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A B S T R A C T

Leukotrienes are potent mediators of the inflammatory response and 5-lipoxygenase, the enzyme responsible for 
their synthesis, is dependent on its interaction with 5-lipoxygenase activating protein for optimum catalysis. 
Previous studies had demonstrated that macrophage infiltration into adipose tissue is associated with obesity and 
atherosclerosis in LDLR− /− mice fed a high fat-high carbohydrate. The present study was undertaken to deter
mine whether inhibition of 5-lipoxygenase activating protein is efficacious in attenuating adipose tissue 
inflammation in LDLR− /− mice fed a high fat-high carbohydrate. 10-week old male LDLR− /− mice were fed a 
high fat-high carbohydrate diet for 22-weeks, with or without MK886 (40 mg/kg/day, ad libitum) a well- 
established 5-lipoxygenase activating protein inhibitor. All mice had an approximate 2-fold increase in total 
body weight, but a 6-week course of MK886 treatment had differential effects on adipose tissue size, without 
affecting macrophage accumulation. MK886 exacerbated the dyslipidemia, increased serum amyloid A content of 
high-density lipoproteins and caused a profound hepatomegaly. Dyslipidemia and increased serum amyloid A 
were concomitant with increases in atherosclerosis. In conclusion, MK886 paradoxically exacerbated hyperlip
idemia and the pro-inflammatory phenotype in a mouse model of diet-induced atherosclerosis, possibly via a 
disruption of hepatic lipid metabolism and increased inflammation.

1. Introduction

It is well established that chronic and local inflammatory mecha
nisms contribute to the development of atherosclerosis. These mecha
nisms, associated with risk factors such as diabetes, smoking, excess 
body weight, fatty diet, sedentary lifestyle, elevated blood pressure and 
dyslipidemia, contribute to the production of a wide variety of inflam
matory mediators that target cells of the immune system and the 
vascular wall and that regulate the development and resolution of 
inflammation (Libby et al., (2009) (Biros et al., 2022; Hopkins, 2013),. 
These mediators include growth factors, chemokines, cytokines and ei
cosanoids. Derived from the metabolism of arachidonic acid (C20:4; 
AA), eicosanoids are the products of three enzymatic pathways; the 
cyclooxygenases (COX-1/2), the 5- and 12/15-lipoxygenases (5LO, 
12/15LO, respectively) and the cytochrome P450 (cyP450) mono
oxygenases (Fig. 1) and have been demonstrated to be involved with 
atherosclerotic lesion formation (Piper and Garelnabi, 2020). 5LO 

differs from other AA-metabolizing enzymes due to its requirement for 
interaction with FLAP in order to initiate the production of leukotrienes 
(LTs) (LTB4, LTC4, LTD4 and LTE4) (Dixon et al., 1990; Miller et al., 
1990) and plays a prominent role in the development of inflammatory 
diseases, such as asthma (De Caterina and Zampoli, 2004; Funk, 2005; 
Lotzer et al., 2005). The cysteinyl LTs (CysLTs), namely LTD4 and LTE4, 
are implicated in a variety of inflammatory processes, including 
atherosclerosis (Singh et al., 2010). 5LO expression is largely restricted 
to leukocytes, which upon stimulation, synthesize and secrete LTs and 
trigger cell-specific responses (Gilbert et al., 2021) and while other steps 
in LT biosynthesis are subject to regulatory control, modulation of the 
expression and function of 5LO and FLAP are critical steps (Radmark 
and Samuelsson, 2010).

Diets rich in saturated fat and carbohydrates have been associated 
with weight-gain, insulin resistance (IR) and an increased risk of car
diovascular disease (Hruby and Hu, 2015; Kannel and Mcgee, 1979; Lutz 
and Woods, 2012) in a variety of mammalian species. Increased body 
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weight is also a risk factor for the development of diabetes; hence, 
high-fat diets directly and indirectly contribute to risk of IR and dia
betes. In addition, there is growing body of evidence that adipose tissues 
(AT) and the liver contribute to insulin sensitivity via the release of 
inflammatory mediators such as tumor necrosis factor-α (TNF-α) and 
interleukin-1-β (Il-1β) (Baker et al., 2011; Zatterale et al., 2019; Ziol
kowska et al., 2021).

