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Two dimensional GC (GC × GC)–time-of-flight mass spec-
trometry (TOFMS) has been used to improve accurate metab-
olite identification in the chemical industry, but this method
has not been applied as readily in biomedical research. Here,
we evaluated and validated the performance of high resolution
GC × GC-TOFMS against that of GC-TOFMS for metab-
olomics analysis of two different plasma matrices, from healthy
controls (CON) and diabetes mellitus (DM) patients with kid-
ney failure (DM with KF). We found GC × GC-TOFMS out-
performed traditional GC-TOFMS in terms of separation
performance and metabolite coverage. Several metabolites
from both the CON and DM with KF matrices, such as car-
bohydrates and carbohydrate-conjugate metabolites, were
exclusively detected using GC × GC-TOFMS. Additionally, we
applied this method to characterize significant metabolites in
the DM with KF group, with focused analysis of four metabolite
groups: sugars, sugar alcohols, amino acids, and free fatty acids.
Our plasma metabolomics results revealed 35 significant me-
tabolites (12 unique and 23 concentration-dependent metab-
olites) in the DM with KF group, as compared with those in the
CON and DM groups (N = 20 for each group). Interestingly, we
determined 17 of the 35 (14/17 verified with reference stan-
dards) significant metabolites identified from both the analyses
were metabolites from the sugar and sugar alcohol groups, with
significantly higher concentrations in the DM with KF group
than in the CON and DM groups. Enrichment analysis of these
14 metabolites also revealed that alterations in galactose
metabolism and the polyol pathway are related to DM with KF.
Overall, our application of GC × GC-TOFMS identified key
metabolites in complex plasma matrices.
* For correspondence: Sakda Khoomrung, sakda.kho@mahidol.edu.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
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Metabolomics analysis offers a great opportunity to study
disease mechanisms, biomarkers, drug discovery, and precision
medicine (1). Among all the metabolomics techniques, GC-MS
has long been a standard technique for studying metabolites in
various biological samples. This is because it offers the ad-
vantages of high sensitivity, robustness, excellent chromato-
graphic separation, and availability of the libraries (2). In one-
dimensional GC (1D GC), metabolites are solely separated on
a column, on the basis of their boiling points and how they
interact with the stationary phases (3). Although combining
1D GC with high resolution MS, such as time-of-flight mass
spectrometry (TOFMS) or orbitrap-MS, can increase the
separation power, the accuracy of metabolite identification
remains an issue because of complex matrices and the sepa-
ration performance (4). Clinical samples such as urine, blood,
cells, or tissues are rich sources of metabolites but are highly
complex and very difficult to analyze. To overcome this issue,
comprehensive two-dimensional GC (GC × GC) has increas-
ingly been applied to improve separation performance by using
a series of two capillary GC columns with different stationary
phases (5). High resolution GC × GC-TOFMS has recently
been shown to serve as a superior method for increasing the
confidence in metabolite identification of pesticides and a
cannabidiol degradation products from cannabis samples (6).
Although GC × GC has proven to be a promising technique
for chemical characterization of a variety of samples over the
last 30 years, its applications in the biomedical research have
lagged behind those in other fields. From the current literature,
the use of GC × GC in biomedical research has been relatively
limited, whereas the majority of GC × GC applications have
been in food and plant research, as well as petrochemical
research (7).

Diabetes mellitus (DM) is a chronic disease characterized by
high blood glucose levels due to ineffective insulin production
or utilization (8). DM is among the top 10 major causes of
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GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
mortality in adults, and its incidence is increasing globally (9).
Diabetes is one of the leading causes of chronic kidney disease
(CKD), characterized by elevated levels of albuminuria and
decreased kidney function (as documented by elevated serum
creatinine or decreased glomerular filtration rate) (10, 11).
With time, patients with predialysis CKD develop a progres-
sive decline in kidney function until they develop kidney fail-
ure (KF; also known as end-stage renal disease) and must
require kidney replacement therapies by dialysis or trans-
plantation to sustain life. In recent years, there has been an
increasing interest in identifying new biomarkers for the pre-
diction of CKD progression in predialysis diabetic kidney
disease (DKD). Through metabolomics technology, various
classes of candidate metabolites, including carbohydrates,
amino acids, fatty acids, bile acids, and uremic solutes, have
been reported to be linked to DM complications and kidney
disease progression (12–15). For instance, Niewczas et al. re-
ported that the elevated levels of uremic toxins and polyols
(sugar alcohols) are associated with the progression of CKD
related to DM (15). Titan et al. reported that lactose 2-O-
glycerol-α-galactopyranoside and tyrosine are significant me-
tabolites related to KF progression (16).

To date, only a few studies have fully characterized the
metabolomics profiles of DKD patients with established KF
who are at very high risk of developing complications and
mortality. Many earlier investigations used metabolomics to
predict potential biomarkers, without using reference stan-
dards (12–14, 16). Many metabolites in patients with DM or
DM with KF have very similar chemical structures and they are
present at very low concentrations. Thus, determining the true
identity and quantity of these metabolites in such a compli-
cated matrix is highly challenging.

