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Abstract. Levels of the neural cell adhesion molecule 
N-CAM in muscle are regulated in parallel with the 
susceptibility of  muscle to innervation: N-CAM is 
abundant on the surface of early embryonic my- 
otubes, declines in level as development proceeds, 
reappears when adult muscles are denervated or para- 
lyzed, and is lost after reinnervation (Covault, J., and 
J. R. Sanes, 1985, Proc. Natl. Acad. Sci. USA, 
82:4544-4548). Here we used immunocytochemical  
methods to compare this pattern of  expression with 
those of several other molecules known to be involved 
in cellular adhesion. Laminin,  fibronectin, and a basal 
lamina-associated heparan sulfate proteoglycan accu- 
mulate on embryonic myotubes after synapse forma- 
tion, and their levels change little after denervation. 
L I, J I, nerve growth factor-inducible large external 
protein, uvomorulin, and a carbohydrate epitope (L2/ 
HNK-l )  shared by several adhesion molecules are un- 

detectable on the surface of  embryonic, perinatal, 
adult, or denervated adult muscle fibers. Thus, of the 
molecules tested, only N-CAM appears on the surface 
of  muscle cells in parallel with the ability of  the mus- 
cle cell surface to accept synapses. However, four anti- 
gens--N-CAM, J l, fibronectin, and a heparan sulfate 
proteoglycan--accumulate in interstitial spaces near 
denervated synaptic sites; regenerating axons traverse 
these spaces as they preferentially reinnervate original 
synaptic sites. Of  particular interest is J l, antibodies to 
which block adhesion of central neurons to astrocytes 
(Kruse, J., G. Keihauer, A. Faissner, R. Timpl, and 
M. Schachner, 1985, Nature (Lond.), 316:146-148). 
J1 is associated with collagen and other fibrils in mus- 
cle and thus may be an extracellular matrix molecule 
employed in both the central and peripheral nervous 
systems. 

E 
MBRYONIC myotubes readily accept synapses, but mo- 
tor axons cannot form new (ectopic) synapses on nor- 
mally innervated adult muscle fibers. However, adult 

muscles regain their susceptibility to synapse formation if they 
are denervated or paralyzed, and denervated muscles again 
become refractory to synapse formation if they are reinner- 
vated or electrically stimulated. Thus, muscles regulate their 
susceptibility to synapse formation in accordance with their 
state of innervation or activity, and considerable interest has 
focused on the means by which muscles inform nerves of 
their ability to accept innervation (reviewed in reference 39). 

In investigating this problem, we recently found that mus- 
cles regulate their expression of the neural cell adhesion 
molecule N-CAM in parallel with their susceptibility to in- 
nervation: N-CAM is abundant in early embryonic, dener- 
vated, and paralyzed adult muscles, but present at low levels 
in normal and reinnervated adult muscles (3, 7, 7a, 7b). 
Furthermore, N-CAM (which serves as its own receptor) is 

present on terminals of normal and regenerating motor axons 
(7), and antibodies to N-CAM inhibit neurite-myotube inter- 
actions in vitro (32). Thus N-CAM may participate in regu- 
lating the susceptibility of the muscle to innervation in vivo. 

These results raise a new question when considered in 
conjunction with recent studies on the adhesion of neurons 
to other cells and to external substrata. Neurons from a single 
source and in some cases single neurons have been shown to 
bear multiple adhesive mechanisms and to be able to interact 
with multiple ligands on other cellular or extracellular targets 
(e.g., references 10, 27, and 30). Furthermore, there is already 
evidence that muscles influence axonal behavior in several 
ways. For example, embryonic and denervated muscle not 
only accumulate N-CAM but also secrete soluble factors that 
promote survival and differentiation of neurons (reviewed in 
reference 37). It therefore seemed possible that myotubes 
might modulate their attractiveness to axons by coordinately 
regulating the expression of several adhesive macromolecules. 

© The Rockefeller University Press, 0021-9525/86/02/0420/12 $1.00 
420 The Journal of Cell Biology, Volume 102, February 1986 420-431 



To test this idea we have compared the distributions, in 
muscle, of (a) four neural cell adhesion molecules--N-CAM 
(8, 31), L1 (28), J1 (17), and nerve growth factor-inducible 
large external protein (NILE) ~ (43); (b) a cell adhesion mole- 
cule hitherto studied in nonneural tissues, uvomorulin (14, 
25); (c) three components of basal laminae (BL) with which 
neurites interact--laminin (9, 2 l, 30), heparan sulfate proteo- 
glycan (l 8, 22), and fibronectin (2, 30); and (d) a carbohydrate 
epitope, L2/NHK-I,  which is shared by several adhesive 
macromolecules (16). We report that, of these molecules, N- 
CAM is unique in appearing on muscle fiber surfaces in 
parallel with the susceptibility of the muscle to innervation. 
However, when adult muscles are denervated, interstitial 
spaces near synaptic sites acquire deposits of at least four 
adhesive macromolecules and thus may become able to influ- 
ence the behavior of regenerating axons in several ways. 