In obese mice, accumulation of macrophages in AT may be a key 
variable for systemic inflammation and IR (Subramanian et al., 2008; 
Weisberg et al., 2003; Xu et al., 2003), but the comprehensive mecha
nisms of how they are recruited into AT remains elusive. Chemo
attractant molecules such as monocyte chemoattractant protein-1 
(MCP-1) and other bioactive molecules have been proposed to mediate 
this process (Kanda et al., 2006; S. P. Weisberg et al., 2006). For 
example, studies have implicated an additional monocyte recruitment 
pathway, namely a complex containing a serum amyloid A-3 isoform 
(SAA3), in the accumulation of macrophages in in AT. In low-density 
lipoprotein receptor deficient (LDLR− /− ) mice fed a high fat-high car
bohydrate (HFHC) diet, SAA was elevated, and like MCP-1, was 
chemotactic for monocytes and promoted atherogenesis (Chait et al., 

2021).
FLAP expression is elevated in the AT of obese men (Kaaman et al., 

2006), as well as in animals with experimental obesity and IR (Bäck 
et al., 2007) and CysLTs, metabolites of the 5LO pathway, stimulate 
TNF-α and MCP-1 synthesis in AT and contribute to low-grade inflam
mation and fat accumulation in C57BL6 mice fed a high-fat diet (Horrillo 
et al., 2010). A role for 5LO in hepatic steatogenesis was identified in 
leptin-deficient ob/ob mice, in which it was implicated in hepatic 
microsomal triglyceride (TG) transfer protein activity and the secretion 
of very low-density lipoprotein (VLDL) and apolipoprotein B (ApoB), 
with a significant protective observed with the pharmacological inhi
bition of 5LO (Lopez-Parra et al., 2008). However, the potential 
involvement of the products of the 5LO pathway in AT inflammation and 
diet-induced atherosclerosis in experimental obesity remains to be fully 
elucidated. In this study, we hypothesized that a well-established FLAP 
inhibitor and inhibitor of leukotriene biosynthesis, MK, would reduce 
AT inflammation and atherosclerotic lesion formation in LDLR− /− mice 
fed a diet high in saturated fats and carbohydrates (Graphical Abstract).

Fig. 1. Schematic illustration of the biosynthesis of eicosanoids from AA and sites of action of the pharmacological inhibitors of synthesis and effects of 
5LO-derived mediators. Briefly, in an inflammatory setting, AA is liberated from membrane phospholipids by an inducible isoform of phospholipase A2 and is 
consequently converted by cyclooxygenases (COX1/2), 12/15 HETE via 12/15 lipoxygenase, EET’s/HETE’s via cyp450 monooxygenase and leukotrienes via the 5- 
lipoxygenase pathways in a tissue and cell-dependent manner to a variety of bioactive eicosanoids. COX; Cyclooxygenase, TXA2; Thromboxane A2, HETEs; 
Hydroxyeicosatetraenoic acids, EETs; Epoxyeicosatrienoic acids, LOX; Lipoxygenase, LT; Leukotriene.
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2. Materials and methods

This manuscript was organized to be consistent with the ARRIVE 
guidelines 2.0 and the ethics rules (https://doi.org/10.1371/journal.pbi 
o.3000411) for experiments in animals.

2.1. Animals and study protocols

2.1.1. Study design, randomization & blinding
The Institutional Animal Care and Use Committee of the University 

of Washington in Seattle approved all experimental protocols and pro
cedures. The study aims to compare hyperlipidemic mice fed a HFHC 
diet (control group) to hyperlipidemic mice fed with same diet but 
whose diet is supplemented with MK886 (MK), an inhibitor of FLAP 
(experimental group). In all experiments, animal designation (treated 
vs. non-treated) were randomized and were analyzed in a blinded 
fashion. Water and diet were available ad libitum. All mice were housed 
in temperature-controlled rooms with a 12-h light/dark cycle and 
examined daily for health and weighed throughout the study.

2.1.2. Sample size
Sample size was determined by the following: Each group was 

calculated to have an 80% chance (power) of detecting a difference 
between 2 means of untreated and MK-treated mice, if the true differ
ence between the means is 1 standard deviation (2-tailed α = 0.05 
corresponding to a 95% confidence interval. The sample size was then 
adjusted (14 mice/group to 6 mice/group) in order to comply as a pilot 
study.

2.1.3. Experimental animals and inclusion & exclusion criteria
Mice were randomly assigned to 2 groups of littermates and housed 

in rooms on a 12 light/12 dark cycle with temperature set at 68–79 ◦F. 
All animals (3 mice/cage, 2 cages/group) were obtained from the same 
litter. 8-week old male LDLR− /− mice (C57BL6 background) were fed 
standard rodent chow for 10-weeks, placed on a HFHC diet 
(Supplemental Table 2) (No. F1850, Bio-Serv; Flemington, NJ) for an 
additional 16-weeks. One mouse was found dead in the cage at week 10 
and excluded from all study endpoints. The chosen dose for MK was 
shown to have effective anti-atherosclerotic efficacy in other mouse 
models of atherosclerosis (Jawien et al., 2006). The mice were then 
treated with MK for 6-weeks and sacrificed at 32-weeks of age (Fig. 2A, 
Supplemental Fig. 2). MK (40 mg/kg/day; Merck, Whitehouse Station, 
NJ, Supplemental Fig. 1) was incorporated into the diet and adminis
tered ad libitum.