Despite the fact that GC × GC-TOFMS appears to have
great potential for analyzing metabolites in clinical samples, its
use in this area is currently limited, as compared to that of the
standard 1D GC. Although GC × GC-TOFMS has been used
to detect metabolites in blood samples in a few earlier studies,
these studies were conducted on healthy individuals or sam-
ples from patients with early states of disease. Furthermore, it
has long been known that GC × GC detects a greater number
of features or metabolites than 1D GC, but the exact classes or
groups of metabolites that are not detected in the 1D GC
analysis are currently unknown. Therefore, the goal of this
study was to establish and validate a GC × GC-TOFMS
method using two different plasma matrices, for application in
the identification of important metabolites in DM with KF
patients.
Results

Implementation of sample preparation and GC × GC-TOFMS
measurement conditions

We used the pooled plasma samples from the healthy
control (CON) and DM with KF groups (N = 20 per group) to
establish the method. The sample preparation protocol used in
this study was adopted from a published protocol (17); how-
ever, we further optimized the key parameters that normally
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affect the silylation yields, that is, volume of supernatant
(200 μl) and derivatizing agents (80 μl) as well as incubation
time (�25 min). For the GC × GC chromatographic separa-
tion, we used a nonpolar column as the first column, while a
polar column was used as the second column. We found that
an initial temperature of 50 �C was the best for concentrating
the solvent and preventing the losses of small metabolites such
as L-alanine, L-valine, and glycine. We also found that a 500 s
acquisition delay (solvent delay) was the best setting for
maximizing the detector lifetime and metabolite coverage.
GC × GC-TOFMS extends the metabolites’ coverage over the
traditional GC-TOFMS

We evaluated the performance of GC × GC-TOFMS against
traditional 1D GC (GC-TOFMS) using two separate pooled
samples from the CON and DM with KF groups. The total
number of features detected in the CON group was 576 ± 13
(153 ± 4 identified and 423 ± 9 unidentified) using GC-
TOFMS and 1029 ± 16 (234 ± 9 identified and 794 ± 25 un-
identified) using GC × GC-TOFMS (Fig. 1A). In the DM with
KF group, the total number of features detected was 700 ± 26
(153 ± 7 identified and 547 ± 31 unidentified) using GC-
TOFMS and 1257 ± 35 (276 ± 12 identified and 980 ± 26
unidentified) using GC × GC-TOFMS, respectively. In all
cases, the number of features detected using GC × GC-
TOFMS was clearly higher than detected using GC-TOFMS.
Furthermore, we also observed a higher number of detected
features (unannotated metabolite) in the DM with KF pooled
samples, compared with that in the CON pooled samples. The
most abundant of molecular sizes of the identified compounds
in all matrices were in the range of 50 to 200 Da (Fig. S1).
Based on the chemical taxonomy in the human metabolome
database (18), the identified metabolites were categorized into
10 subclasses (Fig. 1B) (19). In subclasses such as subclass 1
(alcohols and sugar alcohols), subclass 3 (amines), subclass 6
(carbohydrates and carbohydrate conjugates), subclass 7
(carbonyl compounds), and subclass 9 (fatty acids and conju-
gates), the numbers of metabolites detected by GC × GC-
TOFMS were at least two times higher than those detected by
GC-TOFMS (Fig. 1B, Table S1). Other subclasses, including
subclass 2 (alkanes), subclass 4 (amino acids, peptides, and
analogs), subclass 5 (benzoic acids and derivatives), and sub-
class 8 (dicarboxylic acids and derivatives), showed slight or no
differences between the numbers of metabolites detected by
GC × GC-TOFMS and GC-TOFMS (Fig. 1B). Interestingly,
many identified metabolites in subclass 6, such as arabino-
furanose, D-arabinose, D-glucopyranose, galactopyranose, D-
xylopyranose, and D-allofuranose, were exclusively detected
using GC × GC-TOFMS in both the sample groups (Table S1).
This was similar for the subclass 10 (others), which is a group
of metabolites that could not be assigned to any class due to a
small number of metabolites in the group (less than 5), and the
availability of subclasses in the database (unclassified) Fig. S2A
and S2B.

For validation of the targeted experiment, our metabolites of
interest were selected based on previous reports (12–15). We



Figure 1. Metabolites detected using GC-TOFMS and GC × GC-TOFMS in the pooled plasma samples from the CON (N = 3) and DM with KF (N = 3)
groups. A, the scatter plot with bar charts shows the total number of features detected, including both identified and unidentified features. B, the identified
features were classified into 10 subclasses based on the Human Metabolome Database. DM, diabetes mellitus; KF, kidney failure; TOFMS, time-of-flight mass
spectrometry.

GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
used 47 reference standards to set up the targeted GC × GC-
TOFMS experiment. The standards included 9 sugar alcohols,
10 sugars, 20 amino acids, and 8 free fatty acids. With opti-
mized chromatographic separation, over 98% (46/47) of the
Figure 2. GC × GC TOFMS demonstrated the four subclasses of referenc
including (A) ten sugar metabolites, (B) twenty amino acids, (C) eight fatty acids
in the first and second dimensions, respectively. The red-labeled metabolites
reference standards were clearly separated and correctly
identified using our method (Fig. 2, A–D), with the exception
of arginine, which was converted to ornithine during the tri-
methylsilyl derivatization (20). Although many derivative
e standards. Contour plots of the four subclasses of reference standards,
, and (D) nine sugar alcohols. The x- and y-axes represent the retention times
indicate the coeluted compounds.
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GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
metabolites of amino acids (i.e., aspartic acid, methionine,
lysine, and histidine) and free fatty acids (i.e., oleic acid and
linolenic acids) were coeluted in the first column, they were
well separated in the second dimension as shown in Fig. 2, C
and D, respectively.

