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Abstract: Recent innovations in synthetic biology, fermentation, and process development have decreased time to market by reduc-
ing strain construction cycle time and effort. Faster analytical methods are required to keep pace with these innovations, but current
methods of measuring fermentation titers often involve manual intervention and are slow, time-consuming, and difficult to scale.
Spectroscopic methods like near-infrared (NIR) spectroscopy address this shortcoming; however, NIR methods require calibration
model development that is often costly and time-consuming. Here, we introduce two approaches that speed up calibration model
development. First, generalized calibration modeling (GCM) or sibling modeling, which reduces calibration modeling time and cost
by up to 50% by reducing the number of samples required. Instead of constructing analyte-specific models, GCM combines a reduced
number of spectra from several individual analytes to produce a large pool of spectra for a generalized model predicting all analyte
levels. Second, randomized multicomponent multivariate modeling (RMMM) reduces modeling time by mixing multiple analytes into
one sample matrix and then taking the spectral measurements. Afterward, individual calibration methods are developed for the var-
ious components in the mixture. Time saved from the use of RMMM is proportional to the number of components or analytes in the
mixture. When combined, the two methods effectively reduce the associated cost and time for calibration model development by a
factor of 10.
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Introduction
Across the biotechnology sector, the ultimate test of a new
strain is its performance in a fermentation vessel. This typi-
cally involves measurements of sugar, biomass density, and prod-
uct for evaluation of key performance metrics such as yield
and productivity (rate of product formation). In current prac-
tice, fermentation sample analysis is a slow and cumbersome
process in which samples are collected and prepared man-
ually and analyzed by unique wet chemistry assays (Fig. 1).
A limited number of samples can be taken each day, which
limits temporal resolution over the fermentation time-course.
Sample sets are also often analyzed in batches, resulting in
significant delays between fermentation completion and data
availability.

Since performance in the fermentation vessel is critical to
strain development there is a need to develop rapid, accurate,
and nondestructive analytical methods involving little or no sam-
ple preparation thatwillmake fermentationmeasurements faster
and decrease labor. Rapid, real-time methods decrease fermenta-
tion analysis time by 75–90% by eliminating almost all of the daily
sampling requirements and improve the quality of decisions by
enabling biologists and process engineers to gain useful insights
into minute-to-minute or hour-by-hour metabolic performances
of strains (Cozzolino et al., 2006). These real-time insightswill lead
to further reduction of daily sampling as critical parameters are
monitored and understood. Sampling will becomemore strategic,
used for either confirmatory purposes or for model maintenance
and improvement.

Amongst the various methods that are being investigated and
developed, near-infrared (NIR) spectroscopy is foremost in this re-
gard. NIR spectroscopy is a nondestructive measurement tech-
nique that has found application in many industries, including
pharmaceuticals, petrochemicals, and food (Prajapati et al., 2016;
Rhiel et al., 2002; Riley et al., 1999, 2001; Roggo et al., 2007). NIR
vibrations are observed as the overtones or combination bands of
the fundamental mid-IR bands. NIR, in combination with chemo-
metric tools including partial least squares (PLS) and principal
component analysis, and when coupled with mathematical pre-
treatment or spectral conditioning methods like the first and
second derivatives, standard normal variate (SNV), and multi-
plicative scatter correction (MSC), produces powerful methods
that enable both qualitative strain ranking ( Cozzolino et al., 2006)
and quantitative determination of product and intermediate con-
centrations (Roggo et al., 2007). The history, theory, and principles
of NIR are well described (Bec & Huck, 2019; Burns & Ciurczak,
2007; Davis, 2017; Williams, 2019). There are several metrics used
to determine the quality of NIR calibration models, including:

• Coefficient of determination (R2): A measure of variation in the
calibration samples that is described by the model. It also
measures the strength of correlation between NIR measure-
ment and the reference method.

• Rank: NIR calibrationmodels aremade by dimensional reduc-
tion of the complex NIR spectra, and calibration models are
chosen based in part upon the number of ranks (also known
as factors or principal components) needed to accurately
describe the data.
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Fig. 1 Schematic of current wet chemistry method showing its long turnaround time as well as traditional individualized NIR model method. GCM and
RMMM time savings are also depicted.

• Residual prediction deviation (RPD): Ratio of the standard de-
viation to the standard error of prediction, a measure of the
predictive power of a model.

• Root mean square errors of cross-validation or prediction
(RMSECV or RMSEP): A measure of the error in NIR models.

• Intercept bias: A measure of constant bias in the model.