2.1.4. Outcome measures
Body weights (BW) were measured weekly. In selecting a dose for 

evaluating the actions of MK, Mice were fasted for 4 h prior to blood- 
draw on the day of sacrifice. Post-sacrifice, liver and inguinal, retro
peritoneal, epididymal and mesenteric ATs were excised and weighed. 
Portions were either snap-frozen with liquid N2 or fixed with 10% 
neutral-buffered formalin and embedded in paraffin wax. Frozen tissues 
were stored at − 70 ◦C until use.

2.1.4.1. Blood and plasma chemistry and hepatic lipid analysis. Plasma 
cholesterol and TGs were assayed using colorimetric assay kits 
(Amplex™ Red Cholesterol Assay Kit: Invitrogen; Waltham, MA; TG 
Assay Kit: Roche Diagnostics; Indianapolis, IN) and cholesterol content 
of lipoproteins was analyzed by fast-phase liquid chromatography 
(FPLC) fractions, as described previously (Lewis et al., 2004). Circu
lating SAA levels were measured by enzyme-linked immunosorbent 
assay in plasma and in lipoprotein fractions separated via FPLC from 
individual mice, as described previously (Subramanian et al., 2008). 
Blood glucose and non-esterified fatty acids (NEFA) were measured 
using a OneTouch® Ultra® glucometer (Lifescan Inc.; Milpitas, 

California) and the NEFA-HR (2) kit (FUJIFILM Wako Chemicals; Neuss, 
Germany), respectively. Neutral lipids were extracted from frozen livers 
of LDLR− /− mice using a modified method of Folch et al. (Folch, Lees 
and Sloan Stanley, 1957) and hepatic TG and cholesterol content were 
quantified as noted above and normalized to total sample tissue weight.

2.1.4.2. Atherosclerosis quantification and immunohistochemical ana
lysis. Atherosclerotic lesions were analyzed in the aortic arch and aortic 
sinus. In the aortic arch, the aortae were collected, fixed in formalin- 
sucrose solution, cleaned from adventitia, split longitudinally, and 
pinned onto black-wax field using 0.1-mm-diameter stainless-steel pins 
(Fine Science Tools Inc.; Foster City, CA). To visualize atherosclerotic 
lesions, the aorta was washed with 70% ethanol, stained with 0.5% 
Sudan IV (Sigma-Aldrich, St Louis, MO) and washed again with 80% 
ethanol. Each picture was analyzed with Adobe Photoshop 6.0 (Adobe 
Systems Inc.; San Jose, CA), and the Sudan IV-positive lesion area was 
quantified using Image-Pro® (Media Cybernetics; Rockville, MD). All 

Fig. 2. MK-886 has no effect on body weight in LDLR− /− mice fed a diabeto
genic diet. (A) Study design. Male LDLR− /− mice were fully weaned onto 
standard chow diet for 10-weeks. The diet was then changed into the HFHC at 
week 10. After 16-weeks, MK886 (40 mg/kg/day, arrow) was added for an 
additional 6-weeks. (B) Total body weights during and at the end of the study 
are shown (diabetogenic diet, open circles, n = 5; diabetogenic diet + MK, 
closed circles, n = 6). Results are shown as means ± SEM. Statistical analysis 
was performed using two-way analysis of variance (ANOVA) followed by 
Bonferroni post hoc analysis. n.s.; not statistically significant.
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analyses were made in a masked fashion and performed as follows. To 
visualize atherosclerotic lesions in the aortic sinus, area quantification 
for proteoglycans was performed on digital images of the aortic sinus 
stained with the Movat’s pentachrome method (yellow: collagen, black: 
elastin, blue: proteoglycans, bright red: fibrin) (Lewis et al., 2004). Rat 
anti–Mac-2 antibody (1:5000, Cedarlane Laboratories; Ontario, CA) was 
used to detect macrophage content in epididymal AT, with Nova Red 
(Vector Laboratories; Burlingame, CA) as a peroxidase substrate to yield 
a red-brown reaction product. Nuclei were identified by counterstaining 
with hematoxylin. Area quantification for Mac-2 was performed on 
digital images of AT using Image-Pro® and counted, in a blinded 
manner, the number of Mac-2 positive cells per cross section.