Application of GC × GC-TOFMS to identify metabolites in DM
with KF individuals characteristics of the study population

To search for significant metabolites in the DM with KF
group, we recruited 60 participants from three groups: CON,
DM, and DM with KF (N = 20 in each group). Table 1 sum-
marizes the demographics, anthropometrics, and other clinical
data of these individuals. Using the Kruskal–Wallis test, the
key clinical parameters for CKD diagnosis, including estimated
glomerular filtration rate (eGFR), creatinine, albumin, and
total protein, were significantly different (p < 0.05) among the
three groups, of which the DM with KF group exhibited
abnormal values, as compared to those in the other groups
(Table 1). The parameters of the kidney function test in the
DM and CON groups were normal. The levels of fasting blood
sugar levels in the DM and the DM with KF groups were
significantly higher than those in the CON group.

Elevated levels of sugars and sugar alcohol metabolites in the
DM with KF patients

Overall, the metabolite profiles of the DM with KF group
were clearly different from those of the CON and DM groups
(Fig. 3, A–C), with sugar alcohols, oxidizing sugars, organic
compounds, and other metabolites being exclusively present in
the DM with KF samples (Fig. 3C). Based on the standard
metabolite identification (21), we classified 89 metabolites
(Table S2) into two metabolite identification levels. At the
highest confidence level (level 1), detected features in the
plasma samples were annotated with 33 reference standards,
by comparing their MS spectra (>70% similarity matching)
and retention times (<0.1 s for first and second dimension),
with those of the standards analyzed using the identical mea-
surement conditions. Level 2 identification was carried out by
comparing the MS spectra of the unknown metabolites to
those in the National Institute of Standard Technology (NIST)
library (>70% similarity matching). Overall, there were 74
metabolites that were found to be common in all samples,
Table 1
Baseline and clinical characteristics (mean ± SD) of the cohort

Characteristics Reference range CON (n=2

Age (year) 53 ± 7.0
Gender, (male/female) 16/4
Total cholesterol (mg/dl)a <200 208 ± 32.
AST (U/L) 5–34 22.58 ± 4.6
ALT (U/L)a 0–55 23.58 ± 7.5
Total bilirubin (mg/dl) 0.2–1.2 0.66 ± 0.3
Creatinine (mg/dl)a Male = 0.73–1.18,

Female = 0.55–1.02
0.94 ± 0.1

eGFR (mL/min/1.73 m2)a >90 90.09 ± 16.
Total protein (mg/dl)a 6.4–8.3 7.08 ± 0.6
Albumin (g/L)a 3.5–5.0 4.49 ± 0.3

AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glome
a p < 0.05, the Kruskal–Wallis test was used to compare the means among the three gro
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while 12 metabolites were exclusively detected in the DM with
KF group (Fig. 3D). We used two approaches to identify the
key metabolites in the DM with KF group: (I) unique and (II)
concentration-dependent metabolites. In the unique metabo-
lite analysis, 4 of the 12 unique metabolites in the DM with KF
group, namely, sugar alcohols, including D-mannitol, D-sor-
bitol, D-dulcitol, and D-maltitol, were verified and quantified
using reference standards (Fig. S3). Their concentrations were
82.50 ± 29.42 μM for D-mannitol, 96.23 ± 69.39 μM for D-
sorbitol, 23.89 ± 13.30 μM for D-dulcitol, and 259.63 ±
70.14 μM for D-maltitol. The remaining eight unique metab-
olites were annotated using the NIST library because of the
limitations of the reference standards (Table 2).

For concentration-dependent metabolite analysis (74 me-
tabolites), we performed principal component analysis and
observed a clustering of the pooled samples, which separated
them from the other groups (Fig. 4A). This suggests that the
metabolomics data were of high quality and had low analytical
variance. There was a clear separation between the DM with
KF group and the two other groups (Fig. 4A). However, no
clear difference was observed between the DM and CON
groups. By using a shared and unique structure (SUS) plot (22),
we identified 23 significant metabolites [p(corr) > 0.7] in the
DM with KF group, as compared to those in the CON and DM
groups (Fig. 4B). Interestingly, 43% (10/23) of the significant
metabolites (verified with the standards) in this analysis were
from the sugar and sugar alcohol subclasses. These metabolites
included D-xylose, D-arabinose, D-maltose, D-ribose, D-fruc-
tose, D-galactose, D-talose, meso-erythritol, D-arabitol, and
myo-inositol, which were significantly elevated (p < 0.0001) in
the DM with KF group, as compared to those in the CON and
DM groups (Fig. 4C). The SUS plot also showed no clear
difference between the CON and DM groups. A summary of
the list and trends of the significant metabolites related to DM
with KF is presented in Table 2.
Alteration of carbohydrate metabolism in DM with KF patients

To determine the disturbed metabolic pathway in the DM
patients with KF, we performed the enrichment analysis using
seven sugar and three sugar alcohols that were identified in the
concentration-dependent analysis, together with the four sugar
alcohols identified in the unique metabolite analysis. We found
0) DM (n=20) DM with KF (n=20) p-value

3 56 ± 1.31 48 ± 8.72
16/4 16/4

91 194.40 ± 43.69 151.13 ± 0.60 0.004
6 27.50 ± 9.98 25.40 ± 12.31 0.405

36.60 ± 16.13 24.13 ± 20.25 0.009
1 0.67 ± 0.36 0.66 ± 0.13 0.618
9 0.94 ± 0.19 9.45 ± 2.04 <0.001

74 91.03 ± 11.59 5.66 ± 1.11 <0.001
8 7.43 ± 0.39 7.94 ± 0.83 <0.001
6 4.86 ± 0.27 3.95 ± 0.50 <0.001

rular filtration rate.
ups.