Materials and Methods 

Animals 
Sprague-Dawley rats were obtained from Cbappel Breeders (St. Louis, MO). 
Rat embryos were obtained from pregnancies timed by the presence of sperm 
in vaginal smears; the first day of pregnancy was designated E0, and rats were 
born on E21 or 22. Based on results by Covault and Sanes (7a), intercostal 
muscles from El5 and E22 rats were chosen for detailed study here; the terms 
embryonic and perinatal refer to these ages, except where otherwise specified. 
Outbred Swiss mice (SASCO Inc., Omaha, NE) were used in studies using 
monoclonal antibodies that react with mouse but not rat tissue (DEl and 324; 
see below). 

Surgery 
Rat diaphragms were denervated by cutting the phrenic nerve in the thorax or 
in the neck (23). Rat and mouse lower leg muscles were denervated by cutting 
the sciatic nerve mid-thigh. The nerve to the rat platysma was cut through an 
incision behind the ear. For studies of reinnervation, the appropriate nerve was 
crushed with fine forceps at the edge of the muscle. Rat lower leg muscles were 
paralyzed for 6- l I d by the implantation ofa tetrodotoxin-filled capillary under 
the perineurium of the sciatic nerve, as described by Mills and Bray (24). The 
efficacy of implants was monitored using the toe spread reflex. 

Antibodies 
The antibodies used in this study are listed in Table I. Anti-fibronectin was 
provided by J. McDonald (Washington University, St. Louis, MO), DE I by F. 
Jacob and N. Peyrieras (Institut Pasteur, Paris), ASCS4 by Paul Patterson 
(California Institute of Technology, Pasadena, CA), and HNK-I by Tom Jessell 
(Harvard University, Cambridge, MA). On immunoblots, the polyclonal anti- 
bodies to N-CAM, Jl, and L1 used here do not cross-react with each other's 
antigens (10, 17, 28, and Covault J., unpublished observation). Fluorescein-, 
rhodamine-, and horseradish peroxidase-conjugated second antibodies were 
purchased from Cappel Laboratories (Cochranville, PA), DAKO Corp. (Santa 
Barbara, CA), or Atlantic Antibodies (Scarborough, ME). 

Immunohistochemistry 
Light and electron microscopic immunohistochemical methods were performed 
as described by Covault and Sanes (7a). In brie£ for light microscopy, cryostat 
sections of unfixed muscles were incubated successively with antibody and 
fluorescein-second antibody, then mounted and viewed with epifluorescence 
optics. Counterstains were rhodamine-a-bungarotoxin, which binds to acetyl- 
choline receptors in the postsynaptic membrane and monoclonal antibodies to 
embryonic myosin (12) and to BL (38). To detect differences between inner- 
vated and denervated or between embryonic and adult muscles, two samples 
were mounted and frozen as a single block, and then sectioned, stained, and 
photographed together. For electron microscopy, rat platysma muscle was 
incubated live with antibody and horseradish peroxidase-second antibody, then 
fixed, reacted with diaminobenzidine/H202, refixed in OsO42, dehydrated, and 
embedded in Araldite. 

Abbreviations used in this paper." BL, basal lamina(e); NILE, nerve growth 
factor-induced large external protein. 

Table I. Antibodies to Adhesive Macromolecules 

Source 
Antigen Antibody designation and type (reference) 

N-CAM 
LI 

Jl  

NILE 
Uvomorulin 
Laminin 

Fibronectin 
Heparan sulfate 

proteoglycan 
CAM-associ- 

ated carbohy- 
drate 

Affinity-purified rabbit polyclonal 7 and 7a 
Rabbit polyclonai 28 
324; rat monoclonal IgG 19 
Rabbit polyclonai 17 
Affinity-purified rabbit polyclonal 
ASCS4; mouse monoclonal IgG 44 
DE 1; rat monoclonal IgG 15 
C24, C29; mouse monoclonal 12a 

IgGs 
Affinity-purified rabbit polyclonal 47 
B3, C17; mouse monoclonal IgGs 9a 

HNK-I ;  mouse monoclonal IgM 1 
L2 rat monoclonal IgM 16 

Results and Discussion 

N-CAM 
We have previously detailed the distribution of  N-CAM in 
developing, adult, and denervated adult skeletal muscles (ref- 
erences 7 and 7a; see also reference 29). We review some of  
the main results here, as a basis for describing the expression 
of  other adhesive macromolecules. 