2.1.5. Statistical methods
All data are expressed as mean ± standard error of mean (SEM) 

unless noted otherwise and analyzed using GraphPad Prism (GraphPad 
Software; La Jolla, CA) and presented following the recommendations 
made by Harvey J. Motulsky (Michel et al., 2020; Motulsky, 2015). 
Details of all statistical analysis are enumerate in the Figure Legends.Full 
comparative and between-group statistics of all measured end-points are 
listed in Supplemental Table 2.

3. Results

3.1. Body and tissue weights

To evaluate MK-induced effects on growth and BW, male LDLR− /−

mice were fed a HFHC diet for 16 weeks and subsequently treated with 
MK for an additional 6 weeks (Fig. 2A). Prior to the termination of the 
study, one of the mice in the non-treated group died (Supplemental 
Figure 2). There was an approximate two-fold increase in total BW prior 
to initiation of MK treatment (26.9 ± 0.7 g vs 47.5 ± 1.7 g; 10-week vs 
16-week mice, respectively, P < 0.0001, Fig. 2B), results similar to 
previously published reports (Subramanian et al., 2008). MK treatment 
caused a small increase in total BW (Fig. 2B–Table 1). Interestingly, MK 
also caused a marked hepatomegaly (Table 1), with the liver displaying 
a pronounced pale, whitish appearance (unpublished observation). His
topathologic analysis of MK-treated livers with Picrosirius Red did not 
reveal fibrotic damage in any of the tissues analyzed (unpublished ob
servations). Hepatic TG content was elevated in MK-treated mice (10.05 
± 1.4 mg/mg tissue vs 17.97 ± 3.2 mg/mg tissue; untreated vs 
MK-treated, respectively, P = 0.0637, Supplemental Table 2). MK 
treatment had a differential effect on AT weights, increasing retroperi
toneal and inguinal AT weights but without any effects on epididymal 
and mesenteric AT (Table 1, Supplemental table 1).

3.2. Blood glucose, serum lipids and lipoprotein profiles

In order to determine whether MK treatment had any metabolic ef
fects on HFHC-fed LDLR− /− mice, we measured fasting blood glucose, 
serum lipids and cholesterol content of lipoproteins. We evaluated sys
temic inflammation using SAA levels in the plasma and associated with 
lipoproteins as an indicator and feature of visceral obesity (Eklund et al., 
2012; Subramanian et al., 2008). MK had no effect on fasting blood 
glucose levels but raised blood cholesterol levels (P = 0.0519, Table 2). 
Additionally, MK treatment had other hyperlipidemic effects, signifi
cantly increasing both plasma TG and NEFA levels (Table 2). To further 
elucidate the effects of MK on plasma lipoproteins, we analyzed the SAA 
and cholesterol content of very low density/intermediate density, 
low-density and high-density lipoproteins (VLDL/IDL, LDL and HDL, 
respectively). Lipoprotein profiles of MK-treated mice revealed dramatic 
increases in the cholesterol content of VLDL/IDL and LDL, but not HDL, 
fractions (Fig. 3A).

HFHC-fed LDLR− /− mice have previously demonstrated elevated 
levels of both circulating and lipoprotein-associated SAA (Subramanian 
et al., 2008), observations reproduced in the present study (Fig. 3B, open 
circles). Treatment with MK caused an additional elevation in circu
lating SAA levels, increases which did not achieve statistical significance 
(23.34 ± 3.23 μg/ml vs 48.43 ± 14.65 μg/ml; untreated vs MK-treated, 
respectively, P = 0.08, Table 2). However, treatment with MK caused a 
pronounced increase in SAA content of HDL in HFHC-fed mice, without 
any effects on VLDL/IDL and LDL fractions (Fig. 3B, closed circles).

3.3. Analysis of atherosclerotic lesion formation

To assess the impact of the changes in lipoproteins observed in MK- 
treated HFHC-fed LDLR− /− mice on atherosclerotic lesion development, 
we visualized the lesions in the aortic arch and in cross-sections of the 
aortic sinus (Fig. 4). Lesion area in the aortic arch were increased, as 
measured in both total and percentage of total aortic area in MK-treated 
mice (Fig. 4A–C). In the aortic sinus, lesion areas of MK-treated mice 
were notably increased compared to non-treated animals, with MK 
treatment causing a 3-4-fold increase in total lesion cross-sectional area 
(Fig. 4D and E).

3.4. Analysis of epididymal adipose tissue macrophage content

Previous studies had demonstrated that macrophage accumulation is 
limited to epididymal (intra-abdominal) AT depots of HFHC-fed LDLR− / 

− mice (Subramanian et al., 2008). In order to determine whether MK 
treatment had any effect on macrophages in epididymal AT, mac-2 
positive cells were used as an indicator of macrophage content. The 
macrophage content of epididymal AT induced by HFHC diet was not 
affected by MK treatment (Fig. 5A). Additionally, analysis of gene 
expression (via real-time RT-qPCR) for MCP-1, 5LO and SAA in 
epididymal AT found no differences between treated and non-treated 
mice (unpublished observations).