Figure 3. Plasma metabolomic analysis in the cohort study using GC × GC TOFMS. The contour plots of three samples representing the (A) CON, (B) DM,
and (C) DM with KF groups; mannitol, sorbitol, dulcitol, and maltitol are the unique metabolites found in the DM with KF group (red letters). The x-axis
represents the first dimension (min), while the y-axis represents the second dimension (sec). D, Venn diagram shows the number of identified metabolites in
the three groups, including the CON, DM, and DM with KF groups. There were 74 common metabolites, which consisted of 33 and 41 metabolites, as
identified based on level 1 and level 2 identifications, respectively. DM, diabetes mellitus; KF, kidney failure.

GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
that these 14 metabolites were associated with carbohydrate
metabolism, including galactose metabolism, pentose and
glucuronate interconversion, and fructose and mannose
metabolism (Fig. S4). In particular, galactose metabolism was
clearly impacted in the DM with KF group, exhibiting
increased in levels of six sugar metabolites when compared to
the CON and DM groups, namely D-galactose, sucrose, D-
fructose, D-dulcitol, D-sorbitol, and myo-inositol in the DM
with KF group (Table S3).
Correlation between the 33 verified metabolites and clinical
parameters

We examined the correlation patterns between metabolite
abundances and clinical parameters in each sample group
(Fig. 5, A–C). Spearman’s rank correlation coefficients between
the 33 verifiedmetabolites and 10 clinical parameters, including
age, sex, eGFR, total cholesterol, total protein, albumin, creat-
inine, aspartate aminotransferase, alanine aminotransferase,
and total bilirubin, were computed. Clinical parameters with
more than 50% missing values were excluded. The correlation
was considered statistically significant, if its p-value was less
than 0.05 (p< 0.05). A distinct correlation pattern among the 33
metabolites was observed in the DM with KF group. In
particular, there were a smaller number of significant correla-
tions in the DMwith KF group than those in other groups. Only
190 positive correlations existed in the DM with KF group,
whereas 300 and 289 significant pairs of correlated metabolites
were found in the DM and CON groups, respectively. However,
we found an increased correlation between D-talose and other
metabolites in the DM with KF group. In this group, the D-
talose specifically correlated with glycine, L-threonine, L-
methionine, L-glutamic acid, phenylalanine, L-tryptophan, L-
cystine, arachidonic acid, meso-erythritol, D-arabitol, D-
maltose, and D-ribose. D-talose was positively correlated with
L-valine, leucine, palmitic acid, stearic acid, myo-inositol, D-
arabinose, and D-glucose in the DM group. There was a much
less significant correlation in the CON samples.

Moreover, significant correlations between a group of me-
tabolites and kidney function parameters, including eGFR,
creatinine, albumin, and total bilirubin, were remarkably
altered under the different disease conditions. In the CON
J. Biol. Chem. (2022) 298(10) 102445 5



Table 2
The significant candidate metabolites related to DM with KF

No. Metabolite name Metabolite class Concentration in μM (mean ± SD)

Unique metabolites in DM with KF
1 D-maltitola sugar alcohol 259.63 ± 70.14
2 D-sorbitola sugar alcohol 96.23 ± 69.39
3 D-mannitola sugar alcohol 82.50 ± 29.42
4 D-dulcitola sugar alcohol 23.89 ± 13.30
5 D-lactitol sugar alcohol N/A
6 Gluconolactone oxidized sugar N/A
7 3-deoxyhexitol reducing sugar N/A
8 Tartaric acid organic compound N/A
9 4-hydroxybenzoic acid organic compound N/A
10 2,5-furandicarboxylic acid organic compound N/A
11 1,5-dihydroxyphthalene other N/A
12 Indol-5-ol other

Trend of metabolite levelb

CON versus
DM

CON versus
DM with KF

DM versus
DM with KF

Concentration dependent metabolites
1 D-arabinosea sugar ↑ ↑**** ↑****
2 D-fructosea sugar ↑ ↑**** ↑****
3 D-galactosea sugar ↑ ↑**** ↑****
4 D-maltosea sugar ↑ ↑**** ↑****
5 D-ribosea sugar ↑ ↑**** ↑****
6 D-xylosea sugar ↑ ↑**** ↑****
7 D-talosea sugar ↑ ↑**** ↑****
8 Sucrose sugar ↑ ↑** ↑****
9 D-arabitola sugar alcohol ↑ ↑**** ↑****
10 Meso-erythritola sugar alcohol ↑ ↑**** ↑****
11 Myo-inositola sugar alcohol ↑ ↑**** ↑****
12 1,5-anhydroglucitol sugar alcohol ↓ ↓**** ↓****
13 D-gluconic acid oxidized sugar ↑ ↑**** ↑****
14 Methyl galactoside oxidized sugar ↑ ↑**** ↑****
15 DL-Ornithine amino acid ↑ ↑**** ↑****
16 Nonanoic acid fatty acid ↑ ↓**** ↓****
17 Pseudouridine nucleoside ↑ ↑**** ↑****
18 2,3,4-trihydroxybutyric acid organic compound ↑ ↑**** ↑****
19 Benzoic acid organic compound ↑ ↓**** ↓****
20 Hippuric acid organic compound ↑ ↑**** ↑****
21 p-cresol organic compound ↑ ↑**** ↑****
22 L-tryptophana amino acid ↓ ↓**** ↓****
23 L-tyrosinea amino acid ↓ ↓**** ↓****