NIR has emerged as the workhorse of process analytical tech-
nologymethodology and practice, as reflected in the enormous in-
vestment pharmaceutical companies have made to comply with
both the FDA and the European Union guidelines for the imple-
mentation of NIR (European Medicines Agency, 2012; U.S. Food &
Drug Administration, 2004; Whitford & Julien, 2008).

Lack of sample preparation and fast analysis time on the mil-
lisecond time-scale (Card et al., 2008) are two of the advantages
in the use of NIR. The nondestructive nature of NIR measure-
ment means that sample integrity is maintained, thus allowing
measurement to be made in the sample’s native state (Li et al.,
2020). It is this lack of sample preparation that makes real-time
measurements possible, and a major reason NIR is an attractive
mode of measurement in pharmaceutical and chemical manu-
facturing where real-time adjustments are made to manufactur-
ing processes to maintain consistency in product quality (Vann
& Sheppard, 2017). Another notable feature of NIR is the ability
to measure multiple components from one spectral scan. Multi-
ple sample preparations for multiple assays are no longer needed,
thus saving time and resources.

Over the years, uses of NIR in fermentation operations (Cervera
et al., 2009; Tosi et al., 2003) have steadily increased, albeit at
a slower pace than hoped for, and even more so in the critical
area of strain development or strain screening (Cozzolino et al.,
2006; Saha & Jackson, 2017) where broth matrices are constantly
changing as strains and fermentation management practices

improve. Another challenge is the large number of samples
needed to develop calibration models, as a model must capture
all the variables, parameters, and conditions that describe the fer-
mentation process. Thismakes initial development of the NIR cal-
ibration model expensive and labor intensive. In this study, we
address some of these challenges with innovative model building
methods that speed up the pace of NIR calibration modeling. By
reducing the barriers to NIR calibration model development, the
potential of NIR in fermentation process operation can be realized
by (1) dramatically reducing the need for daily sample collection
and preparation, (2) reducing analysis times, and (3) increasing
information density, giving critical and actionable insights into
strain behavior and performance.

NIR calibration model development is by its very nature an of-
fline activity. The data and discussion presented herewere all gen-
erated in an offline mode; however, once validated, NIR methods
can be transferred and used for real-time monitoring of fermen-
tation processes without any issues.

The Evolution of Calibration Model Development:
Two Novel Calibration Methods
Calibrationmodel development is perhaps themost important as-
pect of the implementation of NIR titer measurements in fermen-
tation. However, developing good, effective, and high perform-
ing calibration models can be quite an expensive undertaking. In
strain and fermentation process development, it requires acquir-
ing samples across processes that are often complex and differ
in raw materials, strain, and operational processes. Building new
models for every newmolecule or strain developed makes the ag-
gregated cost over time enormous.

(1) Generalized Calibration Modeling (GCM) Method or Sibling
Modeling: The prevailing practice across many industries in
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developingNIR calibrationmodels is tomake onemodel per
analyte in stable, well-defined, and characterized systems
(Cozzolino et al., 2006; Monono et al., 2012). In this study,
we demonstrated that we can improve on this practice by
using GCM, also known as sibling modeling, which allows
the amount of data required for calibration model building
to be reduced by up to 50%. Generalizability of the model is
aimed at developing a single model that can be used across
related molecule in a chemical class (chemical siblings).
GCMs can be used for a broad range of analytes with similar
functional groups or other structural attributes (hence the
moniker ‘sibling’). The principle behind generalizability is
that if a group of molecules or analytes share similar core
structural functionality, a single model can be built from
a reduced number of samples from each molecule in the
group into a larger pool of samples representing the shared
similarities and unique differences among all analytes. Us-
ing one of the molecules in the group as the base analyte,
we can build a generalized model for the group by start-
ing with a minimum number of samples for the base an-
alyte, and then add a reduced number of samples for the
other chemical siblings of the group. As an example, sup-
pose we are to build a GCM for a group of alcohols includ-
ing ethylene glycol, 1,2-propanediol, 1,3-propanediol, and 1-
propanol. We can build a good model for ethylene glycol
with about 40 samples, then by adding about 20 samples
of each of 1,2-propanediol, 1,3-propanediol, and 1-propanol
we can extend this model to become one calibration model
that is generalized across the group. Instead of building 4
individual calibration models of 40 samples apiece (a total
of 160 samples), we end up with a single GCM of similar
quality using only 100 samples, a reduction of 37%.