Table 1 
Effects of MK on total body, liver and AT weights in LDLR− /− mice fed a high-fat 
high-carbohydrate diet.

LDLR− /− Mice

Tissue HFHC HFHC + MK P-value

Total Body Weight (g) 48.6 ± 1.8 50.7 ± 1.6 0.4286
Liver (g/gBW) 0.046 ± 0.003 0.077 ± 0.004 0.0003
Epidydimal adipose tissue (g/gBW) 0.019 ±

0.0008
0.018 ± 0.001 0.4977

Mesenteric adipose tissue (g/gBW) 0.024 ± 0.002 0.025 ± 0.001 0.6644
Retroperitoneal adipose tissue (g/ 
gBW)

0.015 ± 0.001 0.019 ±
0.0006

0.0247

Inguinal adipose tissue (g/gBW) 0.019 ± 0.003 0.029 ± 0.001 0.0064

Total body and individual tissues were weighed at end of week 32 of the study in 
MK-treated and untreated LDLR− /− mice. Tissue weights were normalized to 
total body weight and presented as grams of body weight (g/gBW). Data is 
presented as mean ± SEM. Data was analyzed using unpaired t-test. Full 
comparative statistics are displayed in Supplemental Table 1. HFHC; diabeto
genic diet, MK; MK886.

Table 2 
Effect of MK-886 on blood glucose, lipids and SAA in LDLR− /− mice fed a high- 
fat high-carbohydrate diet.

LDLR− /−

HFHC HFHC + MK P-value

Blood Glucose (mg/dL) 266.8 ± 6.8 260.2 ± 11.0 0.0823
Cholesterol (mg/dL) 673.3 ± 75.1 912.2 ± 77.2 0.0519
TG (mg/dL) 192.9 ± 26.4 544.1 ± 51.8 0.0043
NEFA (mEq/L) 0.538 ± 0.058 0.718 ± 0.050 0.0303
SAA (μg/ml) 23.34 ± 3.23 48.43 ± 14.65 0.0823

TG; triglycerides, NEFA; non-esterified fatty acids, SAA; serum amyloid A. Data 
is presented as mean ± SEM. Data was analyzed using unpaired t-test. HFHC, 
high-fat high-carbohydrate diet; MK, MK886.
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4. Discussion

This study expanded upon previous reports evaluating the impact of 
dietary and pharmacological interventions on AT macrophage content 
and atherosclerosis in a dyslipidemic and diabetic murine model of 
atherosclerosis (Subramanian et al., 2008; Yoon et al., 2011). In this 
study, male LDLR− /− mice were fed a HFHC diet for 22 weeks, subse
quently developing hyperglycemia, atherosclerosis, adipocyte hyper
trophy and accumulation of macrophages in epididymal AT. This study 
recapitulated the obesogenic, hyperglycemic and hyperlipidemic effects 
of HFHC in male LDLR− /− mice, with similar elevations in blood glucose 
and cholesterol levels (Fig. 2B–Table 2). We also observed macrophage 
accumulation in epididymal AT and the presence of SAA in the 
VLDL/IDL, LDL and HDL fractions of plasma (Fig. 3B, open circles). To 
evaluate the involvement of 5LO in AT inflammation and atherosclerosis 
in our model, we used MK, an orally bioavailable FLAP inhibitor pre
viously shown to be efficacious in reducing atherosclerotic lesions in 
apolipoprotein E-deficient mice lacking the dominant-negative trans
gene for CD4+ T-cells transforming growth factor β-type II receptor 
(ApoE− /− x CD4dnTβRII) and in ApoE− /− -LDLR− /− double knockout 
mice (Bäck et al., 2007; Jawien et al., 2006).

The anomalous findings in our study became apparent as soon as we 
started analyzing the collected tissues, the most striking being the 
marked hepatomegaly observed in the MK-treated mice (>50% increase 
in liver weight), an effect that was concomitant with a distinct whitish 
appearance. Unfortunately, this observation was not recorded due to the 
lack of any on-site equipment. When analyzed, the TG and cholesterol 

content of the livers of MK-treated mice were elevated compared to non- 
treated mice (Supplemental Table 2). Similar paradoxical effects were 
observed when we analyzed other experimental end-points, as demon
strated in the Results section. These results left us perplexed, as nothing 
similar has been observed in our review of the published literature 
regarding the pharmacological inhibition of the 5LO pathway in animal 
models of inflammation and atherosclerosis.