DM, diabetes mellitus; KF, kidney failure.
a Metabolites were verified with reference standards.
b p-values were calculated using the Mann–Whitney U test for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
group, the metabolites including L-alanine, leucine, glycine, L-
methionine, L-glutamic acid, phenylalanine, L-lysine, L-tyro-
sine, L-cystine, meso-erythritol, D-arabitol, and myo-inositol
showed strong positive and negative correlations with creati-
nine and eGFR, respectively. These associations were observed
less frequently in patients with DM. Instead, explicit negative
correlations between total bilirubin and L-alanine, L-isoleu-
cine, L-methionine, phenylalanine, L-tryptophan, and D-ribose
were observed in the DM with KF group. Additionally, we
observed the absolute levels of these kidney function param-
eters and compared the differences in them among the groups.
Both eGFR and serum creatinine levels were significantly lower
in the DM with KF group than those in the other groups
(Fig. 5, D and E). Albumin levels were significantly different,
whereas total bilirubin levels were not statistically different
among the groups (Fig. 5, F and G).

Discussion

Our study showed that the performance of GC × GC-
TOFMS was significantly better than that of traditional GC-
TOFMS in terms of separation performance and metabolite
coverage. The numbers of identified metabolites in the
6 J. Biol. Chem. (2022) 298(10) 102445
GC × GC-TOFMS analysis was almost twice of that measured
using GC-TOFMS. The validated GC × GC-TOFMS method
was found to be suitable for metabolite profiling and targeted
analysis in a single run. To answer our research question, we
targeted metabolite profiling of four classes of metabolites
including sugars, sugar alcohols, amino acids, and free fatty
acids. We demonstrated the improved separation of coeluted
metabolites using the second column of the GC × GC-TOFMS
instrument. This also increased the number of detected me-
tabolites (identified metabolites based on reference standards
or library) as well as the sensitivity of the metabolite profiling
experiment. In addition to the targeted analytes, we were able
to detect other metabolites from the groups of alcohols and
sugar alcohols, amines, carbohydrates and carbohydrate con-
jugates, and fatty acids and conjugates. Interestingly, the
optimized GC × GC-TOFMS method could detect several
sugar forms; for example, both pyranose and furanose forms
were only detected using the GC × GC-TOFMS analysis. The
reducing sugar metabolites gave multiple peaks, due to the
presence of anomers, pyranoside, and furanoside rings, and an
open chain and cyclic form. This may result in extremely
complex chromatographic peaks for the carbohydrate



Figure 4. Identification of significant metabolites in the DM with KF group. A, PCA score plot of the CON (green), DM (blue), DM with KF (red), and QC
(gray) groups, (B) SUS plot of the 74 concentration-dependent metabolites related to DM with KF (x-axis) and DM (y-axis). Red circles represent the
correlated metabolites with p(corr) > 0.7 (dashed line), in both directions of each condition. C, box plots represent the two main classes of significantly
elevated metabolites in the DM with KF group, including seven sugar metabolites and three sugar alcohols. DM, diabetes mellitus; KF, kidney failure.

GC × GC-TOFMS for plasma metabolomics analysis of DM with KF
metabolites. Our findings demonstrated that GC × GC-
TOFMS could detect the cyclic forms of sugars, such as D-
glucose (open chain form), D-glucopyranose (cyclic form), D-
galactose (openchain form), and D-galactopyranose (cyclic
form), which cannot be resolved and identified using GC-
TOFMS. Our findings indicated that GC × GC-TOFMS pro-
vides a higher separation power, particularly for the differen-
tiation of sugar metabolites. Although several metabolites were
uniquely detected using GC-TOFMS, these numbers were
much lower than those detected using GC × GC-TOFMS
(Table S2). Nevertheless, these results provided broad infor-
mation about the metabolite coverage detected in plasma
matrices using GC-TOFMS and GC × GC-TOFMS.

In addition, our GC × GC-TOFMS results are also consis-
tent with a previous study by Winnike et al., who carried out
human serum metabolomics and found that the GC × GC-
TOFMS method provided better metabolite coverage, peak
resolution, peak capacity, and sensitivity, as compared to those
provided by GC-TOFMS (23). However, our study
demonstrated the analysis of metabolites in plasma samples at
an advanced stage of kidney disease, in which sample mixtures
are more complex and challenging, as compared to the pre-
vious study. Therefore, the use of HR-GC × GC-TOFMS
analysis could provide the opportunity to gain deeper metab-
olite information in other complicated diseases in comparison
to the traditional GC technique.

Previous studies have explored the blood metabolite profiles
of patients with predialysis CKD and DM using LC-MS/MS
(15, 24) and GC-MS (14). To our knowledge, this study is
the first to investigate plasma metabolites in DM patients with
established KF, using the GC × GC-TOFMS method. Plasma
metabolomic analysis of the DM with KF group revealed a
different profile, whereas no difference was observed between
the CON and DM groups. This may be due to the insignificant
difference between the demographic data of the CON and DM
groups in terms of kidney function parameters including
creatinine, eGFR, albumin, and total protein (Table 1). In
addition, four sugar alcohols (D-sorbitol, D-dulcitol or D-
J. Biol. Chem. (2022) 298(10) 102445 7



