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Overview of the reporter genes and reporter mouse models
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Abstract

Reporter genes are widely applied in biotechnology and biomedical research

owning to their easy observation and lack of toxicity. Taking advantage of the

reporter genes in conjunction with imaging technologies, a large number of

reporter mouse models have been generated. Reporter mouse models provide

systems that enable the studies of live cell imaging, cell lineage tracing, immuno-

logical research and cancers etc. in vivo. In this review, we describe the types of

different reporter genes and reporter mouse models including, random reporter

strains, Cre reporter strains and ROSA26 reporter strains. Collectively, these

reporter mouse models have broadened scientific inquires and provided potential

strategies for generation of novel reporter animal models with enhanced

capabilities.
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1 | INTRODUCTION

Reporter genes refer to certain genes that encode proteins that can

be easily distinguished from a background of endogenous proteins.1

Generally, reporter genes are chosen based on the sensitivity,

dynamic range, convenience, and reliability of their assay.2-4 Repor-

ter proteins can be classified into two categories: nonfluorescent

proteins and fluorescent proteins (ie GFP [green fluorescent pro-

teins], RFP [red fluorescent proteins]). Employing the reporter genes,

a large number of reporter animal models have also been generated

and used in a wide range of research studies. In general, two experi-

mental strategies have been adopted to introduce exogenous genes

into animal genomes. Animal genomes can be altered either by

random transgenesis or by targeted transgenesis, which relies on

direct gene targeting or use of gene editing tools (ie TALENs,

CRISPR/Cas9).5-7 In addition, the conditional reporter animal strains

were also developed. In particular, the Cre/loxp system is one of the

most commonly use system for generation of conditional reporter

animal strains. In the conditional Cre/loxp reporter system, the first

reporter gene is flanked by two loxp sites facing the same direction,

followed by the second reporter gene.8 In this system, the first

reporter gene can be expressed before Cre-mediated excision, while

the second reporter gene can only be expressed after Cre-mediated

excision. Here, we summarized the two categories of reporter genes,

mouse random reporter strains, mouse Cre reporter strains and

ROSA26 reporter strains.
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2 | REPORTER GENES

2.1 | Non-fluorescent reporter genes

Chloramphenicol acetyltransferase (CAT) and lacZ gene are com-

monly employed as nonfluorescent reporter genes. CAT is a bacterial

enzyme and the first reporter gene which was used to monitor tran-

scriptional activity in cells.3 Chloramphenicol, an inhibitor of prokary-

otic protein synthesis, can be detoxified by CAT through catalyzing

the transfer of acetyl groups from acetyl CoA to the 3ʹ-hydroxyl-

position of chloramphenicol. The advantage of CAT is its stability

and lack of endogeneous expression in mammalian cells.9,10 An auto-

mated ELISA can facilitate CAT application; however, the sensitivity

of this assay is still not as high as for other reporters.3,11 The lacZ

gene, which encodes a well-characterized bacterial b-galactosidase

has been the most commonly used reporter gene in molecular biol-

ogy studies.12 b-Galactosidase catalyzes the hydrolysis of X-Gal con-

verting it to a blue product, which can be easily visualized.

Therefore, it has the advantage over CAT because the assays tend

to be simple.

2.2 | Fluorescent reporter genes

Fluorescent reporter genes are used as a tool for biological imaging.

