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Luminal A is the most common breast cancer molecular subtype in women worldwide.

These tumors have characteristic yet heterogeneous alterations at the genomic and

transcriptomic level. Gene co-expression networks (GCNs) have contributed to better

characterize the cancerous phenotype. We have previously shown an imbalance in the

proportion of intra-chromosomal (cis-) over inter-chromosomal (trans-) interactions when

comparing cancer and healthy tissue GCNs. In particular, for breast cancer molecular

subtypes (Luminal A included), the majority of high co-expression interactions connect

gene-pairs in the same chromosome, a phenomenon that we have called loss of

trans- co-expression. Despite this phenomenon has been described, the functional

implication of this specific network topology has not been studied yet. To understand

the biological role that communities of co-expressed genes may have, we constructed

GCNs for healthy and Luminal A phenotypes. Network modules were obtained based

on their connectivity patterns and they were classified according to their chromosomal

homophily (proportion of cis-/trans- interactions). A functional overrepresentation analysis

was performed on communities in both networks to observe the significantly enriched

processes for each community. We also investigated possible mechanisms for which

the loss of trans- co-expression emerges in cancer GCN. To this end we evaluated

transcription factor binding sites, CTCF binding sites, differential gene expression and

copy number alterations (CNAs) in the cancer GCN. We found that trans- communities

in Luminal A present more significantly enriched categories than cis- ones. Processes,

such as angiogenesis, cell proliferation, or cell adhesion were found in trans- modules.

The differential expression analysis showed that FOXM1, CENPA, and CIITA transcription

factors, exert a major regulatory role on their communities by regulating expression of

their target genes in other chromosomes. Finally, identification of CNAs, displayed a high

enrichment of deletion peaks in cis- communities. With this approach, we demonstrate

that network topology determine, to at certain extent, the function in Luminal A breast

cancer network. Furthermore, several mechanisms seem to be acting together to avoid

trans- co-expression. Since this phenomenon has been observed in other cancer tissues,

a remaining question is whether the loss of long distance co-expression is a novel

hallmark of cancer.

Keywords: loss of long range co-expression, gene co-expression networks, Luminal A breast cancer, breast

cancer, transcription factor analysis, CTCF binding site analysis
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1. BACKGROUND

Gene co-expression networks (GCN) enable the study of
interactions of highly correlated genes in a transcriptional
program, capturing global and local connectivity properties
emerging from those interactions (Sonawane et al., 2019). These
type of networks are built from gene expression profiles, a
measurable output of transcription. Therefore, they outline the
contribution of the regulatory elements operating at different
levels of the transcription process to ensure the expression of
specific sets of genes. In this sense, GCNs might provide insights
about shared regulatory mechanisms and their alterations in a
disease, such as cancer (Emmert-Streib et al., 2014; Yang et al.,
2014; Wu et al., 2019; Liao et al., 2020). Those alterations in
cancer disrupt the transcriptional process and lead to altered gene
expression and the promotion of tumor progression (Garraway
and Lander, 2013; Lee and Young, 2013).

There are multiple studies where GCNs are constructed and
important aspects of the connectivity structure are analyzed to
identify genes prognosis markers (Hsu et al., 2019), metabolic
deregulation (Serrano-Carbajal et al., 2020), and differences in
transcriptional profiles (van Dam et al., 2018).

In breast cancer GCNs, there is an imbalance in the
proportion of intra-chromosomal (cis-) over inter-chromosomal
(trans-) gene co-expression interactions, meaning that the
majority of high co-expression links connect gene-pairs in the
same chromosome (Espinal-Enríquez et al., 2017; de Anda-
Jáuregui et al., 2019a; Dorantes-Gilardi et al., 2020). This
phenomenon has been called loss of long distance co-expression.
Furthermore, a highly localized co-expression pattern associated
with chromosome cytobands has been observed (García-Cortés
et al., 2020). These features are not present in the healthy tissue
GCN. In the entire set of co-expression interactions, the loss of
long distance co-expression in breast cancer (measured in base
pairs) subtypes is displayed as a decay in the cis- co-expression
values dependent on gene physical distance (de Anda-Jáuregui
et al., 2019b; García-Cortés et al., 2020).

The structural characteristics evaluated in the co-expression
networks are different for each breast cancer molecular subtype,
displaying another instance of their emblematic heterogeneity
(Alcalá-Corona et al., 2017, 2018a). The four breast cancer
molecular subtypes, Luminal A, Luminal B, HER2+ and Basal-
like, are classified according to their gene expression profiles
and they represent different cancer manifestations, with distinct
molecular traits, genomic alterations, and prognosis (Perou et al.,
2000; Prat and Perou, 2011; Berger et al., 2018). Hormone status,
evaluated through the expression of estrogen and progesterone
receptors (ER and PR correspondingly), and the presence of
human epidermal growth factor receptor 2 (HER2), play a major
role for breast cancer molecular subtypes characterization and
the election of therapeutic strategies (Zhang et al., 2014).

Luminal A is the most frequent breast cancer molecular
subtype. Almost a half of the total cases of breast cancer
correspond to this phenotype (Fan et al., 2006). These tumors

Abbreviations: CNA, copy number alteration; GCN, gene co-expression network;
GTRD, gene transcription regulation database; LFC, Log2 fold change.

are often positive to estrogen receptor (ER) and negative to
ERBB2 receptor, and they also present overexpression on the ER-
regulated genes. This subtype is associated with highest median
survival, best prognosis (Hu et al., 2006), and lower recurrence
rates (Arvold et al., 2011; Metzger-Filho et al., 2013).

Nevertheless, clinical and molecular heterogeneity is present
within Luminal A tumors, where differences in genomic
alterations have been potentially associated with resistance to
endocrine therapy (Ciriello et al., 2013).

Additionally, the Luminal A GCN presents the least dissimilar
structure compared with the healthy GCN (García-Cortés et al.,
2020). A relevant measure to analyze differences in cancer GCNs,
is the size of connected components. In the case of healthy
GCN, as well as in the case of Luminal A GCN, they present a
giant component (a set of connected genes that contains more
than the half of the total amount of nodes in the networks).
The other breast cancer subtype GCNs have only small intra-
chromosomal connected components. Furthermore, Luminal A
GCN is the one with the highest number of inter-chromosomal
(trans-) interactions.

The structure of a GNC is often organized into communities or
modules (Alcalá-Corona et al., 2016), this is, subsets of connected
genes so that the density of within-connections is higher than that
of between-connections (Girvan andNewman, 2002; Porter et al.,
2009; Fortunato and Hric, 2016; Alcalá-Corona et al., 2018a). In
the case of GCNs, communities may correspond to a co-regulated
set of genes (Wilkinson and Huberman, 2004; Zhu et al., 2008;
Cantini et al., 2015). The structure of said modules may capture
the phenomenology behind biological processes (Alcalá-Corona
et al., 2017, 2018a,b).