N-CAM is abundant on myotubes and intramuscular 
nerves in embryonic muscle (Fig. 1, a and e) but is lost from 
nonsynaptic areas as development proceeds (Fig. 2 a). In adult 
muscle, N-CAM is concentrated near neuromuscular junc- 
tions (Fig. 2, c and d): it is present on the muscle fiber surface, 
intracellularly within muscle fibers, on nerve terminals, and 
on terminal associated Schwann cells but is undetectable on 
myelinated portions of  motor axons, on myelinating Schwann 
cells, and on nonsynaptic portions of  muscle fibers (7a). After 
denervation, N-CAM appears along the entire length of  mus- 
cle fibers (Fig. 2 b) and achieves comparable levels in synaptic 
and nonsynaptic areas. In addition, N-CAM appears in inter- 
stitial spaces between muscle fibers; these interstitial deposits 
are concentrated near denervated synaptic sites (Fig. 2, e and 
f ) .  Paralysis mimics denervation in inducing expression of  
N-CAM in innervated muscle, and reinnervation results in 
the loss of  N-CAM. In all these respects--near absence in 
normal and reinnervated muscle, induction in denervated 
and paralyzed muscles, and concentration near denervated 
synaptic sites--the regulation of  N-CAM parallels the regu- 
lation of  the ability of  muscle to accept new synapses (dis- 
cussed in reference 7). 

L1 
LI is a glycoprotein present on the surfaces of  various central 
neurons and on Schwann cells (10, 11, 28). Antibodies to L1 
block the adhesion of neurons to each other and migration of 
neurons in the developing cerebeUar cortex (10, 19, 27). A 
recently described neuron-glia adhesion molecule from 
chicken, Ng-CAM, resembles Ll in many respects and may 
be an avian equivalent of L1 (13). 

L1 was not detectably associated with myotubes in embry- 
onic (Fig. l, b and f )  or perinatal muscles, or with muscle 
fibers in innervated (Fig. 3a) or denervated (Fig. 3b) adult 
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Figure 2. N-CAM in adult muscle. (a and b) Innervated (a) and l-wk denervated (b) muscles stained with anti-N-CAM. (c-f) Endplates in 
innervated (c and d) and denervated muscle (e and f ) ,  doubly stained with anti-N-CAM plus fluorescein second antibody and rhodamine-a- 
bungarotoxin, then photographed with fluorescein (c and e) or rhodamine (d and f )  optics, a-Bungarotoxin binds to acetylcholine receptors in 
the postsynaptic membrane and thereby marks synaptic sites. Asterisks in a and b mark synaptic sites, identified by counterstaining with 
rhodamine-a-bungarotoxin. Anti-N-CAM stains both pre- and postsynaptic structures in normal muscle but does not stain extrasynaptic areas 
of muscle. After denervation, presynaptic staining is decreased, but N-CAM appears extrasynaptically in muscle fibers and in interstitial spaces 
near endplates (asterisk in e). Bars: a and b, 50 um; c and d, 15 #m; and e and f, 20 #m. 

muscles. LI was, however, present at neuromuscular junc- 
tions in adult  muscle (Fig. 3, c-f) .  Electron microscopy 
revealed that the synapse-associated L 1 in innervated muscle 
was concentrated in the narrow gap between nerve terminal 
and Schwann cell (Fig. 3k); N-CAM is also concentrated in 
this area of  apposition (7a). We did not detect L1 on the 
surface of  the nerve terminal that faces the muscle fiber, on 
the surface of  the Schwann cell that faces interstitial areas, or 
on the muscle fiber surface. After denervation, levels of  L1 
decreased at synaptic sites (Fig. 3, g-j)  and intensely L1- 
positive material was often displaced to the edge of  the a- 
bungarotoxin-stained postsynaptic membrane. This pattern is 
consistent with the presence of  LI on Schwann cells, which 
are known to migrate away from synaptic sites after dener- 
vation (23). 

As previously described for mice (11), L1 was abundant  in 
embryonic (Fig. 1, b, f, and g) and perinatal rat peripheral 
nerves but became restricted to unmyelinated fibers in adult 
nerves (Fig. 3a). Electron microscopy showed that Ll  in 
unmyelinated fibers (like N-CAM; see reference 7a), was 

concentrated in the area of  apposition between axon and 
Schwann cell (Fig. 3 l). The co-existence of  L1 and N-CAM 
in areas of  axon-Schwann cell contact, both along unmyeli- 
nated fibers and at the neuromuscular junction, suggests that 
both molecules may participate in adhesion of  axons and 
nerve terminals to Schwann cells. 