The frequently-used fluorescent reporter genes are green fluorescent

protein (GFP) and red fluorescent protein (RFP). The GFP from the

jellyfish, Aequorea victoria, discovered in 1962 by Shimomura,13 is a

protein composed of 238 amino acid residues (26.9 kDa) that exhi-

bits bright green fluorescence when exposed to light in the blue to

ultraviolet range.14,15 Its discovery triggered intense research interest

in the structure, biochemistry, and biophysics of GFP-like fluorescent

proteins, which resulted in an avalanche of scientific reports about

fluorescent proteins and their applications to solve a series of basic

issues in molecular and cell biology.16 GFP and its variants, such as

enhanced yellow (EYFP) and enhanced cyan (ECFP), have been

developed and are nowadays used in a wide range of areas.4,5 GFP

has become well established as a marker of gene expression in cell

and molecular biology.17 In 1997, Okabe et al.18 generated the first

“green mouse,”which expressed enhanced green fluorescent protein

(EGFP) driven by a CAG promoter (chicken beta-actin promoter com-

bined with the cytomegalovirus enhancer element). The successful

generation of such ‘green mice’ suggested that EGFP expression is

nontoxic in mouse. Variants of green fluorescent protein (EYFP and

ECFP) were also rapidly used in mice for living imaging.19,20 Later

GFP and its variants were also applied in other species such as

pig.21,22

The emission spectra of GFP variants (YFP and CFP) are very

close and it is difficult to visually differentiate between them with

readily available imaging systems.23 In addition, a double reporter

system is often required to establish reporter strains; therefore,

easily identifiable, spectrally distinct colors, such as red, had to be

developed. Over the past few years, a number of RFPs that emit

orange, red and far-red fluorescence have been discovered from

anthozoans (corals), and are available for a wide range of biological

applications.16,24,25 The first RFP isolated from Discocoma sp. was

DsRed1.26 Hadjantonakis et al27 tried to generate a DsRed1 trans-

genic mouse but failed to establish this line, which indicated that

DsRed1 was not developmentally neutral or that constitutive trans-

gene expression may not be sustained. Because DsRed1 has slow

maturation times and poor solubility, improvements were made for

DsRed1 to generate the mutant DsRed S197Y.28 DsRed S197Y is

brighter and essentially free from the secondary fluorescence peak,

which makes it an ideal reporter for double labeling with GFP. A fur-

ther improved DsRed variant, DsRed.T3, was produced through ran-

dom mutagenesis.29 Vintersten et al30 generated an Z/RED ES cell

line and the corresponding transgenic reporter mouse, which

expresses b-geo before Cre recombination and DsRed.T3 after Cre

excision. These transgenic reporter mice developed normally and

DsRed.T3 expression was inherited by their offspring at expected

Mendelian ratios. As DsRed.T3 can form multimers, a series of

monomeric RFPs were generated subsequently. Campbell et al31

generated the first actual monomeric RFP, monomeric RFP 1

(mRFP1), which was later used for examining the expression of

native mRFP1 in ES cells and its germline transmission.32 They found

that mRFP1 expression in a wide range of tissues is compatible with

normal development and fertility in mRFP1 transgenic mice. Now,

many monomeric RFPs improved from DsRed or other fluorescent

proteins are available and are also widely applied in biology16 and

transgenic reporter strains. Two examples are monomeric cherry

(mCherry) and tandem dimer Tomato (tdTomato). mCherry, which is

brighter, matures faster, and has higher photostability than mRFP1,

has been already used to generate ubiquitous mCherry transgenic

reporter lines.33-37 tdTomato exhibits a short maturation time,

greater brightness and folds equivalenty to a monomer, which may

minimize toxicity when used in transgenic reporter strains.38 Latterly,

Auldridge et al39 reported a versatile novel yellow fluorescent pro-

tein (LucY), which may also be used in transgenic reporter mouse

models generation.

3 | RANDOM REPORTER STRAINS

A series of reporter mice have been generated by random transgene-

sis. Exogenous DNA with a promoter-cDNA cassette is either intro-

duced into mouse ES cells via transfection or micro-injected directly

into zygotes.27,40 Choosing an appropriate promoter is one of the

crucial factors for the successful random transgenesis. The most

commonly used promoter for ubiquitous expression of a transgene is

the CAG promoter.41 However, some studies showed that the CAG

promoter might cause non-ubiquitous or sometimes even silencing

effects on expression of transgenes.42,43 Other promoters, such as

the human ubiquitin C (UBC) promoter34,44 and the ROSA26 pro-

moter,45 are also used for inducing widespread expression of trans-

genes. Since both UBC and the ROSA26 promoter are derived from

endogenous genes, their expression efficiency is lower than the CAG

promoter.46 Nevertheless, the recent reports demonstrate that the

30 | LI ET AL.