Being the subtype with the best prognosis, the most similar
co-expression network, and taking into account that community
structure in GCN may be implicated in the functional regulation
of a cancerous phenotype, in this work we analyzed the structure
of communities of the Luminal A GCN, in order to determine
the relevance of the loss of long distance co-expression in the
biological functions associated to that network. Additionally,
we evaluated possible mechanisms for which we observe the
preference for cis- interactions in this breast cancer subtype.
We analyzed the influence of differential gene expression,
transcription factor binding sites, copy number alterations, and
CTCF binding sites, in order to understand the regulatory
mechanisms underlying the appearance of the loss of long
distance interactions in cancer GCNs.

2. RESULTS AND DISCUSSION

2.1. Community Structure Displays Loss of
trans- Co-expression
Figure 1A displays GCNs built from the 20,217 (see Methods
section) most significant mutual information interactions in the
Luminal A and the Healthy co-expression profiles. Genes are
colored according to the chromosome where they are located.
As previously reported, the Healthy GCN has a giant component
with interactions linking genes from different chromosomes.
The Luminal A network also has a giant component but the
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FIGURE 1 | Co-expression networks for Healthy and Luminal A tissue. (A) GCNs built from the 20,217 most significant gene pair mutual information values for both

phenotypes. Node colors are assigned according to the chromosome where each gene is located. (B) Distribution of chromosomal assortativity in network

communities.

layout suggests that genes from the same chromosome are
preferentially linked.

To evaluate the previous observation, communities
were detected in both networks using four algorithms for
weighted networks implemented in the igraph package:
Fast Greedy, Infomap, Leading Eigenvector, and Louvain.
Supplementary Material 1 presents results for all algorithms.
Jaccard indexes where calculated among communities detected
by the four algorithms. More than 95% of the total number of
communities detected by Fast Greedy, Leading Eigenvector, and
Louvain have a Jaccard Index equal to 1, while Infomap displays
more dissimilar results. Given that Louvain presents the highest
modularity values, results for this algorithm are presented in
the main text. Table 1 contains the number of communities and
modularity values for the four algorithms applied to the Healthy
and the Luminal A network.

Chromosomal assortativity, ASSchr was calculated by taking
the number of intra-chromosomal links minus the number of
inter-chromosomal links divided by the total number of links in

a community. Figure 1B displays the distribution of theASSchr in
both networks in the form of violin plots. The differences in the
distributions allow us to confirm the loss of trans- interactions in
the Luminal A GCN.

2.2. Specific trans- Communities in the
Luminal A GCN Are Highly Associated With
Biological Processes
To identify the functional role of the highly co-expressed
groups of genes identified by network communities, an
overrepresentation analysis was performed, using the biological
process category in Gene Ontology (GO). Results for all
algorithms are presented in Table 1. -cis communities are the
ones having ASSchr equals to 1.

Half of the -trans communities with more than five nodes
extracted by the Louvain algorithm in the Luminal A GCN
were associated with biological processes. However, only 12%
of the -cis communities where enriched. Despite having a larger
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TABLE 1 | Features of cis- and trans- chromosomal communities in the Luminal A and the Healthy gene co-expression network.

Algorithm Healthy Luminal A

Modularity Communities Size ≥ 5 Enriched communities Modularity Communities Size ≥ 5 Enriched communities

cis- trans- cis- trans- cis- trans- cis- trans- cis- trans- cis- trans-

Fast Greedy 0.703 75 325 0 50 0 14 0.934 614 87 77 40 9 20

Infomap 0.674 83 768 1 386 1 47 0.907 826 93 194 39 16 20

Leading Eigenvector 0.696 71 283 1 32 1 18 0.892 594 84 58 37 9 20

Louvain 0.752 71 291 0 41 0 17 0.935 614 87 77 40 9 20

FIGURE 2 | cis- and trans- communities in the Luminal A network. (A) Alluvial graph displaying the proportion of overrepresented Gene Ontology biological processes

per community in trans- (purple) and cis- (orange) communities. The name assigned for each community is the name of the gene with highest page rank value. (B)

Communities plotted according to their chromosomal and expression assortativity values. Dot sizes correspond to the number of nodes in the community and node

color, to the number of overrepresented GO terms. Communities with more than 20 terms are highlighted. Notice that the quadrant with more enriched communities

is the one with high expression assortativity and low chromosomal assortativity.

number of intra-chromosomal cis- communities in the Luminal
A network, the majority of communities with statistically
significant biological processes associated are trans-. Figure 2A
presents a visual representation in the form of an alluvial plot.
There, the width of each line corresponds to the number of
significantly enriched processes for a given community, named
by the gene with highest page rank centrality. The difference
in the amount of cis- and trans- communities with associated
functions, may reflect that the set of biological processes
annotated in GO do not tend to exhibit a bias toward an specific
chromosome contrary to what it is observed in the Luminal
A GCN communities.

There is a wide variety in the biological enriched processes
in the Luminal A trans- communities. Processes associated
with regulation of transcription, telomere maintenance, and

regulation of cell division as well as gene silencing are found.
Supplementary Table 1 contains the entire set of significantly
overrepresented processes for Luminal A and healthy GCNs, as
well as the shared enriched terms between both networks.

On the other hand, the enriched Luminal A cis- communities
are mainly composed of gene families located at the same regions
in the genome. In this group we have the HOXA, HOXB, and
HOXC genes, which are important for embryogenesis. They have
been found to be expressed in normal and neoplastic breast tissue
(Cantile et al., 2003), with altered patterns of expression levels
in breast cancer molecular subtypes. In particular, HOXA genes
in Luminal A subtype, have shown underexpression associated
with the acquisition of repressive epigenetic marks, such as
hypermethylation (Novak et al., 2006; Kamalakaran et al., 2011;
Hur et al., 2014).
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Protocadherins (PCDHA, PCDHB, and PCDHG genes) were
also identified as three distinct cis- communities in the Luminal
A network. Protocadherin genes were previously identified
as the most densely connected component (almost a clique)
in a breast cancer network (Espinal-Enríquez et al., 2017).
There, it was also shown that all protocadherins resulted
underexpressed. The observed underexpression of this cluster
coincides with a reported hypermethylation of protocadherins in
breast cancer (Novak et al., 2008).

In the Healthy network 41% of the trans- communities were
associated with biological processes, and no cis- communities
where enriched due to the fact that cis- communities identified
in this network have <5 genes (the threshold set for the
overrepresentation analysis, see Methods). The set of terms
includes mostly metabolism-associated process, cell division, and
mitochondrial functions.