(2) Randomized Multicomponent Multivariate Modeling (RMMM)
Method: The limitation to the generalizedmodel approach is
that it requires that analytes share some structural or func-
tional features (chemical siblings), that they have similar
NIR vibrational frequencies, or have some overlapping NIR
frequency bands. When generalizability is not possible, we
used multicomponent measurement (Monono et al., 2012;
Quentin et al., 2017; Riley et al., 1997, 2001) to develop cal-
ibration models for multiple analytes or molecules at the
same time. Here, since the spectrum of a multicomponent
mixture is the concentration-weighted linear combination
of the spectra of the individual components in the mixture,
multivariate statistics are used to develop individual mod-
els from mixture spectra. Thus, instead of taking multiple
individual spectral measurements for each analyte on its
own, a single spectral measurement of the mixture is taken
and then chemometric methods are used to develop cali-
bration models for individual analytes. For this to be possi-
ble, two conditions must be met:
· Analytes in the mixtures must not chemically react to
each other, or to thematrix; theymust remain and retain
their individual identity in the mixture and not react to
form new compounds.

· Either the mixtures used must be designed such that ei-
ther the correlation between the concentrations of each
pair of analytes must be zero or very close to zero, or if
uncorrelated mixtures are not available, different spec-
tral regions must be used.

In this study, analytes were specifically grouped into nonreac-
tive sets, then analyte concentrations in the samplemixtureswere

assigned in a randomized fashion (Supplementary Fig. A) with the
aid of a random number generator.

Materials and Methods
Analyzer and Probe
NIR spectra were acquired using a Bruker Matrix-F spectrome-
ter and an IN271 transflection custom probe. Probe material was
stainless steel 1.4404 (316 l) with a sapphire window. Probe op-
tical pathlength was 2 mm with a 1 mm slit, with an attached
fiber optics bundle of 3 m length with seven low OH quartz fibers
(core diameter 600 μm) terminated in 2 SMA-905 connectors, with
a Kalrez 6375 O-ring seal. Probe housingwas 15mmdiameter with
an electro-polished finished surface. Probe housing immersion
depth was 220 mm with a sealing plug for autoclaving. Probe and
housing were rated for a temperature range of −50°C to 1,400°C
with a maximum pressure of 5 bar.

Generalized Calibration Modeling Method
In this study, we present one GCM for a group of organic acids and
a second for terpenes. Succinic, tartaric, adipic, and glutaric acids
made up the organic acids, while farnesene and α-bisabolol made
up the terpene group (Supplementary Fig. B). In the organic acid
group, the analytes were spiked into a fermentation broth of a
naïve Saccharomyces cerevisiae strain to simulate production, while
in the terpene group, α-bisabolol and farnesene were produced in
situ by engineered strains.

Organic Acid Generalized Model
Sample concentrations for the organic acids were calculated af-
ter the analytes were spiked into 50 ml fermentation broth from
six fermentors. Succinic acid 99% purity, glutaric acid 99% purity,
adipic acid 99.5% purity, and tartaric acid 99.5% were used and
were all obtained from Sigma Aldrich, St. Louis, MO. Aliquoted
amounts were added to the broth by weight to achieve calculated
concentrations of 0–4 M. Glutaric acid was designated the base
analyte with 30 spiked samples. Five spiked samples were created
for each of the other analytes in the group.

Fermentation ran for 5 days, and daily spectra of the spiked
fermentation samples were taken to simulate the growth and pro-
duction of these analytes in fermentation. All spectra were com-
bined in the Bruker Opus chemometric software, and PLS regres-
sion along with first derivative math pretreatment was used to
create a single organic acid GCM. NIR measurements were col-
lected offline, with measured broth in a 100 ml media bottle and
the organic acids spiked in.Amagnetic stir bar was used to stir the
broth both for proper mixing as well as for keeping the broth ho-
mogenous during spectral acquisition. Media bottles containing
broth spiked with analytes were placed on a stir plate and stirred
at 2000 rpm while the NIR spectra were obtained.

Terpene (α-Bisabolol/Farnesene) Generalized
Model
The generalizedmodel was tested further by using actual produc-
tion (manufacturing scale-down) fermentors making farnesene
and α-bisabolol independently. Here, ten 2 l fermentors contain-
ing a farnesene-producing strain and twenty 2 l fermentors con-
taining an α-bisabolol-producing strain were used. NIR spectra of
250 samples of α-bisabolol broth spanning 13 days of fermenta-
tion and 114 samples of farnesene broth spanning 11 days were
used for calibration model development. Spectra of an additional
60 farnesene samples taken from a different set of 10 fermentors
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over 6 days were used to test the predictive power of the terpene
GCM.The terpene generalizedmodel was further put to the test by
using it to predict α-bisabolol concentrations in 10 samples taken
from a 300 l pilot-scale fermentor.