Figure 5. Correlation analysis among the clinical parameters and verified metabolites. The correlation coefficient represents the correlation between
the 33 verified metabolites and clinical parameters in three sample groups, including CON (A), DM (B), and (C) DM with KF (C), as assessed using Spearman’s
correlation analysis. Metabolites marked with red asterisks represent significant metabolites that were identified from the SUS plot analysis. The size and
color intensity of the dots represent the size of the correlation coefficient values. The red and blue colors represent positive and negative correlation,
respectively, while the blank indicates no correlation. Box plots of eGFR (D), creatinine (E), albumin (F), and total bilirubin (G) levels. ns (not significant) p-
value > 0.05, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001, as determined by the Mann-Whitney U test. DM, diabetes
mellitus; eGFR, estimated glomerular filtration rate; KF, kidney failure; SUS, shared and unique structure.
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galactitol, and D-maltitol) were verified in the unique analysis,
and 10 (of the 23) significant metabolites (Table 2) belonged to
sugars and sugar alcohols, some of which have been previously
reported to be linked to DM-related predialysis CKD pro-
gression (15, 16). Typically, chronic hyperglycemia can activate
multiple collateral glucose-utilizing pathways, such as the
polyol pathway, protein kinase C pathway, advanced glycation
end products formation, hexosamine biosynthetic pathway,
pentose phosphate pathway, and anaerobic glycolytic pathway.
Activation of these aberrant pathways and associated oxidative
stress generation are central to the pathogenesis of macro-
vascular and microvascular complications in DM (25, 26). In
this study, we found significantly higher levels of sugars and
sugar alcohols (D-galactose, sucrose, D-fructose, D-dulcitol,
D-sorbitol, and myo-inositol) in the DM with KF group, as
compared to those in the DM with normal kidney function and
control groups. The findings of increased erythritol, arabitol,
and mannitol levels were consistent with those of previous
studies in dialysis patients (27). A more recent study using GC-
MS also identified elevated levels of D-maltose, D-ribose,
erythritol, myo-inositol, L-arabitol, mannitol, and L-arabinose
in DM patients, as compared to those in moderate degree of
DKD patients versus DM patients without kidney disease (14).
The elevated levels of sugar and sugar alcohol metabolites may
be linked to diet (especially erythritol, which could be used as
an artificial sweeteners), altered metabolic pathways, decreased
8 J. Biol. Chem. (2022) 298(10) 102445
renal clearance, and gut dysbiosis. The latter is increasingly
recognized as being altered in CKD and KF (28, 29). The
accumulation of some of these sugar alcohols and sugars may
contribute to the long-term complications of DM with KF.
Blood glucose levels may vary rapidly with meals and still
remain within the normal range. In the polyol pathway, hy-
perglycemia or excess glucose is converted to sorbitol by
aldose reductase (30, 31). In the presence of sorbitol dehy-
drogenase, sorbitol is converted to fructose. However, the
retina, nerves, and kidneys are tissues that have low sorbitol
dehydrogenase levels, limiting the conversion of sorbitol to
fructose. The accumulation of sorbitol in cells leads to the
development of retinopathy, peripheral neuropathy, and ne-
phropathy, respectively. Moreover, aldose reductase also con-
verts galactose to dulcitol (galactitol) (32). Both elevated
sorbitol and dulcitol have been linked to increased cataract
formation. Another metabolite, mesoerythritol has recently
been shown to be synthesized from glucose via the pentose
phosphate pathway. Serum erythritol has been demonstrated
to predictive DKD and coronary events in non-CKD cohorts;
however, its role as a predictor of adverse outcome in KF is not
yet known (33).

Although metabolite profiles and clinical parameters, such
as eGFR and creatinine, could not be used to differentiate
between the CON and DM groups, a distinct correlation
pattern among those was observed in each group. This finding
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highlights the promise of integrative analysis of omics and
clinical data. In our case, the small magnitude of the changes
in metabolites and clinical characteristics precluded the sep-
aration between the CON and DM. Taking the relationships of
molecular and clinical level data into consideration may pave
the way for the description of disease status. Interestingly,
although the total bilirubin levels were not distinguishable
between the groups, its correlation pattern stood out in the
DM with KF group. However, currently, there is no compelling
evidence for a link between total bilirubin levels and CKD/KF
progression outcomes.

In summary, we validated the GC × GC-TOFMS method
and demonstrated its use for plasma metabolomics analysis in
the DM with KF. We have identified several metabolites
among sugars and sugar alcohols that were significantly
elevated in the DM with KF group, as compared to those in the
CON and DM groups, respectively. The galactose metabolism
and polyol pathway were found to be the most induced
metabolic pathways, with the accumulation of cellular sugar
alcohols, potentially being an underlying mechanism of CKD
progression to KF. The identification of sugar and sugar
alcohol metabolites in this study provides crucial information
that could potentially be useful for identification of future
metabolite biomarkers for the early detection of DM to KF
progression. However, further studies are needed to validate
these potential biomarkers in earlier stages and in a larger
cohort.

Limitations of the study and future perspectives

This study has several limitations. First, the cohort had a
small sample size and there were missing data for clinical
parameters during follow-up. These parameters may affect the
metabolomics analysis. Many pathological events can occur in
the biological systems of the human body during the devel-
opment of CKD leading to KF, such as microalbuminuria,
macroalbuminuria, declining eGFR, and other different causes
of CKD progression. Secondly, the lack of classification of
sample groups in the early stages of CKD should be improved
upon for the possible detection of early stage biomarkers. The
first step toward proving that the candidate metabolites found
in this study can be used as early stage biomarkers would be to
perform a targeted quantitative analysis of these identified
metabolites. Large-scale investigation of metabolites of interest
in various patient groups should then be performed and vali-
dated on a second set of cohorts for further study.