The Healthy and the Luminal A GCN share 24 communities
of only two nodes. Additionally, there is one community named
HLA-DRB1 in the Healthy GCN, and HLA-DMB in the Luminal
A GCN, with a Jaccard Index of 0.916. This community is
associated with activation of the immune response, and it is
composed by MHC class II HLA genes located on chromosome
6 region p21.32, plus CIITA (Class II Major Histocompatibility
Complex Transactivator), on Chromosome 16, and CD74,
located on chromosome 5, only in the Luminal A community.

One pair of communities named CPA3 in both networks
share the set of associated processes, but displays a Jaccard index
of 0.705 regarding their gene sets. Processes include peptide
hormone processing and regulation of systemic arterial blood
pressure. Members of this community, such as TPSAB1, CMA1,
CTSG, CPA3, HDC, and MS4A2, are commonly found in Mast
Cells expression, part of the immune response and usually
recruited to breast tumors (Aponte-López et al., 2020). The
presence of these immune-system associated communities as
high co-expression sets in both networks might be an instance
of multiple cell types present in the sample.

2.3. trans- Communities in the Luminal A
Network Present Different Patterns of
Differential Expression
Once we observed that biological processes were significantly
associated with trans- communities, a differential expression
analysis was performed to assess the influence of altered
gene expression in trans- communities and their processes.
Supplementary Figure 1 presents the differential expression
representation in the GCN and Supplementary Table 2 contains
the log2 fold change (LFC) values for each gene in the network.

The number of links joining genes with the same sign of
LFC, minus the number of links between genes with different
sign of LFC, over the total number of links, was computed
per community as a measure of differential gene expression
assortativity (ASSdge). Figure 2B plots ASSdge and ASSchr for
trans- communities, as well as the number of associated GO
terms. Highly enriched communities (>20 GO terms) are
highlighted. The majority of these communities are placed in
the first quadrant of the plot, meaning that their genes tend

to have similar differential expression but they are placed in
different chromosomes. Moreover, those communities are not in
the top-10 regarding size, hence functional association in -trans
communities appears to be influenced by high ASSdge and low
ASSchr values.

The community with the highest number of enriched
GO terms is the NUSAP1 community which also contains
highly overexpressed genes only (Figure 3A). Its enriched
terms are associated with nuclear division, DNA replication,
chromatid segregation, and cell cycle checkpoints, i.e., cell
division processes. This community shares a Jaccard index of
0.5 regarding gene members and 0.718 regarding GO associated
terms with the MKI67 community in the Healthy network.

NUSAP1 has already been identified as a hub gene in a
network of ER positive breast cancer tumor tissues of patients
treated with tamoxifen, and derived from a similar methodology
but using micro-array data (Liu et al., 2015). In that study, five
hub genes with high expression levels strongly associated with
poor survival were identified, and four of them: CDK1, DLGAP5,
NUSAP1 and RRM2, belong to this particular community.

High expression of several genes in this community, including
NUSAP1, was also observed in patients with Luminal A breast
cancer and obesity (Nuncia-Cantarero et al., 2018). Nuncia-
Cantarero et al. reported 39 genes related with a poor outcome
group for patients with both conditions and 26 are found in
this community, including FOXM1 (Forkhead box proteinM1),
a transcription factor that has been identified as a potential
therapeutic target for breast cancer (Lu et al., 2018), highly
associated with luminal tumors and ER expression (Millour et al.,
2010; Carr et al., 2012).

Table 2 shows the 39 genes reported in Nuncia-Cantarero
et al. (2018). The coincident genes found in our network
community are bold and their corresponding log2 fold change
values are displayed. Interestingly, none of the genes presented
in Nuncia-Cantarero et al. (2018) are in the Luminal A GCN but
those found in the NUSAP1 community.

From the highly enriched communities, RPL35 is the one
with more genes. The majority of them are ribosomal proteins;
therefore, among the enriched GO terms we find ribosome
biogenesis, large and small ribosomal subunit assembly, as
well as regulation of ubiquitin-protein transferase activity.
Riboproteins in this community are mostly underexpressed
(Supplementary Figure 2). Low levels of expression have been
reported in breast cancer for RPL5 and RPL11, associated with
a mechanism of apoptosis inhibition through P53 degradation
(Tong et al., 2020), and induction of proliferation in MCF7
cells, a Luminal A-derived cell type (Fancello et al., 2017). It has
been shown that riboproteins have high co-expression values in
other gene co-expression networks (Prieto et al., 2008; Wang
et al., 2020a,b). The finding of highly co-expressed cluster of
riboproteins reported here, reinforces the fact that these GCNs
are coherent and represent with some accuracy the actual co-
expression landscape in Luminal A breast cancer.

To our knowledge, coordinated underexpression of ribosomal
genes in a breast cancer subtype has not previously been
described. On the contrary, an increased ribosomal content
has been recently found to contribute to proliferative and
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FIGURE 3 | NUSAP1 community. The NUSAP1 community is the community with the highest number of enriched terms and highest expression assortativity. (A)

Nodes and edges in the NUSAP1 community. Node colors represent log2 fold change, thus, the entire community is overexpressed. Transcription factors (TF) are

highlighted by a yellow border and their regulated genes (genes with at least one TF binding site in GTRD) are identified by a gray border. Green edges indicate

regulatory interactions. (B) Transcription factors in the NUSAP1 community. Total number of network interactions for each TF. The number of interactions identified as

regulatory is displayed in green. (C) Copy number alteration peaks in the NUSAP1 community. Squares represent each gene in the community and they are ordered

according to the chromosome where they are located. Turquoise squares depict genes in deletion peaks while pink ones represent amplification events.

metastatic potential in breast cancer circulating tumor cells
(Ebright et al., 2020). This discrepancy may be due to the
fact that the overexpression of RPL transcripts, such as RPL15
observed in Ebright et al. (2020), was reported for circulating
tumor cells. These tumor cells present additional alterations in
their transcriptional profile, and they have acquired a highly
proliferative capacity. Hence, the underexpression of ribosomal
genes in the Luminal A network may be an indicative that the
tumors are not as invasive as other subtypes. It is worth noticing
again that Luminal A breast cancer subtype is the less aggressive,
the one with the best prognostic and also the best in terms of
response to therapy.

2.4. Effects of Transcription Factors and
CNAs in trans- Communities
The general overexpression trend observed in the NUSAP1
community, and underexpression in the RPL35 module,
suggested a contribution of altered mechanisms of
transcriptional regulation promoting the formation of high
co-expression clusters. To evaluate this, we analyzed the
contribution of regulatory interactions from transcription

factors (TFs) and the presence of deletion and amplification
peaks in the Luminal A network communities.