UBC promoter and ROSA26 promoters with genomic insulators show

a more ubiquitous expression of the transgene than the CAG

promoter.43,47

4 | MOUSE CRE REPORTER STRAINS

Widely applied in experimental genetics, the Cre/loxP system used

alone or in combination with transgenesis technologies allowed

generation of conditional genome alterations that are spatially and

temporally restricted or activated.48,49 For example, a double

reporter system was developed based on the Cre/loxP system. In

the double reporter system, a first reporter gene flanked by two

loxP sites, facing the same direction, can be expressed prior to

Cre recombination, while the second reporter gene can only be

expressed after the Cre recombination takes place. Based on Cre/

loxP system, He et al50 further reported a novel dual recombi-

nases system. Regarding this system, the Dre-rox system allows

rigorous control of Cre/loxP recombination, thus enhancing the

precision of lineage tracing mediated by Cre/loxP system. By using

the Cre/loxP system, a series of double reporter mice expressing

a combination of reporter genes including CAG-CAT-Z (chloram-

phenicol acetyltransferase/lacZ),51 Z/EG (lacZ/EGFP),52 Z/AP (lacZ/

human alkaline phosphatase)53 have been generated. These Cre

random reporter mice are capable of monitoring Cre activity in

diverse tissues and cell types. However, when used in the random

integration method, those reporter strains showed some draw-

backs. Firstly, the expression patterns of reporter lines vary due

to different copy numbers and positional effects of the integration

sites.54 Moreover, the inserted gene can also be subject to gene-

silencing effects in later offspring.55 Secondly, it is not easy to

choose a suitable reporter mouse line owning to differences

between laboratories in settings and reporter mice assessment

standards.56 Furthermore, reporter mice that show high expression

of the fluorescent reporter are often infertile or not viable.57 In

order to overcome these issues, the ubiquitously expressed

ROSA26 locus was used to generate genetically modified reporter

strains.58

5 | ROSA26 REPORTER ANIMAL MODELS

5.1 | ROSA26 locus

Friedrich et al59 introduced several promoter trap constructs con-

taining fusion lacZ-neo gene (b-geo) into mouse ES cells by electro-

poration or retroviral infection. Embryos from the gene-trap line

ROSAb-geo26 (reverse orientation splice acceptor b-geo 26) showed

ubiquitous b-galactosidase (b-gal) expression during embryonic devel-

opment. Zambrowicz et al58 later reported that the gene-trap vector

was integrated into a mouse gene and this gene was subsequently

named ROSA26. In mouse, the Rosa26 gene is located on chromo-

some 6 between THUMPD3 and SETD5 genes and has 3 noncoding

transcripts (NR_027008.1, NR_027009.1 and NR_027010.1).

ROSA26 transcripts 1 and 2 both contain 2 exons and 1 intron, while

transcripts 3 is tail-to-tail overlapping (3ʹ to 3ʹ) with the THUMPD3

gene exon 3 (Figure 1). The mouse ROSA26 locus shows ubiquitous

transcriptional activity but loss of this gene is not lethal.58 The ubiq-

uitous transcriptional activity of this locus indicates that the genomic

region is not affected by chromatin configurations which may cause

transcriptional repression of exogenous transgenes. Therefore, this

locus is widely used as a permissive site for targeted placement of

transgenes in mice,60,61 with no effect on animal viability or fertility.

In mice, transgenes have been introduced into the XbaI site in the

first intron of the ROSA26 forward transcript where the presence of

a splice acceptor allows the transgene expression to be driven by

the ubiquitously expressed endogenous promoter.46 Irion62 and

Kobayashi63 demonstrated ubiquitous expression of red-fluorescent

protein cDNA, integrated into the human and rat homolog of the

mouse ROSA26 locus through homologous recombination. This indi-

cates that the human and rat ROSA26 locus conserve properties of

its orthologs in mouse.

5.2 | ROSA26 reporter strains

Through homologous recombination in ES cells, a series of reporter

genes have been inserted into the Rosa26 locus to generate reporter

mouse lines with precisely designed genome modifications (Figure 2).

F IGURE 1 Mouse Rosa26 genomic locus and its adjacent genes (Thumpd3 and Setd5) on chromosome 6. The red arrowheads indicate
orientation of transcription of Rosa26, Thumpd3 and Setd5 and genes are shown with exons and introns. Mouse Rosa26 has 3 transcripts
(Accession number: NR_027008.1, NR_027009.1 and NR_027010.1) and the transcript NR_027010.1 contains 3 exons and 2 introns. The 3rd
exon of NR_027010.1 is tail-to-tail overlapping (3ʹ to 3ʹ) with Thumpd3 gene
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Soriano60 constructed the Rosa26 targeting vector which comprises