J1 

Both N-CAM and L l are recognized by monoclonal antibod- 
ies to an unusual, sulfated glycoconjugate (5, 16). These 
antibodies, L2 and HNK-I  (see below), also recognize the 
myelin-associated glycoprotein, which may be involved in 
axon-myelin adhesion (16, 26). This intriguing similarity in 
function suggested that other proteins bearing the L2 /HNK-  
1 epitope might also be involved in intercellular adhesion. To 
test this prediction, Kruse et al. (l  7) isolated a fourth protein 
from brain that bears the L2/HNK-1 epitope and used this 
protein, J l, to prepare monospecific polyclonal antibodies 
that do not cross-react detectably with N-CAM or L1. Anti- 
bodies to J1 stain astrocytes but not neurons, and interfere 

Figure 1. Adhesive macromolecules in embryonic muscle. Cryostat sections of El5 (a-h) or El6 (i and j) intercostal were stained with 
antibodies to N-CAM (a and e), L1 (b and f) ,  laminin (LAM; c and h), or J 1 (d and i) plus fluorescein second antibodies, a-d are longitudinal 
sections through the thorax, showing single internal (I) and external intercostals (E) in the space between adjacent ribs (R). e-j show a portion 
of the intercostal at higher magnification, g is the same field a s f  stained with rhodamine-a-bungarotoxin and viewed with rhodamine optics 
to show synaptic sites, j is the same field as i, stained with antimyosin and rhodamine-second antibody to show myotubes. Anti-N-CAM stains 
intramuscular nerves (N) and myotubes. Anti-Ll stains nerve trunks and nerve branches that approach synaptic sites but does not stain 
myotubes. Anti-laminin stains only small patches on myotube surfaces, whereas surfaces of nerve trunks and of blood vessels (BV) that 
surround (but do not yet penetrate) muscles are intensely stained. J 1 is associated with the layers of fine processes that ensheath the ribs; some 
fine J l-stained strands are also present in spaces between myotubes. Arrows mark corresponding points on fand  g and on i and j. Bars: a-d, 
50 um; e-j, 20 um. 
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Figure 3. LI in adult muscle. (a and b) Innervated (a) and l-wk denervated (b) muscles stained with anti-Ll. (c-j) Endplates in innervated (c- 
f )  and denervated (g-j) muscle, doubly stained with anti-Ll plus fluorescein-second antibody (c, e, g, and i) and rhodamine-a-bungarotoxin 
(d , f  h, and j). c and d and g and h are 4-um-thick cross-sections; e an d fan d  i and j  are 20-urn-thick longitudinal sections. In normal muscle, 
anti-L1 stains endplates (identified with rhodamine-a-bungarotoxin and marked by asterisks in a and b) and nerve fibers associated with blood 
vessels (BV); muscle fibers are unstained. After denervation, LI decreases at but does not disappear from synaptic sites. Arrows mark 
corresponding points on i and j. (k and l) Electron micrographs of a neuromuscular junction (k) and an unmyelinated nerve fiber near a blood 
vessel (l), from a muscle stained with anti-Ll and HRP-second antibody. Reaction product is concentrated in the narrow gap between nerve 
terminal (N) or axon and Schwann cell (S) membranes. Schwann cell processes that extend between nerve terminal and muscle fiber are also 
stained at areas of apposition to the terminal (between arrows in k), but neither Schwann cell nor terminal is stained in areas of apposition to 
synaptic cleft or Schwann cell BL. Smooth muscles and endothelial cells of an intramuscular arteriole are visible at the left of 1. Bars: a and b, 
25 um; c-j, 25 urn; k, 1 gm;/,  1.5 um. 



Figure 4. J 1 appears in denervated or paralyzed muscle and is lost after reinnervation. Cryostat sections were doubly stained with anti-J 1 plus 
fluorescein-second antibody (left) and rhodamine-a-bungarotoxin (right). (a and b) Normal adult diaphragm. Anti-J 1 stains a few endplates 
lightly, most are unstained. (c and d) l-wk denervated diaphragm. J 1 appears after denervation and is concentrated in areas near endplates. (e 
and f )  2-wk denervated soleus. At later times after denervation, deposits of J l are smaller and more closely associated with synaptic sites. In 
addition, J 1 is more closely focused at synaptic sites in soleus than in diaphragm. (g and h) I l-d paralyzed soleus. Paralysis induces accumulation 
of Jl but not in regular association with synaptic sites. (i and j) Reinnervated soleus, 2 wk after nerve crush. Levels of Jl decrease after 
reinnervation. Bar, 100 tim. 

with neuron-astrocyte adhesion in vitro. 
In embryonic intercostal areas, anti-J1 stained material 

associated with developing ribs far more intensely than mus- 
cles (Fig. 1 d). Examination at higher power revealed that 
some immunoreactive material was present in muscle, in the 
form of  small, discrete deposits occupying spaces between 
myotubes (Fig. 1, i and j) .  Deposits of  J1 were observed in 
interstitial spaces between muscle cells from E 13 until birth 
but were sparse at all t imes and disappeared after birth (Fig. 
4, a and b). Intramuscular nerve fibers were stained lightly if 
at all in embryonic muscle and unstained in the adult, al- 
though the perineurial sheath surrounding bundles of  nerve 
fibers was frequently J 1 positive (not shown). 