TFs in the ten highlighted communities from Figure 2B were
identified using data from the Gene Transcription Regulation
Database (GTRD) (Yevshin et al., 2018). Five communities
included at least one gene reported as TF in GTRD. The
total number of interactions for these genes in the NUSAP1
community is presented in Figure 3B, where the number of genes
having at least one binding site in the promoter region (1,000 bp
upstream, 100 bp downstream from starting point) is shown in
green. It can be observed that FOXM1 transcription factor has its
entire set of adjacent links marked as regulatory interactions.

As stated in the previous section, the NUSAP1 community
contains interactions that have been reported in luminal
associated breast cancer phenotypes. Particularly, the
FOXM1 transcriptional network was identified as the
largest regulon by GPU-ARACNE, the accelerated parallel
implementation of ARACNE, the algorithm used here to infer
the gene co-expression networks (He et al., 2017). He et al.
identified 121 FOXM1 interactions with 14 experimentally
validated targets.
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TABLE 2 | Previously reported genes in the NUSAP1 community.

Gene Gene name LFC

NEK2 Serine/threonine-protein kinase Nek2 3.564

KIF4A Kinesin Family Member 4 3.098

ASPM Abnormal spindle-like microcephaly-associated protein 2.567

CENPF Centromere protein F 2.567

TPX2 Protein TPX2 2.567

KIF18B Kinesin Family Member 18B 2.396

CDC25C M-phase inducer phosphatase 2.316

DLGAP5 Disks large-associated protein 5 2.297

NUSAP1 Nucleolar and spindle-associated protein 2.223

MKI67 Proliferation marker protein Ki-67 2.191

UBE2C Ubiquitin-conjugating enzyme E2 2.173

HMMR Hyaluronan mediated motility receptor 2.162

BUB1B Mitotic checkpoint serine/threonine-protein kinase 2.157

BIRC5 Baculoviral IAP repeat-containing protein 2.057

CDK1 Cyclin-dependent kinase 2.012

KIF11 Kinesin Family Member 11 1.963

RRM2 Ribonucleoside-diphosphate reductase subunit M2 1.961

KIF20A Kinesin Family Member 20 1.898

ISG15 Ubiquitin-like protein ISG15 1.789

GTSE1 G2 and S phase-expressed protein 1.714

FOXM1 Forkhead box protein M1 1.699

CCNB2 G2/mitotic-specific cyclin-B2 1.621

CCNB1 G2/mitotic-specific cyclin-B 1.523

PRC1 Protein regulator of cytokinesis 1.504

KIF15 Kinesin Family Member 15 1.425

ZWINT ZW10 interactor 1.416

OIP5 Protein Mis18-beta 1.299

BUB1 Mitotic checkpoint serine/threonine-protein kinase BUB1

CEP55 Centrosomal protein of 55 kDa

EZH2 Histone-lysine N-methyltransferase EZH2

GDP-15 Growth/differentiation factor 15

KIAA0101 PCNA-associated factor

MELK Maternal embryonic leucine zipper kinase

MMP1 Matrix Metallopeptidase

MYBL1 MYB Proto-Oncogene Like

PBK PDZ Binding Kinase

RIPPLY3 Protein ripply3

TOP2A DNA topoisomerase 2-alpha

TYMS Thymidylate synthase

39 Genes reported in Nuncia-Cantarero et al. (2018), related with poor outcome group

for patients with obesity and Luminal A breast cancer. Highlighted genes are present in

the NUSAP1 community. Their corresponding log2 fold change value is also displayed.

Notice that all concordant genes are overexpressed.

In the NUSAP1 community, FOXM1 has 24 co-expression
interactions with other genes in the module. All of these
interacting genes contain a FOXM1 binding site in their
promoter region according to the data gather by GTRD. From
these 24 regulated genes, eight intersect with the experimentally
validated targets reported in He et al. (2017).

Centromere protein A or CENPA, is another important
transcription factor with overexpression in the NUSAP1

community. It regulates centromere integrity and chromosome
segregation. This TF was identified in a mRNA signature
correlated with lower survival ratio in Luminal A breast cancer
(Xiao et al., 2018). One of its interacting proteins, HJURP,
required for CENPA centromeric localization, is also a member
of this community. HJURP mRNA expression level has been
significantly associated with estrogen and progesterone receptor,
and reported as clinically relevant for Luminal A breast cancer
patients (Hu et al., 2010; Montes de Oca et al., 2015). Although
HJURP is the transcription factor with more adjacent links
in the NUSAP1 community, none of them was identified
as a regulatory interaction; instead, HJURP was identified as
regulated by FOXM1.

The remaining overexpressed TFs in the NUSAP1 community
have also been found to play a role in the luminal breast cancer
phenotype. Increased mRNA expression of RAD51, a gene in
the double-strand breaks repair pathway, is associated with
higher risk of tumor relapse and distant metastases in estrogen
receptor positive breast cancer tumors (Barbano et al., 2011;
Nieto-Jiménez et al., 2017). Overexpression of DTL and HMGB2
has also been associated with tumor progression in breast
cancer (Perez-Peña et al., 2017; Fu et al., 2018), and resistance
to endocrine therapies (Redmond et al., 2015). These results
suggest a strong contribution of TFs, particularly from FOXM1
and CENPA, and their interactions found in the NUSAP1
community, to the process of tumorigenesis and progression in
Luminal A breast cancer.

Gene copy number alteration (CNA) is a common trait of
genomic instability in cancer and their presence has therapeutic
relevance in breast cancer, specially for the Her2 enriched
subtype (Andre et al., 2009; Inaki et al., 2014). Different levels
of correlation have been identified between DNA amplification
and deletion events, mRNA, and protein expression values in
breast cancer, (Myhre et al., 2013), showing that it is not
an homogeneous mechanism of altered expression. However,
given the possible effect and importance for the breast cancer
phenotype, amplification and deletion peaks may play a role in
the formation of high co-expression clusters in the Luminal A
network. For instance, in the case of breast cancer, correlation
between CNVs and gene expression could reach until 25%
(Lachmann, 2016).

Those gene expression alterations may influence importantly
in the co-expression landscape. In Lachmann (2016), it was
reported that CNVs may impact importantly the co-expression
program, in particular for transcription factor targets.

To evaluate the role of CNVs in the Luminal A GCN, we
obtained amplification and deletion peaks using the GISTIC2
algorithm (Mermel et al., 2011). Figure 3C presents the results
for the NUSAP1 community. Turquoise squares represent genes
in which a deletion has been observed, meanwhile amplifications
are depicted in pink squares. Since the NUSAP1 community
is trans-, the chromosome in which those genes are located is
also depicted.