a splice acceptor sequence (SA), a PGK promoter, a neo expression

cassette flanked by two loxP sites with the same direction, followed

by a triple polyadenylation sequence to prevent neo cassette tran-

scriptional read-through, a lacZ gene and a polyadenylation

sequence. This Rosa26 reporter construct was then linearized and

inserted into a unique XbaI site at approximately 300 bp 5ʹ-upstream

of the original gene-trap integration site in intron 1 of the mouse

Rosa26 locus.60 Thus, a reporter mouse line for monitoring Cre

recombinase activity at the Rosa26 locus at desired time points was

successfully established. However, the endogenous ROSA26 pro-

moter is weaker than exogenous artificial promoters such as CAG

promoter,46,61 resulting in hardly detectable reporter signals in tis-

sues and cells. Therefore, the CAG promoter is often used in knock-

in reporter lines in order to enhance expression activity at the

ROSA26 locus (Figure 1).64-66 The CAG promoter was shown to yield

approximately 8- to 10-fold higher expression levels compared to

the endogenous ROSA26 promoter.46 A series of reporter genes dri-

ven by the CAG promoter were targeted into the mouse Rosa26

locus to generate ROSA26 reporter lines, such as a multifunctional

teal-fluorescent Rosa26 reporter mouse line,67 which strongly

expresses mTFP1 (bright teal fluorescent protein) after Cre and Flp

mediated recombination. Another example includes, a global double-

fluorescent Cre reporter mouse,38 which expresses membrane-

targeted tandem dimer Tomato (mT) before Cre-mediated excision

or membrane-targeted green fluorescent protein (mG) after Cre

recombination. All of those ROSA26 reporter strains can be used in

live cell imaging, lineage tracing, monitoring Cre activity, and analysis

of cell morphology and so on.

In addition, combining the ROSA26 locus with Cre/loxP system,

Aya et al68 generated multi-color fluorescent reporter mice which

can be applied for lineage tracing. In these multi-color fluorescent

reporter mice, 4 fluorescent reporter genes (GFP, YFP, RFP and CFP)

can be expressed in a random manner after Cre-mediated DNA exci-

sions and inversions. Szyska et al69 generated dual-luciferase reporter

mouse model expressing an NFAT-dependent click-beetle luciferase

and a renilla luciferase. This reporter mouse model supports longitu-

dinal and functional monitoring of T cells in vivo. Park et al70

reported estrogen receptor alpha-iCre mouse line which express

codon-improved Cre (iCre) driven by the Esr1 promoter. They further

crossed ROSA26-LacZ reporter mouse strain with Esr1-iCre mouse

line to characterize the function of lineage-tracing Esr1-expressing

cells. Plummer et al71 described a new ROSA26 mouse strain for cell

ablation by DTA (diphtheria toxin subunit A) which can be switched

on by Cre-dependent flip-excision (FLEx). Boutet et al72 targeted the

Wilms’ tumor gene on the X chromosome (WTX) fused to GFP into

the mouse ROSA26 locus and generated a novel ROSA26 mouse

strain. This ROSA26 mouse model can conditionally express the WTX

in different tissues by crossing with several Cre transgenic mice.

Dong et al73 targeted exogenous genes into the ROSA26 locus and

generated a ratiometric tdTomato-GCaMP6f reporter mouse which

can be applied in visualizing T-cell calcium dynamics.

The applications of reporter mouse models are various. For

example, reporter animal lines labeled with fluorescent proteins

fused to different subcellular localization signals allow for the obser-

vation of real-time states of cells and molecules in specific organelles

of living organisms. Lineage tracing is now widely used in stem cell

research since it provides information about the cell behavior in the

F IGURE 2 Strategies of targeting reporter genes into the ROSA26 locus. From top to bottom: the wild type ROSA26 locus with the
indicated targeting site; the structure of the targeted R26R allele before and after Cre excision of the loxP flanked selection marker with stop
cassete; the structure of the targeted R26R-CAG allele before and after Cre excision of the loxP flanked selection marker with stop cassete,
where the CAG promoter is inserted in front of the loxP-flanked selection marker with stop cassette; the structure of R26R-SA-CAG allele
before and after Cre excision of the loxP flanked cDNA with stop cassette. loxP sequences are indicated by arrowheads and the ROSA26 exon
1 is shown as black rectangles
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context of intact tissue or organ. It is also a powerful method for

understanding tissue development, signals regulating cell-fate deci-

sions and diseases. The immune system plays a vital role in organ-

isms and has the capacity to recognize and destroy malignant cells

and pathogens.74 Reporter animal lines, such as cytokine reporter

strains, and immune cell population-labeled reporter strains are

quickly emerging in this field to facilitate immunological studies. In

the immune system, cytokines are soluble messenger molecules hav-

ing important regulatory function.75 For example, IL-4, which is the

hallmark cytokine for Th2 cells, plays an important role in immunity

against extracellular pathogens.76 Cytokine reporter strains have

been established by placing reporter genes under the control of ele-

ments from cytokine genes, thus enabling easy identification of their

cellular sources. Based on progress in the development of reporter

genes and existing reporter animal models, we believe that abundant

novel animal models will be generated in the near future and applied

to diverse research fields.
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