As in the organic acid measurement, NIR spectra were taken
from 50ml broth samples of α-bisabolol and farnesene by placing
a magnetic stir bar in the media bottle, placing it on a stir plate,
and immersing the NIR transflection probe into sample until the
broth covered the probe window.

Randomized Multicomponent Multivariate
Modeling
Here, six analytes spanning chemical class and biological diver-
sity were selected. They were grouped into two groups for chem-
ical compatibility to reactivity, with group members not reacting
to make a new compound. Cadaverine, 2-phenylethanol and α-
bisabolol made up group A and squalene, d-limonene and oleic
acid made up group B. An engineered yeast strain producing α-
bisabolol was used for group A,while broth from a nonengineered
S. cerevisiae was used for group B. Ten fermentors were used for
group A, while group B had 12 fermentors. Fermentation was for
10 days in a fed-batch process. Analytes were purchased from
Sigma-Aldrich, St. Louis, MO.Members of groups A and B have the
following purity: oleic acid, 90%, limonene, 97%, squalene, 98%,
cadaverine, 95% and 2-phenylethanol, 99%, and all these were in
liquid form. α-Bisabolol was produced via fermentation using an
engineered yeast strain, and the concentration was determined
by gas chromatography as described below. The concentration of
all remaining analytes was calculated gravimetrically after they
were aliquoted directly into the fermentation broth.

Sample Measurement vessel and Mixing
accessories
For RMMM,a differentmixing strategywas employed than the one
used for GCMM. Instead of a media bottle with a stir bar, we em-
ployed the IKA Ultra-Turrax Tube Drive P workstation (Ident. No.
0025005836) and a mixing cup of 50 ml volume as shown in Fig.
C (Supplementary Material). This setup enabled continuous mix-
ing while spectra were acquired. Speed of the Ultra-Turrax Tube
Drive was set at 2000 rpm tomake it consistent with themagnetic
stirrer speed.

NIR Spectrum Acquisition (GCM and RMMM)
Fermentation broth (50 ml) was measured into the media bottle
(GCM) and IKA tube (RMMM), and a varying amount of analyte
was added. With the mixing rate set at 2000 rpm, the sample was
mixed for about 2 min, then the NIR probe was lowered into the
mixing cup and spectra were taken. Several typical NIR fermenta-
tion broth spectra containing both spiked in analytes and fermen-
tation products mentioned above taken by the Bruker Matrix-F
spectrometer are shown in Fig. D (Supplementary Material).

Gas Chromatography Assay
Determination of farnesene and α-bisabolol titers in broth was
carried out using gas chromatography with flame ionization de-
tection (GC-FID).

Farnesene: 10ml farnesene broth samplewas acquired in a 20ml
glass vial andmixedwell. 0.5mlwas transferred into a tared 20ml
glass vial and the weight recorded. Eighteenmilliliter of 90:10:0.25
methanol:butoxyethanol:tetradecanewas added to the broth, and
the total weight of broth, extraction reagent, and the vial was
recorded. Extractions were thoroughly mixed and left to stand for

15 min allowing the solids to settle. One hundred microliters su-
pernatant was transferred to a GC-FID vial and diluted with 900
μl ethyl acetate. Triplicate injections weremade using pulsed split
injection onto an Agilent J&W DB-1MS-LTM column (methyl sili-
cone, 10 m × 0.10 mm × 0.10 μm film thickness). The GC-FID inlet
was a split/splitless with a split ratio of 108:1 with injection pulse
pressure of 75 psi, and split flow of 70.2 ml/min for a duration
of 0.15 min. Inlet temperature was 300°C, at constant pressure of
59.7 psi, with hydrogen as the carrier gas. The GC-FID oven tem-
perature was set initially for 100°C for 0.15 min then ramped to
175°C at a rate of 15°C/min until it reached a final temperature
of 320°C for a total runtime of 5.5 min. Farnesene titer was calcu-
lated using tetradecane as an internal standard and reported as
grams per kilogram (g/kg) of broth.

α-Bisabolol: As for farnesene, 10 ml α-bisabolol broth was sam-
pled into a 20 ml scintillation vial and mixed well. Two hun-
dred fifty microliters broth sample was aliquoted while stirring
and transferred to a second vial. The weight of the vial plus
sample was recorded, 15 ml 1400:1200:2.5 methanol:ethyl ac-
etate:hexadecane was added, and the vial was reweighed. Sam-
ples were vortexed for 120 s then left to stand for at least 30
min, or until solids were settled completely and supernatant was
clear. Five hundred microliters supernatant was transferred to a
GC-FID vial and diluted with 500 μl ethyl acetate. One microliter
was injected into an inlet set to 275°C with a split ratio of 50:1
and pressurized to 75 psi for 0.2 min. immediately following in-
jection. Separation was performed on an Agilent HP-1 column
(10 m × 0.10 mm × 0.10 μm film thickness), using hydrogen at a
constant pressure of 65 psi. After injection the oven temperature
was held at 140°C for 0.1 min, then ramped to 240°C at 25°C/min,
then to 300°C at 30°C/min, then to 320°C at 20°C/min, and finally
held at 320°C for 0.5 min. Detector temperature was 325°C, with
hydrogen, air, and makeup gas (nitrogen) flows set at 30, 360, and
45 ml/min, respectively.