As observed, the majority of genes with copy number
alterations correspond to deletions. Only two genes, TTK and
KIFC1 (Chr6) present amplifications. However, 52 out of 80
genes do not present changes in copy number. This result shows
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FIGURE 4 | HLA-DRB1 community. In this picture, analogue to Figure 3, HLA-DRB1 community is depicted. Panel (A) displays amplification/deletion peaks in genes

in the community and panel (B) shows differential expression and regulatory interactions. Genes in Chr6 (MHC class II genes) present amplifications. However, their

differential expression is neither uniform nor with the same sign.

that, at least for the NUSAP1 community, which is the one with
themost differentially expressed genes, CNAs do not significantly
influence neither expression nor co-expression patterns.

However, in the case of HLA-DRB1 community in Figure 4,
we observe the opposite phenomenon: genes are not differentially
expressed, but the ones that are placed in Chr6 belong to a clearly
amplified region. This cluster is composed of MHC class II HLA
genes. Interestingly, CIITA gene is a TF that regulates some of
these human leukocyte antigen genes. As it can be observed in
Figure 4, four of these genes have a CIITA binding site in their
promoter region.

In this case CNAs and the CIITA regulation appear to exert a
concomitant action with the observed copy number alterations to
generate the community of MHC class II genes, independently of
their differential expression. It is worth mentioning that CIITA
(Class II Major Histocompatibility Complex Transactivator)
is located at Chromosome 16, but clearly regulates the
transcriptional and functional characteristics of HLA genes. The
same representation for the RPL35 community is shown in
Supplementary Figure 2. It is worth to stress that the HLA-
DRB1 community in Luminal A GCN is almost identical to a
community of the healthy GCN (Jaccard index = 0.916).

2.5. cis- Communities Are Enriched With
Deletion Peaks
The presence of deletion and amplification peaks, and
their effect in gene altered expression was also evaluated
for cis- communities. Figure 5 presents the results of an
overrepresentation analysis where GISTIC2 peaks were analyzed.
As it can be observed, communities are mostly enriched with
deletion peaks, and their effect in the average log2 fold change in
cis- communities varies. Supplementary Figure 3 presents the
entire set of alterations in these communities.

The pattern of amplification in the q arm of chromosome
1 and deletion in chromosome 16q, previously reported in a

subset of Luminal A tumors (Ciriello et al., 2013) is also observed
here. However, no other alteration matched that particular
study. Luminal A tumors tend to have the lowest frequency of
CNAs among breast cancer subtypes (Gatza et al., 2014), and as
evaluated by our methodology, amplification and deletion peaks
do not a priori determine the formation of cis- communities.

It is important to mention that copy number alterations are a
key element affecting the gene expression of large sections of the
genome (Freeman et al., 2006; Redon et al., 2006; McCarroll and
Altshuler, 2007), specially in cancer (Shlien and Malkin, 2009;
Lachmann, 2016; Shao et al., 2019). A large part of a chromosome
being altered by a gain or loss of copy number, will trigger an
equally abrupt change in several genes along that portion of
the genome.

2.6. cis- Communities Are Not Bound by
CTCF Binding Sites
The three-dimensional structure of DNA is another regulator
of gene expression in eukaryotic cells. Regions with active
transcription are characterized by open chromatin, whereas
closed chromatin indicates regions of inactive or repressed
transcription (Achinger-Kawecka et al., 2016; Corces and Corces,
2016). Furthermore, the regulatory effect of regions, such as
enhancers and promoters, usually requires the formation of long
distance chromatin loops that bring together distant genomic
loci. These loops are maintained and regulated by architectural
proteins, such as CTCF and cohesin, among others (Achinger-
Kawecka and Clark, 2017; Pugacheva et al., 2020). Given the fact
that CTCF proteins are able to modify the chromatin landscape,
they may be underlying the appearance of a large amount of cis-
communities in breast cancer.

To evaluate the role of CTCF in the appearance of cis- clusters
of genes in the Luminal A breast cancer gene co-expression
network, we calculated the number of CTCF binding sites at the
boundaries of cis- communities. This was done using a previously

Frontiers in Genetics | www.frontiersin.org 8 April 2021 | Volume 12 | Article 629475

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


García-Cortés et al. Structure and Function in Luminal A GCN

FIGURE 5 | Amplification and deletion peaks overrepresentation in cis- communities. Intra-chromosomal communities are ordered according to the start of their first

gene and the mean log2 fold change value for each community is plotted in the y axis. Communities enriched with amplification or deletion peaks are colored in pink

or turquoise, accordingly. Ending dots indicate size of each community.

reported dataset containing Chip-seq peaks in MCF7 cells, a
Luminal A breast cancer cell line (Fiorito et al., 2016).

The number of binding sites in a window of 50k base pairs
before the first gene and after the last one in a community
was compared to the average number of binding sites in
same size windows spanning the community region (see
Methods). The distribution of these binding sites is shown in
Supplementary Figure 4. No significant difference was found in
the distribution of the number of binding sites in the boundaries
and the middle sections of the communities. Actually, out of
the 416 cis- communities with at least one CTCF binding site
associated, only 197 had more binding sites at the boundaries
than in middle regions.

2.7. Loss of Long-Distance Co-expression
Does Not Depend on the Correlation
Measure
We decided to construct GCNs for Luminal A and healthy
phenotypes using Pearson correlation, to observe whether
the phenomenon of loss of long-distance co-expression was
maintained using other correlation measure. The results can be
observed in the form of a heatmap in Figure 6. There, genes
are placed according to its position in the chromosome. The
color of the heatmap is proportional to the correlation value.
The results show that, as observed with mutual information-
inferred networks, the highest correlation values occur between
genes from the same chromosome.

Additionally, it can also be appreciated that the Pearson
correlation values are in general higher in the healthymatrix than

in the Luminal A breast cancer one (except for those values close
to the diagonal, which represent cis- interactions).

2.8. Loss of Long-Distance Co-expression
Does Not Depend on the MI Threshold
Value
Setting a threshold on the weight of edges so as to discard edges
with strength less than a certain value is a well-known open
problem in graph theory and network science. Determination
of this threshold can be made by choosing among a number of
methods. For instance, if an accurate measure of the signal-to-
noise ratio in the correlations of the data under consideration
can be obtained, one possible way to set the threshold is by
allowing all edges valued above the noise-level. In most practical
applications, however, this is not feasible.