In light of the low levels of J1 in normal muscles, we were 
surprised to find that J1 accumulates in denervated muscle 

(Fig. 4, c - f ) .  In diaphragm, considerable accumulation of  J 1 
was apparent by 2 d after denervation, the earliest t ime 
examined, and J1 was apparent in muscles kept denervated 
for up to 2 mo. Staining by anti-J 1 was most intense near 
denervated synaptic sites, but the degree of  this association 
varied with time after denervation: J1 was most widely dis- 
tributed at early times after denervation (2-4 d) and becomes 
focused at synaptic sites when denervation was maintained 
for 1-2 too. Generally similar results--near-absence of  J l 
from normal adult muscle and accumulation near synapses 
after denervat ion--were  also observed in soleus (Fig. 4, e and 
f ) ,  extensor digitorum longus, platysma, and intercostal mus- 
cles, although at similar times after denervation, J 1 was more 
closely focused at synaptic sites in soleus (Fig. 4, e and f ) ,  
extensor digitorum longus, and platysma than in diaphragm. 
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Thus, accumulation of J1 in synaptic regions represents a 
general response of rat skeletal muscle to denervation. 

Three further experiments were done to study how nerves 
affect J 1 levels in muscle. First, two diaphragms were dener- 
vated by cutting the phrenic nerve in the neck rather than in 
the thorax, to avoid physical contact with the muscle. Accu- 
mulation of J l in these muscles was indistinguishable from 
that observed when the nerve was cut near the muscle. Thus, 
expression of J 1 is a response to denervation per se and does 
not simply result from the tissue damage that accompanies 
surgery. Second, lower leg muscles were paralyzed for 6-11 d 
by implantation of a tetrodotoxin-filled capillary under the 
perineurium of the sciatic nerve (24). J 1 appeared in paralyzed 
muscles (Fig. 4, g and h) but not in muscles whose nerves 
were implanted with a saline-filled capillary. Interestingly, the 
J1 in paralyzed muscle was not obviously associated with 
synaptic sites. Thus, accumulation of J 1 is at least in part a 
consequence of inactivity, and does not require degeneration 
of axons; the accumulations of  acetylcholine receptors and 
N-CAM in denervated muscle are similarly activity dependent 
(7, 20). Finally, when regeneration of  axons into diaphragm 
or soleus muscles was facilitated by crushing the nerve rather 
than cutting it, J l disappeared from the muscle soon after 
reinnervation was complete (Fig. 4, i, and j; see reference 7 
for time course of  reinnervation). Thus, axonal regeneration 
and/or muscle reinnervation can reverse the denervation- 
induced accumulation of J 1. 

We used light and electron microscopic methods to deter- 
mine the structures in denervated muscle with which J 1 was 
associated. Double-staining with anti-J 1 and anti-BL (Fig. 5, 
a and b) or with anti-J 1 and rhodamine-a-bungarotoxin (Fig. 
5, c and d) demonstrated that most of  the J 1 in denervated 
muscle is concentrated in interstitial spaces between muscle 
fibers, external to the postsynaptic membrane and to BL. 
Electron microscopy of denervated muscle incubated with 
anti-J 1 and HRP-second antibody revealed reaction product 
coating large collagen fibers (composed of type I collagen) 
and smaller collagen-associated fibrils near denervated syn- 
aptic sites; BL and cell membranes were lightly stained, and 
collagen fibrils distant from synaptic sites were unstained (Fig. 
5, e-g). Similar results were obtained when muscles were 
fixed with 1% paraformaldehyde before being incubated with 
antibody, demonstrating that J1 had not moved to matrix 
from cellular sites during the staining procedure. Thus J 1 is 
associated, at least in part, with the extracellular matrix. 

In summary, J 1 appears in interstitial spaces near synaptic 
sites after denervation of adult muscle and disappears when 
denervated muscle is reinnervated. The induction of J 1 in- 
volves an activity-dependent step in that it is mimicked by 
paralysis of  innervated muscle. In these respects, J1 resembles 
the N-CAM that appears in interstitial spaces after denerva- 
tion. However, unlike N-CAM, J l is confined to these spaces 
and does not accumulate on the muscle fiber surface or in 
muscle fiber cytoplasm. We do not yet know which cells 
produce J1 or even whether it is synthesized within the 
muscle. The association of J l with collagen and other fibrils 
shows that it is a component  of  the extracellular matrix. Local 
synthesis, e.g., by Schwann cells or synaptic regions of muscle 
fibers, could explain the restriction of J l to synaptic areas; 
alternatively, extracellular fibrils might differ in synaptic and 
extrasynaptic areas, with J 1 binding preferentially to synapse- 
associated components of  the matrix. In any event, the asso- 

ciation of J 1 with collagen and other fibrils in muscle raises 
the possibility that J l is associated with extraceUular material 
in the central, as well as in the peripheral, nervous system. 