Results/Discussion
Generalized Calibration Modeling Method
Glutaric acid was used as the base analyte for the GCM approach,
with 30 samples per day taken across 5 days of fermentation.
Each day themodel was extended by adding tartaric, succinic, and
adipic acid at five concentration levels into one broth sample. The
resulting 225 samples constituted the calibration set.

Individual models for each acid are shown in Fig. 2 (a–d).
Table 1 shows the spectral region and themath pretreatment used
for eachmodel, aswell asmodel qualitymetrics including correla-
tion coefficient (R2), rank, RMSECV, and RPD. In each case, a cross-
validation leave-one-out validation method was used. While the
concentrations of tartaric, succinic, and adipic acids added into
the individual broth were the same daily, we arrived at calibra-
tion models optimized for each analyte by using different model-
ing parameters like spectral region,math pretreatment, and rank.
While the calibration regression plots are similar looking with
high R2, Table 1 also reveals areas of overlapping spectral regions
andmath pretreatment that were exploited and used in the build-
ing of a generalized model for the combined analytes.

In each case, the R2 of the correlation between concentra-
tions measured by NIR and the calculated referenced concentra-
tion was over 0.96, meaning the models developed for individual
molecules described over 96% of the concentration variation in
the calibration sample set. The rank used ranged from 5 to 8,
which is good for a complex system like fermentation brothwhich
changes matrix as cells grow, sugar and nutrients are consumed,
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Fig. 2 Calibration models for individual organic acids. This individualized model method is the traditional mode for NIR model development.

Table 1. Calibration Model Parameters and Quality Metrics for the Individual Organic Acid Models and the Generalized Model

Name Rank R2 RMSECV (M) Spectral range (cm–1) Math pretreatment RPD

Glutaric acid 6 0.9984 0.0045 6348–5315 SNV 24.7
Tartaric acid 8 0.9984 0.0035 7505–6796, 4428–4242 First derivative + SNV 25.4
Succinic acid 5 0.9954 0.0072 8458–7498, 6101–5446 SNV 15
Adipic acid 5 0.9676 0.017 9403–7498 First derivative 5.59
Generalized model 11 0.9915 0.0103 9403–5446 First derivative 10.8

and products are made. Both the rank used and the R2 of these
calibrations are consistent with previous reports. Card et al. (2008)
reported correlation coefficients ranging from 0.926 to 0.995 and
rank ranging from 3 to 7 for a mammalian culture that was pri-
marily producing glucose, lactate, and glutamine,while Riley et al.
(1997) reported ranks ranging from 4 to 8 for a fed-batch process.
Cervera et al. (2009) published a detailed review article in which
they put together spectral regions, math pretreatment, R2, rank,
and errors in cell culture and fermentation for various types of
compounds, and our study appears to be consistent with the val-
ues they compiled.

When the calibration set sample spectra were combined to de-
velop a generalized model, we obtained a very good model, quite
like the individualized models (Fig. 3a). The GCM R2 of 0.9915
shows that the model describes over 99% of the concentration
variation in the calibration set. The rank used ismuch higher than
any of the individual models above (Table 1), but is still consis-
tent with the literature, albeit for much simpler systems (Cervera

et al., 2009). This was to be expected as we have a more complex
sample system and a higher rank will be required to adequately
describe the new system of samples. The broad spectral region
used in the generalized model (9403–5446 cm–1) also indicates the
need to capture more information in the GCM than in the individ-
ual models. While there is debate on what level or value of RPD
is most useful (Cozzolino & Moron, 2006; Camacho-Tamayo et al.,
2014; Saeys et al., 2005; Tenhunen et al., 1994), it is generally ac-
cepted that an RPD of over 4 is indicative of good predictive power.
The RPD of 10.8 calculated for the GCM is a strong indication that
it could be used for predicting any of the acids in the group within
the specified range.