To overcome this situation, we presented a comparison of
cis/trans proportion in both networks. For this purpose, we
constructed networks with different threshold values, ranging
from the top-1,000 to the top-1,000,000 higher edges (Figure 7).
As it can be appreciated in the figure, the proportion of cis-
interactions is always higher in Luminal A network than in the
healthy GCN.

Additionally, to assess the influence of the MI threshold value
in the phenomenon of loss of long-distance co-expression in
Luminal A breast cancer, we observed the distribution of MI
values in both networks. We constructed (a) the histograms of
all interactions (20,217) in both networks, (b) the histograms
for only cis- interactions, and (c) the histogram for trans- edges
in both phenotypes (Figure 8). There, it can be observed that
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FIGURE 6 | Pearson correlation matrices of healthy and Luminal A phenotypes. Correlation between all gene couples of each phenotype are depicted. The color code

corresponds to the correlation value. (A) Healthy matrix. (B) Luminal A matrix. As in the case of mutual information-derived networks, higher correlation values in

Luminal A occur between genes from the same chromosome (close to the diagonal).

FIGURE 7 | Proportion of cis- interactions at different network sizes. This figure shows the fraction of intra-chromosome interactions (Y-axis) for healthy (pale pink),

and Luminal A (brown) GCNs. X-axis represents the number of edges in each network, ranging from the top-1,000 to the top-1,000,000 links, i.e., three orders of

magnitude.

independently of the threshold, healthy interactions have higher
MI values.

The above mentioned result coincides with the one presented
in the matrices of Figure 6. Correlation values (independent
on the correlation measure), are in general higher in the

healthy phenotype than in cancer, but for a subset intra-
chromosome interactions.

Complementarily, in Figure 8 we inserted a zoom of those
histograms in the higher MI value region (0.3–0.7). There, it
is shown that for cis- interactions, the Luminal A network has
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FIGURE 8 | Distribution of MI values in the GCNs. This plot shows the histograms for the MI values of the healthy (black) and Luminal A (red) GCNs. (A) The total of MI

values. (B) Only cis- edges, (C) Only trans- interactions. Each histogram also contains an inset with a zoom of the highest interactions for each condition. Notice the

absence of trans- interactions in the Luminal A case in the inserts of (B,C); this reflects the loss of trans- co-expression in the cancer GCN.

more and higher interactions in the highest values; conversely,
for the trans- interactions, the higher and more abundant links
are observed in the healthy phenotype.

We have shown previously that the threshold value is not
determinant to observe the loss of long-distance co-expression
in other clear cell renal carcinoma (Zamora-Fuentes et al., 2020),
as well as in lung cancer (Andonegui-Elguera et al., 2021). We
have demonstrated for these cancer GCNs that the particular
value of the threshold, affects the size and sparsity of the
networks as expected. However, the proportion of inter- and
intra-chromosomal links remains largely unchanged.

2.9. Implications of Network Topology in
the Context of Luminal a Breast Cancer
We have shown that in Luminal A breast cancer, the already
mentioned loss of trans- co-expression is not as strong as in other
breast cancer subtype GCNs, but the effect is perceived. Actually,
several trans- interactions appear in the top co-expressed pairs.
Luminal A GNC topology allows us to:

• identify functional communities (mostly trans-)
• differentiate enriched functions between healthy and

cancer GCNs
• observe mechanisms that may influence the appearance of this

loss of long distance co-expression

• observe specific differential expression patterns depending on
the community

The identification of significant biological processes, associated
with particular sets of highly co-expressed genes is one of
the most relevant improvements of using network topology to
analyze the functional implications of RNA-Seq-based genome-
wide multi-sample sets for a given phenotype. The use of
network communities improves the specificity of the enrichment
analysis over using the whole genome or using differentially
expressed genes.

The number of enriched processes in cis- communities
is significantly lower than the ones associated with trans-
communities, given the total number of communities for
each type. However, the functions that are significant for cis-
communities, are also relevant for cell maintenance. For instance,
HOXA community, whose genes are relevant for organism
development. These genes are found together in chromosome
7p15.2, and they are all underexpressed. Analogously, the
protocadherin cluster is found to be related to cell adhesion,
which is one of the non-shared processes between Luminal A
GCN and the healthy GCN (Supplementary Material 1).

From the alluvial diagram of Figure 2 it can be observed that
out of the 11 enriched cis- communities, 6 correspond to HOX
and protocadherin clusters. This could be an indicative of the
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importance of the conjugated action that these set of genes may
have for the phenotype. Additionally, these clusters appear with
the same differential expression trend.

3. CONCLUDING REMARKS

Based on the previous analysis, we may conclude that for
the establishment of the regulatory program observed in the
Luminal A subtype gene co-expression network, compared with
the healthy GCN, several DNA modifications and regulatory
elements must participate. DNA modifications (copy number
alterations, transcription factor regulation, CTCF binding
sites) should exert, to at certain extent, influence over the
gene co-expression interactions. Additionally, differential gene
expression is a relevant element to take into account, specially for
trans- communities. We can establish that, for the manifestation
of the loss of trans- co-expression in cancer it is not only necessary
to observe separately differential gene expression, transcription
factor regulation, CNAs, or CTCF binding sites, but to take them
all into account.

Other regulatory elements should also participate in
modifying the co-expression patterns between a healthy and a
cancer co-expression network: micro-RNA regulation (Drago-
García et al., 2017; de Anda-Jáuregui et al., 2018), topologically
associated domains and their boundaries (Rafique et al., 2015;
Achinger-Kawecka et al., 2020; Khoury et al., 2020), long
non-coding RNAs (Hung et al., 2011; Zhang et al., 2019), the
methylation profiles (Paz et al., 2003; Hernández-Lemus et al.,
2019), among others, might delineate these imbalance between
cis- and trans- genetic relationships.

More investigation regarding the aforementioned elements
is also important in order to have an integral picture of
the regulatory landscape in the cancer genome, and provide
hypotheses that could explain the phenomenon of loss of long
distance genetic interactions in cancer.

It is likely plausible that the loss of trans- co-expression
observed in breast cancer (and breast cancer molecular subtypes)
responds to a physical/mechanical principle in which the
transcriptional machinery is somehow altered. Recently, we
have observed the loss of long distance co-expression in clear
cell renal carcinoma (Zamora-Fuentes et al., 2020), and in
lung adenocarcinoma, as well as in squamous cell lung cancer
(Andonegui-Elguera et al., 2021).

The ubiquity of this disruption of the normal transcriptional
landscape led us to hypothesize that the physical principle
behind this global alteration is the same in all of these cancer
tissues. The consistency and relevance of this loss could be
considered as a possible emergent hallmark of cancer. Further
investigation toward this particular issue must be achieved
beforehands, however, further investigation is required.