To date, pharmacological disruption of the leukotriene pathway in 
animal models of atherosclerosis have resulted in somewhat ambiguous 
findings, ranging from a lack of any changes to attenuation of lesion size 
and morphology (Bäck, 2009; Riccioni et al., 2010). Studies utilizing MK 
to inhibit FLAP resulted in attenuated atherosclerotic lesion formation, 
without any concomitant changes in blood lipids and lipoproteins (Bäck 
et al., 2007; Jawien et al., 2006); results similar to those of a study which 
used a chemically distinct FLAP inhibitor, BAYx1005, to reduce lesion 
size in ApoE− /− -LDLR− /− double knockout mice (Jawieñ et al., 2007). 
However, MK0591, a FLAP inhibitor in the same chemical family 
(Supplemental Fig. 1) as MK886, had no effect in abdominal aortic 
aneurysm formation in angiotensin II-infused ApoE− /− mice (Cao et al., 
2007). In our study, administration of MK resulted in a paradoxical in
crease of pro-inflammatory plasma biomarkers, with elevations in blood 
and lipoprotein-associated SAA levels (Table 2 and Fig. 3B, respec
tively). The exacerbation of systemic inflammation was associated with 
increased lesion area in the aortic arch and the aortic sinus. Finally, MK 
had no effect on macrophage accumulation in epididymal AT (Fig. 5). A 
thorough review of the current and available literature reveals that the 
above-mentioned results are the only observations of pro-inflammatory 

Fig. 3. MK-886 increases atherogenic and inflammatory lipoproteins in LDLR¡/¡ mice fed a diabetogenic diet. 10-week-old LDLR− /− mice were placed on a 
HFHC with and without MK (40 mg/kg/day) for 6 weeks. Cholesterol (A) and SAA (B) distribution in lipoprotein fractions at the end of the study are shown 
(diabetogenic diet, open circles; HFHC + MK, closed circles).
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and hyperlipidemic effects of MK in animal models of atherosclerosis 
and AT inflammation. What are the possible variables that can explain 
these results?

4.1. Difference in mouse models of atherosclerosis

The majority of investigations into the dietary and genetic influences 
on atherogenesis are performed in the atherosclerosis-susceptible 
C57BL6 mouse with either an ApoE or the LDLR deficiency, with 
ApoE− /− mice being used more frequently. While there are similarities 
in the process of atherogenesis in both models, there are distinct dif
ferences (Getz and Reardon, 2016). The initial study observing the 5LO 
pathway as contributing to atherosclerosis occurred in LDLR− /− mice 
(Mehrabian et al., 2002). However, the majority of the studies using 
pharmacological interventions solely to disrupt the 5LO pathway have 

occurred in ApoE− /− mice (Bäck, 2008), with the western diet-fed 
LDLR− /− mouse being used to test the efficacy of the dual COX/5LO 
inhibitors HMB-TZD and BHB-TZD serving as quasi-exceptions (Choi 
et al., 2010, 2011). Analysis of gene expression of the components of the 
5LO pathway in ApoE− /− mice demonstrated upregulation of FLAP in 
the vascular wall when compared to the C57BL6 mouse (Bäck, 2008), 
perhaps making this model more susceptible to FLAP inhibition. We 
have not found any such comparison of 5LO and its accessory proteins 
performed in LDLR− /− mice compared to wild-type mice, but arguably, a 
less robust difference in 5LO expression may make this model of 
atherosclerosis less susceptible to FLAP inhibition. Indeed, while a full 
comparison of the components of the 5LO pathway in 
atherosclerosis-susceptible ApoE− /− and LDLR− /− fed a HFHC would go 
a long way in elucidating this proposed reason, such endeavor is outside 
of the scope of this pilot proposal. Initiating another age- and 

Fig. 4. MK-886 increased atherosclerotic plaque formation in the aortic arch and aortic sinus in LDLR¡/¡ mice fed a diabetogenic diet. (A) Aortas were 
prepared for en face analysis and stained with Oil Red O. LDLR− /− mice were fed a HFHC and treated with MK developed larger atherosclerotic lesions compared with 
untreated LDLR− /− . (B, C) Quantitative analysis of whole aortas revealed more extensive lesion area of en-face-prepared aortas of MK-treated LDLR− /− compared 
with LDLR− /− mice. (D) Representative photomicrographs and of aortic sinus lesion areas of untreated and MK-treated LDLR− /− mice fed a diabetogenic diet, stained 
using Movat’s pentachrome stain. (E) Quantitative analysis of lesion areas in the aortic sinus. Data was analyzed using unpaired t-test and presented using box-and- 
whisker plots showing the range, quartiles and the median (dashed line) of the data. Full comparative statistics are displayed in Supplemental Table 1.
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gender-matched study would add variables such as differences in the lot 
number of the diets and changes in the microbiome of mice bred and 
maintained in a different facility and hence, will be methodologically 
inappropriate (Motulsky, 2015)