Having shown that the predictive power of the generalized
model is as good as that of the individual models, we can now
demonstrate one of the advantages of this method when it is
used to measure other analytes that are within the class but were
not used in the model development phase. As an example, we
built a different organic acid generalized model, this time with
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Fig. 3 The organic acid GCM combining spectra from samples containing the individual organic acids is shown in (a). The organic acid GCM with
glutaric, tartaric, and adipic acids is shown in (b). Model (b) was used to predict concentrations of succinic acid, which was not included in its
calibration set. The regression plot (c) shows good correlation between measured and predicted succinic acid concentrations.

glutaric, tartaric, and adipic acids only (Fig. 3b), and used it to
predict spiked-in succinic acid concentrations.As shown in Fig. 3c,
the NIR-predicted concentrations of succinic acid were highly cor-
related to calculated concentrations andwere statistically equiva-
lent within 5% to the calculated succinic acid concentration using
two one-sided t-tests (TOST, analysis not shown).

To further demonstrate the power and applicability of GCMM,
we also tested the predictive power of a GCMbuilt using two of our
products, α-bisabolol and farnesene. Individual models for farne-
sene and α-bisabolol were built and their spectra were also sub-
sequently combined to build a generalized terpene model. Two
hundred fifty samples of α-bisabolol were used to develop the
α-bisabolol-only model, 115 samples of farnesene were used for
the farnesene-only model, then all 365 spectra were combined in
the terpene generalized model. Individual calibration models for
α-bisabolol and farnesene are shown in Fig. 4(a, b). Each had an
R2 of over 0.99, with ranks of 8 and 7 and RPDs of 11.8 and 31.3,
respectively, indicating a high level of predictivity. The extremely
high RPD of the farnesene model is possibly due to the very well
developed and characterized GC-FID farnesene assay used in our
laboratory. Table 2 shows a summary of the model parameters.
Just as in the case of the organic acid generalized model, different
spectral ranges andmath pretreatment were used for the individ-
ual models. The different spectral regions andmath pretreatment
are reflective of the uniqueness of eachmodel,while the regions of
spectral overlap showed commonalities that were used in the de-

velopment of the generalized model. The generalized model com-
bining α-bisabolol and farnesene spectra had an R2 of 0.9958, indi-
cating the model describes over 99% of the combined population
of α-bisabolol and farnesene samples used to build themodel. Just
as in the organic acid generalized model, the terpene GCM used
both a shared spectral region and math pretreatment from the
individual models.

The generalized terpene calibration model from the combined
spectra of α-bisabolol and farnesene measurement is shown in
Fig. 4c. An interesting feature of the terpene generalized model
and indeed all generalized models is the potential to extend the
model quantification range, like the titer range in the current
study, for any member of the group. As new strains are designed
and developed, improvements are measured or captured in criti-
cal parameters like titer, yield, and productivity. The terpene gen-
eralizedmodel shows that it could be used tomeasure α-bisabolol
at titers up to about 150 g/kg, beyond the α-bisabolol-only model
maximum of about 120 g/kg, without acquiring new α-bisabolol
samples above 120 g/kg. This reduces development cost and time-
line, as we have a ready-to-use method that can be used until
α-bisabolol strains are making more product than the farnesene
titer range of 150 g/kg. Another important feature of the gener-
alized model method and a major requirement for its efficacy is
that members must have overlapping concentration ranges. This
overlapping characteristic is critical to building a good general-
ized model as well as ensuring its performance. With the region
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Fig. 4 Individual α-bisabolol and farnesene models are shown in (a) and (b). The terpene GCM from the combination of spectra taken from samples
containing either α-bisabolol and farnesene (c) shows a model that is as good as the two individual models. The calibration range of farnesene was
higher than that of α-bisabolol, and combining both analytes into the terpene GCM allowed extension of the α-bisabolol range. (d) Compares
α-bisabolol concentrations in a set of samples generated at pilot scale predicted by the terpene GCM generated from lab-scale samples.

Table 2. Calibration Model Parameters and Quality Metrics of the Individual α-Bisabolol and Farnesene Models and the Terpene GCM

Name Rank R2 RMSECV (g/kg) Spectral range (cm–1) Math pretreatment RPD

α-Bisabolol 9 0.9929 2.240 8454–7498, 6102–5446 First derivative + SNV 11.8
Farnesene 7 0.9990 1.310 7506–6094 SNV 31.3
Terpenes 15 0.9958 2.090 7506–5446 SNV 15.4

of overlap established, one or two components can then be used to
extend the overall calibration range, which can now be applied to
all members within the group or other molecules that share simi-
lar characteristics. This is demonstrated in both the organic acids
and terpene GCMs (see Figs 3a, b and 4c). For the terpene GCM, the
overlapping region is 1–120 g/kg as shown, while in the organic
acid GCM it was the entire calibration range (0–0.4 M). These re-
gions act as a base that enables the possibility of extending the
calibration range in the future as new samples are added, which
makes GCMM very powerful.