L2 and HNK-1 

As noted above, monoclonal antibodies L2 and HNK-1 rec- 
ognize a carbohydrate epitope that is shared by N-CAM, L1, 
J1, and myelin-associated glycoprotein. Whereas L2 and 
HNK-1 recognize both highly sialylated (so-called "embry- 
onic") and less sialylated ("adult") forms of  N-CAM, only a 
fraction of the molecules in either class bear the L2 /HNK- l  
epitope (16). Similarly, L2 and HNK-I  bind to subpopula- 
tions of  Ll  and myelin-associated glycoprotein (unpublished 
results). It was therefore interesting to ask whether this car- 
bohydrate epitope was detectable in any of the sites in muscle 
known to be rich in N-CAM, L1, or J 1. 

Both HNK-1 and L2 stained intramuscular nerves in em- 
bryos (Fig. 6, a and b). Immunoreactivity was lost from nerves 
as development proceeded, as described above for N-CAM 
and L1. However, whereas N-CAM and Ll remain associated 
with unmyelinated fibers in adult nerves, the L2/HNK-1 
epitope was undetectable in adult rat nerves. Schuller-Petrovic 
et al. (42) have also reported that adult rat peripheral nerves 
are not stained by HNK-  1, although human peripheral nerves 
are HNK-I  positive. Although we do not know what mole- 
cule(s) HNK-1 and L2 recognize in embryonic nerve, our 
results are consistent with the possibility that L1 and/or N- 
CAM bear the H N K - I / L 2  epitope in developing but not in 
adult peripheral nerves. 

Whereas embryonic nerves bear the L2 /HNK-I  epitope, 
embryonic myotubes are not stained by either antibody (Fig. 
6, a and b). Furthermore, neither HNK-1 nor L2 detectably 
stained either synaptic or extrasynaptic areas of  perinatal, 
adult, or denervated adult muscle fibers; interstitial spaces 
between denervated fibers were also unstained (Fig. 6, c-f). 
Immunoblott ing experiments have also failed to detect bind- 
ing of HNK-  1 to extracts of  developing or denervated muscle 
(not shown). These results suggest that N-CAM in developing 
and denervated muscle and J1 in denervated muscle do not 
bear the L2 /HNK-I  epitope. 

NILE 

NILE was originally isolated from the cell line PC12 and is 
now known to be present on a variety of  central and peripheral 
neurons and on Schwann cells (33, 34). Recently, Stallcup 
and Beasley (43) reported that antibodies to NILE inhibited 
axon fasciculation in cultures of embryonic brain neurons, 
indicating that NILE is involved in interneuronal adhesion. 

A monoclonal antibody to NILE, ASCS4 (44), stained 
intramuscular nerves in embryonic muscle, and unmyelinated 
nerve fibers in adult muscle (Fig. 7, a and b). A portion of 
the nerve terminal/Schwann cell complex was faintly stained 
at the neuromuscular junction, but neither synaptic nor ex- 
trasynaptic portions of  embryonic, perinatal, or adult muscle 
fibers were detectably stained. Levels of  NILE at synaptic sites 
decreased upon denervation, but some NILE persisted; mus- 
cle fibers remained NILE negative. In all these respects, the 
distribution of NILE was similar to that described above for 
L1. 

Uvomorulin 

Uvomorulin was identified as a molecule recognized by anti- 
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Figure 5. Jl  in denervated muscle. (a-d) Jl  (a and c) is concentrated in interstitial space between muscle fibers, as shown by counterstaining 
with anti-BL (b) or rhodamine-a-bungarotoxin (d). (e) Electron micrograph of a denervated synaptic site (identified by junctional folds [F] in 
the muscle membrane) in a muscle stained with anti-J 1 and horseradish peroxidase-second antibody. Reaction product coats synapse-associated 
extracellular material but not cellular processes. ( f a n d  g) Extracellular matrix 5 um (J) and 1 um (g) from a denervated synaptic site in the 
same muscle shown in e. J1 is associated with banded collagen fibers and thinner fibrils (arrows in g) in areas near denervated synaptic sites. 
Bars: in d, 10 um (a-d); e, 1 urn; in g, 0.5 um ( f a n d  g). 
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Figure 7. NILE and uvomorulin in muscle. (a and b) Adult muscle 
doubly stained with monoclonal antibody to NILE (plus fluorescein 
goat anti-mouse IgG; a) and antiserum to BL (plus rhodamine swine 
anti-rabbit IgG; b). Anti-NILE stains unmyelinated nerve fibers near 
blood vessels (BI/) and within intramuscular nerves (N) but does not 
stain muscle fibers. (c-f) Normal (c and d) and 10--d denervated (e 
and f )  mouse muscles, doubly stained with anti-uvomorulin (c and 
e) and rhodamine-a-bungarotoxin (d and f).  No uvomorulin is 
detectable in innervated or denervated muscle. Bar: 40 ~m for a and 
b, 100 ~m for c-f. 

