complicated and elusive regulatory network
(Figure 2). The inhibition or activation of selected TRP channels
can restrain the development of VHS and inflammation in the
context of colitis. Therefore, TRP antagonists and agonists tend

to constitute an attractive target in IBD treatment and need
further attention.
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