Predictivity of the terpene GCM was tested by applying it
to samples from a pilot-scale production (manufacturing scale-

down) fermentor. This was an independent data set built from
samples taken from a 300 l fermentor, 150× larger than the 2 l
fermentors used to build the model. While we make every ef-
fort to ensure that our process conditions are the same across
scales, the difference in volume naturally leads to process dif-
ferences like mixing and localized temperature variation within
the fermentors,which impact sample composition.However, even
with these differences, the terpene GCM created using 2 l fermen-
tors accurately predicted α-bisabolol concentrationsmeasured by
GC-FID in samples taken from a 300 l fermentor (Fig. 4d). The
α-bisabolol concentrations predicted by NIR showed no fixed or
proportional bias compared to those measured by GC-FID in a
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Table 3. Summary Results of the NIR Calibration Models for Molecules in Groups A and B, Showing the Metrics Used to Determine Model
Quality. Different Spectral Regions, Math Pretreatment, and Ranks Were Used

Group Name Rank R2 RMSECV (g/kg) Spectral range (cm–1) Math pretreatment RPD

A Cadaverine 9 0.9767 0.84 9403–6094, 4605–4420 First derivative + SNV 6.6
2-Phenylethanol 10 0.9610 1.41 9403–7336, 6310–5785 First derivative 5.1

α-Bisabolol 5 0.9902 3.57 6012–5447 First derivative + SNV 10.3
B Squalene 6 0.9735 1.16 6102–5770 Second derivative 6.2

Oleic acid 7 0.9753 1.28 10,391–9588, 8794–7992, 6395–5592 MSC 6.4
d-Limonene 4 0.9951 0.534 6102–5770 First derivative + MSC 14.2

Passing–Bablok (Passing & Bablok, 1983) regression analysis (not
shown). The slope of 0.967 was not significantly different from 1
and the intercept of −1.117 was not significantly different from
zero, indicating that the GCM, built at laboratory scale, accurately
predicted α-bisabolol concentrations in our pilot plant fermentor,

Next, the terpene GCM and the terpene-only model were
used to predict farnesene in a set of 60 independent farnesene
samples taken from ten 2 l fermentors over a 6-day fermentation
period. NIR spectra of these samples were acquired offline, and
the farnesene titers were determined by using both models,
respectively. This was done to compare the accuracy of titers
predicted by both models to those from the GC-FID reference
assay. Fig. E (Supplementary Material) shows the farnesene titers
in the ten fermentors measured by the GC-FID reference assay
method, along with the titers predicted by the terpene GCM and
the farnesene-only model. While the titers predicted by both NIR
modelswere very close to thosemeasured by theGC-FID reference
measurement, in essence showing that the use of both or either
of the NIR models will yield high level of accuracy in farnesene
measurements, neither the difference between the titers pre-
dicted by bothmodels (about 1.0 g/kg) nor the standard deviations
(0.1 g/kg) was significant in a Passing–Bablok regression analysis.
Furthermore, the terpene GCM appears to be positively biased, as
it consistently predicted slightly higher titer values when com-
pared to the referenced GC-FID method, while the farnesene-only
model was slightly negatively biased and predicted, on average,
less farnesene in the broth when compared to the referenced
GC-FID method. In fact, these biases were also not significant as
determined using Passing–Bablok regression (Passing & Bablok,
1983) (analysis not shown), which returned slopes that were
not significantly different from 1 and intercepts that were not
significantly different from 0 (slope = 0.9987 and intercept =
−0.9627 for the GC-FID-farnesene-only model comparison, and
a slope = 0.9970 and intercept = 0.3893 for the GC-FID-terpene
model comparison). This shows neither model had either fixed or
proportional bias when compared to the GC-FID reference assay.

The terpene GCM offered a slightly more accurate prediction
of farnesene in the sample broth when compared to the refer-
enced GC-FID method than the farnesene-only model, though as
described above, this difference was not statistically significant.
This could be a result of the increased sample size used in model
development as we added the α-bisabolol samples to the original
farnesene data set, leading to more extensive coverage of the fer-
mentation environment and a more robust description of the sys-
tem. There is a less than 4% difference between all three methods
(the two NIR methods and the GC-FID method), which indicates
that either model will be a suitable replacement for the GC-FID
method, and that the GCM method can accurately predict any of
the components in the mix. It is this generalizability across prod-
uct class that allows rapid deployment of GCM methods to new

molecules. We can quickly build new generalized models from
historical spectral libraries of similar molecules with a reduced
number of samples of the new molecules, thus reducing the cost
associated with developing new models from scratch. As demon-
strated here, we can continue to use this generalized model even
as strain improvements lead to higher titers.