4. METHODS

4.1. Databases
Gene expression values for Luminal A and Healthy samples were
retrieved from our previous publication (García-Cortés et al.,
2020), with RNA-seq data obtained from The Cancer Genome

Atlas (TCGA) breast invasive carcinoma dataset (Tomczak
et al., 2015), downloaded from the Genomic Data Commons
(GDC) Data Portal. The GDC Data portal case identifiers for
Luminal A were use to download “Masked Copy Number
Segment Files” for the GISTIC2 pipeline. The Chip-seq data
was downloaded from the Gene Expression Omnibus dataset
GSE85106 (Fiorito et al., 2016), and only the control sample for
CTCF was used. The Homo sapiens genes promoter dataset from
the Gene Transcription Regulation Database (GTRD) (Yevshin
et al., 2018) was used to identify transcription factors and their
regulatory interactions.

4.2. Data Processing
As detailed inGarcía-Cortés et al. (2020), 113 samples for Healthy
tissue and 1,102 cancer samples were acquired and pre-processed
to log2 normalized gene expression values. After applying the
PAM50 algorithm using the Permutation-Based Confidence for
Molecular Classification (Fresno et al., 2017) as implemented in
the pbcmc R package (Fresno et al., 2016), andmultidimensional
noise reduction using ARSyN R implementation (Nueda et al.,
2012), 217 samples for Luminal A breast cancer were identified.

The “Masked Copy Number Segment Files” were downloaded
from GDC and integrated into one segmentation file to run
gistic2 (Mermel et al., 2011). The parameters suggested in
the Copy Number Variation Analysis Pipeline from GDC and
the GDC reference sequence, and markers file were used. The
identified amplification and deletion regions in the lesions output
file with 0.99 confidence were re-mapped to keep genes spanned
entirely by peaks.

4.3. Network Construction
The ARACNE (Margolin et al., 2006) algorithm was used
to calculate mutual information (MI) to quantify statistical
dependence between pairs of genes. The method associates
a significance value (p-value) to each MI value based on
permutation analysis, as a function of the sample size. Only
the highest interactions in terms of their statistical significance
(P ≤ 1e−8) were kept for further analysis. The total number
of interactions in the Luminal A and the Healthy network were
reduced to 20,127, the number of significant interactions in the
Healthy network.

4.4. Community Detection and
Assortativity Calculation
Four community detection algorithms were evaluated: Fast
Greedy (Clauset et al., 2004), Infomap (Rosvall and Bergstrom,
2008), Leading Eigenvector (Newman, 2006), and Louvain
(Blondel et al., 2008; Rahiminejad et al., 2019). MI values were
used as link weights. Their implementation in the igraph
(Csardi and Nepusz, 2006) R package was used. Algorithm
results were compared using the Jaccard index, a coefficient
that measures similarity between two finite sets, defined as the
size of their intersection divided by the size of their union.
Genes in a community constitute a set and all communities
identified by one algorithm were compared against communities
identified by another one. The same approach was used to
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TABLE 3 | CTCF binding sites location classification.

Promoter Gene body Intergenic region

Dataset 868 8,047 11,438

In Luminal A network 177 1,343 887

compare the set of GO terms associated per community in the
overrepresentation analysis.

J(C1,C2) =
(C1 ∩ C2)

(C1 ∪ C2)
(1)

To calculate chromosomal assortativity, the chromosome
location for each gene was used. For each community, the
number of links joining genes in the same chromosome (-cis
links) minus the number of links joining genes in different
chromosomes (-trans links), was divided by the total number
of links in the community. Expression assortativity was
calculated in the same manner, using the log2 fold change sign
to classify genes into overexpressed or underexpressed as the
assortativity attribute.

ASSchr =

|{{x, y} | x, y ∈ Ci and x.chr = y.chr }| − |{{x, y} | x, y ∈ Ci and x.chr 6= y.chr }|

|{{x, y} | x, y ∈ Ci}|

Ci = community i in network.

4.5. Overrepresentation Analysis
The enrichGO function from the clusterProfiler (Yu
et al., 2012) R package was used to identify over-represented
or enriched terms in the Biological Process category in Gene
Ontology (GO). Enrichment was performed for communities
with five ormore genes andGO terms with aminimum size of ten
were retained. Genes in the original expressionmatrix defined the
universe set. Terms with adjusted p-value below 0.005 using the
Benjamini and Hochberg method for multiple testing were kept.
The overrepresentation analysis for amplification and deletion
peaks was conducted using the generic function enricher
from the same package. The same universe set was used and no
size threshold for communities or peaks was defined. An adjusted
p-value of 0.05 was set as cutoff.

4.6. Differential Expression Analysis
Differential expression analysis was performed as described in
(Espinal-Enríquez et al., 2017). The limma package (Ritchie
et al., 2015) in R was used to determine overexpressed or
underexpressed genes, by adjusting a gene based linearmodel. An
absolute difference of log2 fold change≥0.5 and a p-value < 0.05
was set as threshold.

4.7. Transcription Factors Identification
The entire set of gene promoters in the smallest region available,
[−100, +10] base pairs from starting site was downloaded from
the Gene Transcription Regulation Database (GTRD) (Yevshin
et al., 2018). For the selected communities, gene members that
matched transcription factors (TF) in GTRD were extracted and

their neighboring genes were compared to the set of annotated
genes that had at least one binding site from that TF in the
ChIP-seq data.

4.8. CTCFs
We took the CTCFs in genes and promoters in the cis- Luminal A
network communities that were not in other genes or promoters.
For the Inter-regional CTCFs, we took the ones that were in
a region <50k bps from the extreme of the promoter and the
extreme of the gene.

Once filtered, the binding sites were classified according to
their location. CTCFs in gene bodies, promoters (+1,000, −500
bps) and intergenic region were identifies. Table 3 displays the
classified binding sites for the complete dataset, as well as the
binding sites present in genes comprising the Luminal A trans-
communities. For the intergenic region, only CTCF binding sites
in a window of 50k base pairs upstream the first gene and
downstream the last one in cis- communities were kept.
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Supplementary Material 1 | Results of community detection algorithms

evaluation.

Supplementary Table 1 | List of Gene Ontology biological processes

overrepresented in the Healthy and the Luminal A gene co-expression networks

(GCN), as well as the shared enriched terms between both networks.

Supplementary Table 2 | List of genes in the Luminal A GCN and the Healthy

GCN with their chromosomal location, associated log2 fold change (LFC) value,

and corresponding community for each algorithm.

Supplementary Figure 1 | Differential expression in the Luminal A GCN. The

NUSAP1 community is highlighted.