4.2. Off-target effects of MK-886 on PPARα

Development of MK was initiated on its ability to inhibit activated 
polymorphonuclear leukocytes, with the intent of attenuating hyper
sensitivity reactions (Friedman et al., 1993; Gillard et al., 1989). How
ever, off-target effects of MK occur in cells other than leukocytes, 
ranging from an induction of mitochondrial depolarization in prostate 
cancer cells (Gugliucci et al., 2002) to the phosphorylation of glutamate 
receptors in embryonic neuronal cells (Imbesi et al., 2007). Critical to 
our observations, MK is also demonstrated to be a noncompetitive in
hibitor of the peroxisome proliferator-activated receptor (PPAR)-α, 
evaluated using a reporter assay system (Kehrer et al., 2001). Expression 
of PPARα is pronounced in tissues with high rates of lipid metabolism 
(such as the liver) and it regulates the expression of genes that promote 

fatty acid synthesis and oxidation (Kane et al., 2009).
A brief review of the literature revealed that while the majority of 

studies using MK to inhibit the activity of PPARα have occurred in in 
vitro and ex vivo settings, approximately 1/3 have occurred in in vivo 
models, indicating that the off-target effect on PPARα is not an artifact of 
cell culture.2 We have previously demonstrated that selective activation 
of PPARα results in the induction of hepatic fatty acid oxidizing genes in 
a murine model of diabetes and obesity (Askari et al., 2014). Other in
vestigators have also demonstrated that PPARα− /− mice develop hepatic 
inflammation when fed a high-fat diet and display signs of steatohepa
titis with significant tissue infiltration of lymphocytes (Cha et al., 2007; 
Guerre-Millo et al., 2001; Stienstra et al., 2007). The accumulated ob
servations in this study lead us to hypothesize that this off-target effect 
of MK, namely inhibition of hepatic PPARα and consequent inhibition of 

Fig. 5. MK-886 has no effect on macrophage accumulation in epididymal adipose tissue of LDLR¡/¡ mice fed a diabetogenic diet. (A) Representative 
photomicrographs of epididymal AT from MK-treated and untreated LDLR− /− mice fed a diabetogenic diet. (B) MK treatment has no effect on macrophage accu
mulation in epididymal AT of LDLR− /− mice fed a diabetogenic diet. Data was analyzed using unpaired t-test and presented using box-and-whisker plots showing the 
range, quartiles and the median (dashed line) of the data. Full comparative statistics are displayed in Supplemental Table 1.

2 We searched MEDLINE/Pubmed databases for non-FLAP activities of 
MK886 in both in vivo and in vitro settings in. We focused on using “MK886” and 
“PPARα inhibition” as search terms, resulting in 113 citations.
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fatty acid oxidation, has occurred in our model and resulted in hepatic 
lipid accumulation (in the form of TG-rich lipoproteins) and increasing 
hepatic and systemic inflammation in LDLR− /− mice fed a HFHC.

4.3. Pro-inflammatory effects of MK-886

Until recently, it was widely thought that only sites for regulation of 
inflammation occurred in its initiation and progression. AA-derived 
products of the 5LO pathway (Fig. 1) are an important driving force in 
the initiation and progression of a variety of inflammatory conditions, 
including atherosclerosis (De Caterina and Zampoli, 2004; Funk, 2005; 
Hopkins, 2013; Lotzer et al., 2005; Piper and Garelnabi, 2020). How
ever, AA is not the only polyunsaturated fatty acid (PUFA) whose me
tabolites are engaged in the inflammatory process.

The termination of inflammation was long assumed to be a passive 
process, requiring only the cessation of production of soluble mediators 
and their eventual removal by processes such as dilution and diffusion. 
However, in recent years it has been discovered that the process of 
resolution and termination is an active one, requiring, in part, the syn
thesis of mediators derived from other species of dietary PUFAs, 
collectively called “Specialized Pro-resolving Mediators” (SPMs) 
(Nathan and Ding, 2010). These SPMs are further categorized into the 