Experimental procedures

Study design

This is a cross-sectional case-control study

Subjects

All participants provided informed consent before partici-
pating in the study. This study was approved by the Ethical
Clearance Committee on Human Rights Related to Research
Involving Human Subjects, Faculty of Medicine, Ramathibodi
Hospital, Mahidol University (COA. MURA2021/643). The
human studies reported in this study abide by the Declaration
of Helsinki principles. The study included three groups (N =
20 in each group) as follows: (I) CON, (II) DM (diabetes with
normal kidney function), and (III) DM with KF (diabetes with
kidney failure). The CON group comprised healthy male and
female volunteers. All the subjects in the CON group had
normal renal function (eGFR≥60 ml/min/1.73 m2 and normal
urinalysis [dipstick protein=negative]), and no DM. A patient
was considered to have DM if their fasting blood sugar levels
>126 mg/dl or if they had been taking oral hypoglycemic
drugs/insulin. The DM with normal kidney function group
consisted of individuals with normal GFR (eGFR ≥ 60 ml/min/
1.73 m2) and normoalbuminuria. The DM with KF group
included patients known to undergo DM and only kidney
replacement therapy for more than 3 months. Patients with a
history of kidney transplantation were excluded from the
study. Patients with comorbidities, such as hypertension, and
those on medications for cardiovascular disease or cancer were
excluded from the study.

Methods

Plasma collection and preparation

Fresh blood samples were collected from each subject and
stored in ethylenediaminetetraacetic. After centrifugation at
3500 rpm for 10 min, 100 μl of the plasma was aliquoted into
an Eppendorf tube and stored at –80 �C until analysis.

Chemical standards and reagents

Hexane, methanol (MeOH), methoxyamine hydrochloride
(MeOX), N-methyl-N-(trimethylsilyl)-trifluoroacetamide
(MSTFA) + 1% chlorotrimethylsilane (TMCS), N-tert-butyl-
dimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), and
reference standards, including amino acids, sugars, sugar al-
cohols, and free fatty acids, were purchased from Sigma–
Aldrich. A list of the reference standards is provided in
Table S4. Stable isotope-labeled internal standard (IS) com-
pounds, including DL-alanine-3,3,3-d3 and L-phenylalanine-1-
C13, were purchased from Sigma–Aldrich and Cambridge
Isotope Laboratories Inc, respectively. Pyridine was purchased
from Tokyo Chemical Industry Inc MeOX (15 μg/μl in pyri-
dine) and standard solutions (2 mM, in Milli-Q water or in
hexane or in 0.1 mM HCl) were freshly prepared before
analysis. The IS compounds were prepared in MeOH, at a
concentration of 20 ng/μl.

Sample extraction and derivatization

Sample preparation was modified from the study of Jiye
et al. (17). In brief, the frozen plasma samples were thawed on
ice at room temperature (RT) for 30 min. The samples were
then vortexed for 5 s. Plasma (100 μl) was added to a 1.5 ml
Eppendorf tube (on an ice bath) and mixed with 900 μl of
precooled 90% aqueous MeOH containing 20 ng/μl of the IS
compounds. The mixture was then shaken using a vortex
mixer (Scientific Industries) for 2 min. The samples were kept
at –20 �C for 1 h, following which they were centrifuged for
10 min at 19,600×g, 4 �C. After centrifugation, 200 μl of the
J. Biol. Chem. (2022) 298(10) 102445 9
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supernatant containing 3.6 μg of the IS compounds was
transferred into a new Eppendorf tube and evaporated to
dryness at 65 �C (�2 h), using a Centrivap concentrator
(Labconco). The samples were stored at –20 �C until further
analysis. The pooled sample (QC) was prepared by mixing with
200 μl of each supernatant (from the plasma extract). Subse-
quently, the samples were subjected to a methoximation re-
action, by adding 30 μl of MeOX in pyridine (15 μg/μl) to each
sample. The sample was then sonicated at 25 �C for 3 min and
left at RT for 16 h. The mixture was then added to 50 μl of
MSTFA with 1% TMCS and sonicated for 3 min at RT. The
mixture was then incubated at 70 �C for 1 h and then cooled
down at RT for 20 to 30 min. The derivatized samples were
transferred into a GC vial for GC-TOFMS and GC × GC-
TOFMS analyses.

GC-TOFMS and GC × GC-TOFMS analyses

The derivatized samples were analyzed by GC-TOFMS and
GC × GC-TOFMS (Pegasus 4D HRT, Leco Corp. Inc). QC
samples were distributed across the sample sequence (every 15
samples). One microliter of each sample was injected into the
split mode (1:20) at 250

�
C. The QC samples were used to

monitor the reproducibility of the measurements. For
GC × GC-TOFMS analysis, the first column was a nonpolar
Rxi-5sil MS column (5% diphenyl-methyl polysiloxane and
95% dimethylpolysiloxane), with 30 m length, 0.25 mm inter-
nal diameter, and 0.25 μM film thickness (Restek), while the
second column was a Rxi-17sil MS column (50% phenyl
methyl polysiloxane and 50% dimethylpolysiloxane), with 1 m
length, 0.25 mm internal diameter, and 0.25 μM film thickness
(Restek). The temperature programming for the first GC col-
umn in the GC × GC-TOFMS analysis was set as follows:
initial temperature at 50 �C (5 min), increased to 180 �C at 25
�C/min (1 min), increased to 220 �C at 10 �C/min (1 min),
increased to 260 �C at 15 �C/min, and finally increased to 300
�C at 15 �C/min (4 min). The secondary offset was set at 10 �C
above the primary oven temperature. For the GC × GC-
TOFMS analysis, the modulator temperature was set to 15 �C.
The second-dimension separation time was set to 4 s, and hot
and cold pulse durations were 0.8 s and 1.20 s, respectively. For
the GC-TOFMS analysis, the first GC condition was the same
as that for GC × GC the analysis, whereas the second GC
column was inactive. Helium was used as the carrier gas at a
flow rate of 1 ml/min. Electron ionization was performed at
70 eV, with an ion source temperature of 250 �C. Mass spectral
data were collected in scan mode, ranging from 40 to 1200m/z
at a rate of 20 spectra/s for GC-TOFMS and 200 spectra/s for
GC × GC-TOFMS. The solvent delay was set to 500 s.