Figure 6. Embryonic (a and b), adult (c and d), and denervated adult 
(e and f )  muscles doubly stained with L2 (plus fluorescein goat anti- 
mouse IgM: a, c, and e) and anti-N-CAM (plus rhodamine swine 
anti-rabbit IgG; b, d, and f).  L2 stains embryonic intramuscular 
nerves (N) but does not detectably stain embryonic myotubes or 
innervated or denervated muscle fibers. Neuromuscular junction 
(NMJ), satellite cells (S), and unmyelinated nerve fibers associated 
with a blood vessel are marked in d. Bar, 30 #m. 

bodies that block the calcium-dependent compaction of the 
mouse embryo morula (14, 25). Subsequent studies have 
shown that uvomorulin is present in various adult tissues and 
that anti-uvomorulin blocks calcium-dependent aggregation 
of several cell types (45, 46). 

A monoclonal antibody to uvomorulin, DE-1 (15), stained 
liver in a pattern identical to that previously reported for anti- 
uvomorulin serum (45). However, we could not detect uvo- 
morulin in either synaptic or nonsynaptic regions of embry- 
onic, adult, or denervated adult muscles (Fig. 7, c - f ) .  
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Figure 8. Laminin (a-e), a heparan sulfate proteoglycan (f-j) and fibronectin (k-o) in innervated and denervated adult muscle. (a, f, and k) 
Innervated (left) and denervated (right) diaphragms were mounted as a single block, then sectioned and stained. Laminin (a) and a heparan 
sulfate proteoglycan (J) are present at similar levels in the two samples, whereas anti-fibronectin (k) stains denervated muscle slightly more 
intensely. Denervated diaphragm muscle fibers hypertrophy transiently and are somewhat larger, on average, than the innervated fibers. (b-e, 
g-j, and l-o) Endplates in innervated (left) and denervated (right) counterstained with rhodamine-a-bungarotoxin (c, e, h, j, m, and o). All 
three antigens are present in both synaptic and extrasynaptic surfaces of both innervated and denervated muscle fibers. Laminin is confined to 
these surfaces. Heparan sulfate proteoglycan appears in interstitial spaces following denervation. Fibronectin is present in interstitial spaces in 
normal muscle, but becomes highly concentrated there after denervation. Bars: a,f, and k, 50 urn; 25 ~m for all other parts. 

Laminin ,  Heparan Sul fate  Proteoglycan, 
and Fibronectin 

Regenerating peripheral axons frequently grow along BL to 
reach and reinnervate their targets (41). Three components of 
BL that have been shown to influence axonal elongation in 
vitro are laminin, fibronectin, and heparan sulfate proteogly- 
can. Neurites adhere to and elongate on substrata coated with 
laminin or fibronectin (2, 9, 2 l, 30). Neurons are not known 
to adhere to heparan sulfate proteoglycan alone, but neurite 
outgrowth-promoting material secreted by a variety of  cul- 

tured cells consists of  a heparan sulfate proteoglycan-laminin 
complex (18). Furthermore, a monoclonal antibody (22) that 
blocks neurite outgrowth on this material recognizes the 
complex but not laminin alone; antisera to pure laminin 
recognize the complex but do not block outgrowth on it 
(reviewed in reference 37). Heparan sulfate may also be 
involved in the adhesion of  retinal neurons to each other and 
to extracellular substrata (6). Thus heparan sulfate proteogly- 
cans seem to be important  for neuronal adhesion, whether or 
not they are adhesive macromolecules per se. 

Newly formed embryonic myotubes bear little BL and are 
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poor in iaminin (Fig. 1, c and h), fibronectin, and a BL- 
associated heparan sulfate proteoglycan. As development pro- 
ceeds, myotubes accumulate a BL that is rich in all three of 
these antigens (4). Double-labeling experiments have shown 
that the accumulation of BL on and the disappearance of N- 
CAM from the myotube surface occur coordinately from 
E16-E 19 (Ta). To seek effects of denervation on the amount 
or distribution of these BL components, innervated and de- 
nervated hemidiaphragms were mounted in a single block, 
and then sectioned, stained, and photographed together. Both 
laminin (Fig. 8a) and a heparan sulfate proteoglycan (Fig. 
8f)  were present at indistinguishable levels in innervated and 
4-30-d denervated muscles. Each antibody stained the sur- 
faces of muscle fibers as well as surfaces of intramuscular 
capillaries, blood vessels, and nerve trunks. Anti-fibronectin 
also stained these BL-coated surfaces and, in addition, stained 
interstitial spaces between muscle fibers in both innervated 
and denervated muscles (Fig. 8 k). Staining by anti-fibronectin 
was somewhat more intense in denervated than in innervated 
muscle, but the difference was small and inconsistent. Thus, 
laminin, heparan sulfate proteoglycan, and fibronectin are all 
retained at high levels after denervation. 