Supplementary Figure 2 | RPL35 community. Left panel presents amplification

and deletion peaks identified by GISTIC2, through pink and turquoise squares.

Genes are ordered according to their corresponding chromosome. Right panel

displays differential expression and regulatory interactions in genes in the

community.

Supplementary Figure 3 | Amplification and deletion peaks in cis- communities.

Entire set of copy number alterations identified in intra-chromosomal communities.

Genes are displayed according to their starting site.

Supplementary Figure 4 | CTCF binding sites distribution over cis- communities.

Biding sites at a distance of no more than 50,000 base pairs from a gene in the

community are displayed.
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Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The Cancer Genome
Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19,
A68–A77. doi: 10.5114/wo.2014.47136

Tong, D. D., Zhang, J., Wang, X. F., Li, Q., Liu, L. Y., Yang, J., et al. (2020).
MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated
P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis 9:56.
doi: 10.1038/s41389-020-0239-7

van Dam, S., Võsa, U., van der Graaf, A., Franke, L., and de Magalhães, J. P. (2018).
Gene co-expression analysis for functional classification and gene-disease
predictions. Brief. Bioinformatics 19, 575–592. doi: 10.1093/bib/bbw139

Wang, J., Yi, Y., Chen, Y., Xiong, Y., and Zhang, W. (2020a). Potential mechanism
of rrm2 for promoting cervical cancer based on weighted gene co-expression
network analysis. Int. J. Med. Sci. 17:2362. doi: 10.7150/ijms.47356

Wang, J. C., Ramaswami, G., and Geschwind, D. H. (2020b). Gene
co-expression network analysis in human spinal cord highlights
mechanisms underlying amyotrophic lateral sclerosis susceptibility. bioRxiv.
doi: 10.1101/2020.08.16.253377

Wilkinson, D. M., and Huberman, B. A. (2004). A method for finding
communities of related genes. Proc. Natl. Acad. Sci. U.S.A. 101, 5241–5248.
doi: 10.1073/pnas.0307740100

Wu, Y., Luo, S., Yin, X., He, D., Liu, J., Yue, Z., et al. (2019). Co-expression of
key gene modules and pathways of human breast cancer cell lines. Biosci. Rep.
39:BSR20181925. doi: 10.1042/BSR20181925

Xiao, B., Chen, L., Ke, Y., Hang, J., Cao, L., Zhang, R., et al. (2018). Identification of
methylation sites and signature genes with prognostic value for luminal breast
cancer. BMC Cancer 18:405. doi: 10.1186/s12885-018-4314-9

Yang, Y., Han, L., Yuan, Y., Li, J., Hei, N., and Liang, H. (2014). Gene co-expression
network analysis reveals common system-level properties of prognostic genes
across cancer types. Nat. Commun. 5:3231. doi: 10.1038/ncomms4231

Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y., and Kolpakov, F. (2018).
GTRD: a database on gene transcription regulation—2019 update. Nucleic
Acids Res. 47, D100–D105. doi: 10.1093/nar/gky1128

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterprofiler: an r package
for comparing biological themes among gene clusters. Omics 16, 284–287.
doi: 10.1089/omi.2011.0118

Zamora-Fuentes, J. M., Hernandez-Lemus, E., and Espinal-Enríquez, J.
(2020). Gene expression and co-expression networks are strongly altered
through stages in clear cell renal carcinoma. Front. Genet. 11:1232.
doi: 10.3389/fgene.2020.578679

Zhang, M. H., Man, H. T., Zhao, X. D., Dong, N., and Ma, S. L. (2014). Estrogen
receptor-positive breast cancermolecular signatures and therapeutic potentials.
Biomed. Rep. 2, 41–52. doi: 10.3892/br.2013.187

Zhang, T., Hu, H., Yan, G.,Wu, T., Liu, S., Chen,W., et al. (2019). Long non-coding
rna and breast cancer. Technol. Cancer Res. Treat. 18:1533033819843889.
doi: 10.1177/1533033819843889

Zhu, J., Zhang, B., Smith, E. N., Drees, B., Brem, R. B., Kruglyak, L., et al. (2008).
Integrating large-scale functional genomic data to dissect the complexity
of yeast regulatory networks. Nat. Genet. 40, 854–861. doi: 10.1038/ng.
167

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 García-Cortés, Hernández-Lemus and Espinal-Enríquez. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Genetics | www.frontiersin.org 16 April 2021 | Volume 12 | Article 629475

https://doi.org/10.1007/s10549-017-4652-3
https://doi.org/10.1038/s41598-017-17836-7
https://doi.org/10.1038/35021093
https://doi.org/10.1016/j.molonc.2010.11.003
https://doi.org/10.1371/journal.pone.0003911
https://doi.org/10.1073/pnas.1911708117
https://doi.org/10.1186/s13059-015-0719-9
https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1038/onc.2014.323
https://doi.org/10.1038/nature05329
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.3389/fonc.2020.00097
https://doi.org/10.1186/s12881-019-0909-5
https://doi.org/10.1186/gm62
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1038/s41389-020-0239-7
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.7150/ijms.47356
https://doi.org/10.1101/2020.08.16.253377
https://doi.org/10.1073/pnas.0307740100
https://doi.org/10.1042/BSR20181925
https://doi.org/10.1186/s12885-018-4314-9
https://doi.org/10.1038/ncomms4231
https://doi.org/10.1093/nar/gky1128
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3389/fgene.2020.578679
https://doi.org/10.3892/br.2013.187
https://doi.org/10.1177/1533033819843889
https://doi.org/10.1038/ng.167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations
	1. Background
	2. Results and Discussion
	2.1. Community Structure Displays Loss of trans- Co-expression
	2.2. Specific trans- Communities in the Luminal A GCN Are Highly Associated With Biological Processes
	2.3. trans- Communities in the Luminal A Network Present Different Patterns of Differential Expression
	2.4. Effects of Transcription Factors and CNAs in trans- Communities
	2.5. cis- Communities Are Enriched With Deletion Peaks
	2.6. cis- Communities Are Not Bound by CTCF Binding Sites
	2.7. Loss of Long-Distance Co-expression Does Not Depend on the Correlation Measure
	2.8. Loss of Long-Distance Co-expression Does Not Depend on the MI Threshold Value
	2.9. Implications of Network Topology in the Context of Luminal a Breast Cancer

	3. Concluding Remarks
	4. Methods
	4.1. Databases
	4.2. Data Processing
	4.3. Network Construction
	4.4. Community Detection and Assortativity Calculation
	4.5. Overrepresentation Analysis
	4.6. Differential Expression Analysis
	4.7. Transcription Factors Identification
	4.8. CTCFs

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