Data preprocessing, processing, and metabolite identification

The major steps of metabolomics data handling, such as
data preprocessing, data processing, and data analysis and
interpretation, were performed based on a known protocol
(34). Briefly, raw data from the GC-TOFMS and GC × GC-
TOFMS analyses were preprocessed using ChromaTOF
(version: 5.50, Leco Corp.). For the untargeted analysis, the
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peak identification was achieved by comparing the experi-
mental mass spectra with the reference spectra contained in
the NIST mass spectral library (NIST 2017). The parameters
for the peak-finding method were as follows: similarity
matching score ≥ 700, signal-to-noise ratio ratio ≥ 20, peak
width = 0.06 σ, and minimum number to retain the spectrum
of peaks > 3. For the targeted analysis, the analyte finding
parameters were as follows: similarity matching score ≥ 700,
signal-to-noise ratio ≥ 50, peak width = 0.06 σ, and minimum
number to retain the spectrum of peaks > 5. The target analyte
detection methods with reference metabolite standards,
including 20 amino acids, 10 sugars, 9 sugar alcohols, and 8
free fatty acids, were based on their retention times and mass
spectra libraries. For plasma sample analysis, the features were
classified into four levels of metabolite identification, which
were as follows: (1) confidently identified compounds, (2)
putatively annotated compounds, (3) putatively characterized
compound classes, and (4) uncharacterized or unknown
compounds (21). Level 1 metabolite identification was per-
formed by comparing at least two orthogonal properties (i.e.,
mass spectra, retention time, etc.) of unidentified features with
the reference standards, whereas level 2 was identified based
on spectral similarity against the NIST library, with a similarity
index of at least 700 (70% matching). Features with a library
matched score of less than 700 were classified as unknown
compounds and were excluded from this analysis. Subse-
quently, the identified compounds (both levels 1 and 2) were
mapped against the human metabolome database to identify
their subclasses. For quantitative analysis, the area under the
curve (AUC) of the identified metabolites in the experimental
blank was subtracted from that in the real samples. The signals
from the artifacts of the derivatization reaction, solvent peak
(i.e., heptane), and chemical signals from column bleeding
were removed (35). Missing values (at least 30%) of the me-
tabolites from each group were replaced with imputed values
using median values. The AUC of the metabolites mass was
normalized according to the crosscontribution compensating
for the multiple standards normalization method (36) with two
IS compounds, including DL-alanine-3,3,3-d3 and L-phenyl-
alanine-1-C13, using R software (version 1.3.959). Data were
log-2 transformed and scaled using the pareto method prior to
statistical analysis.
Statistical analysis

Comparison of the performance of the GC-MS and
GC × GC-TOFMS analysis in terms of number of metabolites
identified, different subclasses of the identified metabolites,
and mass coverage of the detected metabolites in pooled
plasma samples between the CON and DM with KF groups
was performed using the t test. Multivariate analyses, including
principal component analysis and orthogonal partial least
squares discriminant analysis (OPLS-DA), were performed
using SIMCA (version 16.0; Umetrics). The validation of the
models was reported as R2 (goodness of fit) and Q2 (goodness
of prediction), and the statistical significance of each model
was estimated using a permutation test (n = 500) (37). Two
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OPLS-DA models were constructed for comparison: (1) DM
and CON and (2) DM with KF and CON. The SUS plot was
generated by combining the correlation loadings from both the
OPLS-DA models. The plot represents contributions of the
metabolites to DM with KF and DM, as compared to that of a
common reference (or CON). The contributions were
computed as p(corr) values and the metabolites were selected
with respect to their position in the plot. The shared and
unique metabolites corresponding to the study groups were
identified from the SUS plot using p(corr) values (22). p(corr)
is the scaled loadings (-1.0–1.0) that indicates the correlation
coefficient between each variable and the model (38). Metab-
olites with an absolute p(corr) value > 0.7 that were then
validated with reference standards were selected for pathway
enrichment analysis. Differences in the normalized AUCs of
the metabolites among pairwise comparisons and all-group
comparisons were determined using the Mann–Whitney U-
test and Kruskal–Wallis test, respectively. Spearman’s corre-
lation coefficient was used to analyze the correlations between
metabolites and clinical parameters were analyzed using the
Spearman’s correlation method implemented in R program-
ming. MetaboAnalyst 5.0, which is an integrative platform for
statistical and functional analysis of metabolomics data (39, 40,
41), was used to perform the enrichment analysis. Based on the
Kyoto Encyclopedia of Genes and Genome (KEGG) analysis
revealed the possibility of specific biological pathways related
to the disease pathogenesis of the disease (42). A p-value <0.05
was used to determine significant pathways in the KEGG
analysis.
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