In adult muscle, laminin, fibronectin, and heparan sulfate 
proteoglycan are all present in both synaptic and extrasynaptic 
portions of muscle fiber BL, as well as in Schwann cell BL 
(Fig. 8, b, c, g, and h; and references 9a and 35). After 
denervation, iaminin remained restricted to areas known to 
be occupied by BL (Fig. 8, d and e), whereas levels of 
fibronectin increased markedly in interstitial spaces near syn- 
aptic sites (Fig. 8, n and o). Heparan sulfate proteoglycan 
displayed an intermediate pattern: staining remained concen- 
trated in BL, but some immunoreactive material appeared in 
interstitial spaces near endplates (Fig. 8, i and j). 

Conclusions 

Table II compares the distribution of several adhesive mac- 
romolecules on embryonic (E 15), adult, and denervated adult 
muscle fiber surfaces and in interstitial spaces near adult 
endplates. Two main conclusions can be drawn from these 
results. 

First, of the eight adhesive molecules that we have studied, 
N-CAM is the only one whose regulation in muscle parallels 
the susceptibility of muscle to innervation: early embryonic, 

Table II. Distribution of Adhesive Macromolecules in 
Embryonic, Adult and Denervated Adult Muscles 

Muscle fiber surface Interstital spaces 
near endplates 

Denervated Denervated 
Antigen Embryo Adult adult Adult adult 

N-CAM + - + - + 
LI . . . . .  
JI . . . .  + 
NILE . . . . .  
Uvomorulin . . . . .  
Laminin - + + - - 
Fibronectin - + + - + 
Heparan sulfate - + + - -+ 

proteoglycan 
L2/HNK-I  . . . . .  

denervated adult, and paralyzed adult muscles are rich in N- 
CAM and susceptible to innervation, whereas innervated and 
reinnervated adult muscles are poor in N-CAM and refractory 
to innervation. In contrast, laminin, heparan sulfate proteo- 
glycan, and fibronectin accumulate on embryonic myotubes 
after synapses form, are abundant on adult myotubes, and 
change little after denervation. L 1, NILE, J l, and uvomorulin 
are undetectable on muscle fibers at all stages examined. 
Although these results do not show that N-CAM is involved 
in mediating the susceptibility of muscle to innervation, they 
are consistent with the suggestion that N-CAM plays an 
important role in regulating innervation of muscle (7). 

Second, several adhesive macromolecules--N-CAM, J1, 
fibronectin, and a heparan sulfate proteoglycan--accumulate 
in interstitial spaces near synaptic sites after denervation. This 
response is intriguing in view of the fact that regenerating 
axons preferentially reinnervate original synaptic sites (39). 
Although the BL of the synaptic cleft is particularly attractive 
to regenerating axons and contains components that induce 
the differentiation of regenerating nerve terminals (40), axons 
must use more widely distributed cues to reach these sites. 
Denervated nerve trunks provide some guidance in this re- 
gard, but axons growing outside of pre-existing pathways also 
preferentially reinnervate original synaptic sites (discussed in 
references 39 and 40). The localized accumulation of several 
adhesive molecules in interstitial spaces near denervated end- 
plates may be an important factor in guiding such axons back 
to the particularly attractive but highly localized synaptic BL. 

The accumulation of J 1 in interstitial spaces near dener- 
vated synaptic sites is interesting for several reasons. First, 
although our attention was drawn to these areas in the course 
of studies on N-CAM (7), anti-J 1 stains them more selectively 
and may therefore be a more useful marker in further studies 
of their structure and function. Second, J l is present on 
cultured astrocytes and mediates adhesion of neurons to these 
cells, presumably via a neuronal J 1 receptor (17). Regenerat- 
ing motor axons may bear a similar receptor and thereby 
interact with J 1 during reinnervation. Third, the distribution 
of J 1 is intermediate in extent between that of components 
that are highly concentrated in the synaptic BL (38, 40) and 
others, such as N-CAM (7), that are widely distributed in 
denervated muscle. Acting together, these molecules may 
form an adhesive hierarchy that renders the terrain increas- 
ingly attractive to axons with decreasing distance from former 
synaptic sites. 
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Note Added in Proof" Bock, E., C. Richter-Landsberg, A. Faissner, 
and M. Schachner ( EMBO [Eur. Mol. BioL Organ.] J. 11:2765-2768) 
have recently reported that LI and NILE are immunochemically 
identical. 
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