lipoxins, resolvins, protectins and maresins class of mediators and are 
derived from AA, eicosapentaenoic acid (20:5; EPA) and docosahexae
noic acid (22:6; DHA). The synthesis of SPMs is dependent on the 
sequential catalysis of the PUFAs by COX2, 5LO, 12/15LO and on the 
dietary availability of the PUFAs (Fig. 6A) and are best explained in 
other publications (Dalli and Serhan, 2017; Nathan and Ding, 2010; 
Serhan and Chiang, 2004). Resolvin and lipoxin biosynthesis has been 
shown to be MK-sensitive in cell culture (Lehmann et al., 2015) while 
resolvins and protectins regulate inflammation and macrophage func
tion in AT in obese people (Maciejewska-Markiewicz et al., 2021) and 
high fat-fed mice (Claria et al., 2012; Titos et al., 2011). For example, 
lipoxin A4, a product of the sequential metabolism of AA by COX and 
5LO, is protective against AT inflammation, IR and obesity in a high fat 
diet-fed mouse (Elias et al., 2016). Could the extensive (16-week) 
exposure to the HFHC and MK treatment resulted in the loss of ability to 
resolve inflammation and help explain our paradoxical results (Fig. 6B)? 
While we do not have any direct evidence demonstrating the loss of 
SPMs as the cause of the increased inflammation and pro-atherosclerotic 
effect of MK in our study, there is an indication that this may have been 
the case. In a concurrently-run experiment with the same diet and 
duration of MK treatment (6-weeks) but shorter duration of HFHC 
(8-weeks vs 16-weeks), MK had no observable effect on lesion formation 

Fig. 6. Hypothetical effects of FLAP inhibition by MK-886 and by HFHC on the formation of inflammatory and pro-resolving products of the enzymatic 
catalysis of arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid.

K. Keever and B. Askari                                                                                                                                                                                                                       Current Research in Pharmacology and Drug Discovery 7 (2024) 100203 

8 



(unpublished observation), leading us to conclude that the extensive 
exposure to the HFHC may lead to a decrease to the PUFA substrates 
required for the production of SPMs. Unfortunately, we don’t have any 
direct evidence of the role of SPMs in the exacerbation of atheroscle
rosis, systemic inflammation and the lack of any anti-inflammatory ef
fects in AT in our mice and further analysis of target tissues for SPM is 
currently beyond the scope and capability of the authors. It’s important 
to note that dietary fatty acids are integral to immune homeostasis in 
other pathologies (Del Corno et al., 2021). Concerning models of 
hyperlipidemia and atherosclerosis, a western diet was 
pro-inflammatory and led to changes in phospholipid species of the 
plasma membranes of T-lymphocytes, leading to their enhanced acti
vation (Pollock et al., 2016). Our HFHC has a larger percentage of 
saturated fats and a smaller share of PUFAs when compared to a western 
diet (Subramanian et al., 2008; Surwit et al., 1988); therefore, it is 
possible that the extended duration of our experiment could cause 
wholesale changes in the acyl groups of membrane phospholipids, 
especially in the cells of the immune cells, leading to an attenuation of 
SPM synthesis. In addition, other investigators have found that an 
imbalance between SPMs and LTs in the atherosclerotic plaques of the 
aortic sinus in LDLR− /− mice fed a western diet (Fredman et al., 2016). A 
17-week duration of this experiment resulted in a dramatic (>80-fold) 
decrease in 5LO-derived SPMs, similar to effects seen in ApoE− /− mice 
fed a high-fat diet for a similar duration (16 weeks), with decreases in 
resolvin D2 and maresin 1 (Viola et al., 2016). A comparison of the 
duration of these experiments (17- and 16-weeks) to our study (22 
weeks) lends credence to this explanation.

While the limited sample size of this study could be construed as a 
limitation, the only measurements that an increase in sample size could 
influence are that of plasma SAA, plasma cholesterol and hepatic TGs. 
Since the changes observed are exactly the opposite of what was ex
pected and without any precedent in published literature, any additions 
to sample size in order to tailor the means and standard deviations is not 
appropriate (Michel et al., 2020; Motulsky, 2015). This study was 
designed as a preliminary one and the statistical analysis and sample size 
were pre-determined before any interventions.

4.4. Conclusion

We speculate that the combination of events stated above resulted in 
a “multiple-hit” model of atherosclerosis exacerbation (Fig. 6). Specif
ically, we propose that the genetic background (LDLR− /− model, hit1) 
may limit the efficacy of FLAP inhibitors, the long duration (16-weeks, 
hit 2) of a diet high in saturated fats and carbohydrates could result in a 
loss of ability to resolve inflammation and an off-target effect of MK 
(inhibition of hepatic PPARα activity and subsequent increase in hepatic 
adiposity, hit 3), resulted in a scenario that led to the excess hepatic and 
systemic inflammation, increases in pro-atherogenic lipoproteins and 
exacerbation of atherosclerosis in the obese and diabetic LDLR− /−

mouse.
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