Randomized Multicomponent Multivariate
Modeling Method
In the RMMM calibration models built for this study, the con-
centration of the analytes ranged from 0 to 30 g/l for spiked-in
analytes and the α-bisabolol produced by the engineered strain
ranged from 0 to 110 g/kg. Molecules were grouped based on
solubility and chemical compatibility to prevent cross-reactivity.
We were able to develop very good models for all molecules in
each group, which illustrates the efficacy of the RMMM and the
ability to quickly develop NIR calibration models for new ana-
lytes. Table 3 shows a summary of the calibration model results
for the analytes in the two groups. Even though the analytes that
made up each group were mixed together artificially and one
spectrum per sample was taken, the calibration models were not
impacted by the presence of other analytes in the sample mix.
The combinations of spectral range and the math pretreatment
were mostly different for each member of the group, and even
when similar pretreatment was used as in α-bisabolol and ca-
daverine in group A, different spectral regions were used, and the
ranks were different.

Spectra for group B samples were obtained in triplicate, while
in group A single measurements were taken. There seems not to
be any difference between using a single spectrum and triplicate
spectra, as bothmeasurements yielded good NIR calibrationmod-
els. Calibration model plots (Fig. 5) show that in all cases good
models were developed as evidenced by R2 ranging from 0.96 to
0.99, as well as the other metrics listed in Table 3 and Fig. 5. Thus,
our calibration models adequately described the sample set used
to build the model, regardless of other analytes in the sample
mixture. Group A is particularly interesting, as the quality of the
model suggests that spiking in cadaverine and 2-phenylethanol
did not affect the α-bisabolol calibration model, and similarly
the in situ production of α-bisabolol by an engineered strain did
not impact the models of the spiked-in analytes. Group B models
showed similar characteristics, with models showing no impact
from other analytes.

What these results show is that we can compress and reduce
the timeline for NIR calibration model development by combin-
ing spectral acquisition work that is often time-consuming and
laborious for multiple analytes into one set of measurements. In-
stead of taking individual measurements and repeating the same
work for each analyte, we can combine the analytes, take one
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Fig. 5 Calibration models of the molecules in groups A and B generated using RMMM.

spectral measurement and develop individual calibration mod-
els. Although we have presented here the results from groups of
three, we have equally demonstrated (not shown) that we can ex-
tend the RMMM calibration method to build models for at least
five analytes in a sample mixture. The two approaches described
here can be used together, and in combination have the potential
to reduce the associated cost and time required for NIR calibration
model development 10-fold.

Future Work
Here,we have demonstrated that using the GCM and RMMMmod-
eling approaches can lead to a reduction in the time and number

of samples needed to develop NIR calibration models. However,
more work is needed to improve on these methods to further re-
duce the sample and time requirements. An area that requires
further investigation that potentially will lead to greater reduc-
tion in the number of calibration samples required is the use, in
most processes, of a single calibration model in processes with
more than one phase. Fermentation offers a good example. As
the fermentation process moves from the initial growth phase,
where cells are primarily multiplying, to the production phase,
where cells are primarily making products, the NIR spectrum can
change significantly. We hypothesize that building a single model
to cover two qualitatively different process phases equally well
will require many more samples than building multiple models



10 | Journal of Industrial Microbiology and Biotechnology, 2021, Vol. 48, kuab033

that cover different process components like fermentation lag/log
and production phases.However, splitting themodel intomultiple
process phases will lead to region or phase-specificmodels that in
total should require fewer samples to describe the entire process.
More work like this will help lower the cost of integrating NIR into
fermentation monitoring and operations.

Conclusion
While NIR spectroscopy gives us the chance to increase data in-
formation density, provide real-time information, and eliminate
sample preparation for traditional chromatographic assays, the
initial cost is steep in terms of model development time and ef-
fort. In this study,we show twoways of reducing the cost and time
associated with model development. The GCM method reduced
samples required for model building by about 50% by combining
spectra of samples of chemical siblings to create one generalized
model that works for all components in that group instead of
multiple individual models. Using GCM to create a generalized
model for terpenes, farnesene in fermentors was predicted as
well or even slightly better than a farnesene-only model. Using
the RMMM method, we also showed that by combining different
analytes into one mixture and acquiring its spectrum, we can
use a single spectrum combining multiple analytes for model
building, thus reducing the number of sample measurements
needed as well as the time required for spectral data acquisition
by a factor that is equal to the number of analytes in the mixture.
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