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ABSTRACT Multiple molecular assays now enable high-throughput profiling of the
ecology, metabolic capacity, and activity of the human microbiome. However, to
date, analyses of such multi-omic data typically focus on statistical associations, of-
ten ignoring extensive prior knowledge of the mechanisms linking these various fac-
ets of the microbiome. Here, we introduce a comprehensive framework to systemati-
cally link variation in metabolomic data with community composition by utilizing
taxonomic, genomic, and metabolic information. Specifically, we integrate available
and inferred genomic data, metabolic network modeling, and a method for predict-
ing community-wide metabolite turnover to estimate the biosynthetic and degrada-
tion potential of a given community. Our framework then compares variation in pre-
dicted metabolic potential with variation in measured metabolites’ abundances to
evaluate whether community composition can explain observed shifts in the com-
munity metabolome, and to identify key taxa and genes contributing to the shifts.
Focusing on two independent vaginal microbiome data sets, each pairing 16S com-
munity profiling with large-scale metabolomics, we demonstrate that our framework
successfully recapitulates observed variation in 37% of metabolites. Well-predicted
metabolite variation tends to result from disease-associated metabolism. We further
identify several disease-enriched species that contribute significantly to these predic-
tions. Interestingly, our analysis also detects metabolites for which the predicted
variation negatively correlates with the measured variation, suggesting environmen-
tal control points of community metabolism. Applying this framework to gut micro-
biome data sets reveals similar trends, including prediction of bile acid metabolite
shifts. This framework is an important first step toward a system-level multi-omic in-
tegration and an improved mechanistic understanding of the microbiome activity
and dynamics in health and disease.

IMPORTANCE Studies characterizing both the taxonomic composition and meta-
bolic profile of various microbial communities are becoming increasingly common,
yet new computational methods are needed to integrate and interpret these data in
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terms of known biological mechanisms. Here, we introduce an analytical framework
to link species composition and metabolite measurements, using a simple model to
predict the effects of community ecology on metabolite concentrations and evaluat-
ing whether these predictions agree with measured metabolomic profiles. We find
that a surprisingly large proportion of metabolite variation in the vaginal micro-
biome can be predicted based on species composition (including dramatic shifts as-
sociated with disease), identify putative mechanisms underlying these predictions,
and evaluate the roles of individual bacterial species and genes. Analysis of gut mi-
crobiome data using this framework recovers similar community metabolic trends.
This framework lays the foundation for model-based multi-omic integrative studies,
ultimately improving our understanding of microbial community metabolism.

KEYWORDS: microbiome, multi-omic, metabolic modeling, community composition,
metabolomics

The human microbiome carries out a plethora of metabolic processes that are often
vital to the health of the host. Microbiome metabolic activity can, for example,

impact energy harvest, inflammation, and infection susceptibility (1–3), suggesting that
alterations in community metabolism may be an important mechanism underlying an
array of poorly understood associations between the composition of the microbiome
and disease (4–6). Indeed, the metabolic capacity of the gut microbiome appears to be
relatively constant across healthy individuals (7), and yet, it can vary dramatically in
response to perturbations like antibiotic treatment or diet changes (8, 9) or in a variety
of disease states (10, 11).

Understanding the relationship between the composition of the microbiome and its
metabolic activity (and ultimately, the development of microbiome-associated dis-
eases) is therefore an important task. To this end, numerous recent studies have paired
comprehensive taxonomic characterization (based on, for example, 16S rRNA gene
assays) with metabolomic profiling, aiming to reveal and evaluate the mechanisms
underlying taxonomic and metabolic shifts in the microbiome across diverse environ-
ments and disease states (12–27). To date, however, methods for integrating taxonomic
and metabolomic data are lacking, and consequently, the vast majority of these studies
have analyzed community composition and metabolite profiles independently or
focused on identifying statistical associations between these two data types.

While the discovery of such associations is clearly an important first step in describ-
ing the function and dynamics of the microbiome in health and disease, it ignores
extensive prior knowledge of genomic capacities and metabolic mechanisms that link
community ecology and metabolism and may accordingly fall short of gaining a
systems-level mechanistic understanding of such complex ecosystems. For example, a
strong correlation between a species and a metabolite may have very different inter-
pretations depending on whether the species in question is known to degrade that
metabolite or to synthesize it. Integrating the taxonomic and metabolomic profiles of
the system under study therefore requires not only linking these two data sets but also
the incorporation of prior reference information about the metabolic capacities of
various community members and the way such capacities interact. Specifically, an
integrated analysis could shed light on the extent to which variation in a metabolite of
interest can be explained by observed shifts in community ecology and metabolic
capacity, as opposed to alternative environmental factors. This is crucial for gaining a
comprehensive understanding of the microbiome and for future efforts to modulate
metabolic phenotypes via microbiome-based interventions.

Several recent studies have taken initial steps to address this challenge. One avenue
of research aims to reconstruct predictive metabolic models of community metabolism
in various settings (using, for example, constraint-based modeling), which can then
potentially be validated by metabolomic profiling (28–30). This approach, however,
depends on relatively complete and high-quality metabolic models of the species
involved and, therefore, may not scale well to complex communities with partially
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characterized taxa. Other studies have used information about enzymatic reactions to
infer metabolic turnover potential from taxonomic composition and metagenome
content (31, 32). However, these studies focused on comparing predicted metabolic
potential to environmental parameters or community dysbiosis rather than to detailed,
large-scale metabolomic phenotypes. McHardy et al. (33) used correlation network
analysis to cluster metabolites and evaluated the correspondence between the result-
ing clusters and metabolically related pathway abundances, an approach that success-
fully quantified relationships between functional pathways and metabolites but that
was still primarily association based and difficult to interpret. Sridharan et al. (34)
similarly focused on a small subset of metabolism, constructing a reference genome-
based supraorganism metabolic network model and applying a pathway construction
algorithm to predict bioactive aromatic microbial metabolites likely to be found in the
human gut. These studies all show the tremendous promise of linking microbial
composition to metabolomic variation based on prior knowledge of the various met-
abolic processes, and yet, they are still limited in scale. Thus, the development of a
systematic, mechanistic approach for evaluating the relationships between the com-
munity ecology and metabolite shifts is called for.

We therefore present here a comprehensive analytical multi-omic framework for
integrating community structure and metabolic profile, aiming to elucidate mecha-
nisms underlying metabolic variation in the human microbiome. Our framework first
infers community gene content based on available and inferred genomic information
and adapts a method originally developed to interpret environmental metagenomes
(31) to approximate the potential effect of the microbiome on each metabolite. We
systematically compare these estimates to measured metabolome variation and inter-
pret the results in terms of metabolic mechanisms based on taxonomic shifts. We apply
this framework to two data sets pairing community taxonomic composition and global
metabolite profiles from the vaginal microbiome, as well as to data sets from the gut
microbiomes of humans and mice. Using this framework, we identify a large number of
metabolites whose variation across samples can be explained (or “predicted”) by shifts
in microbial community composition and the metabolic capacity of the various mem-
ber species. We further use this approach to identify species and reactions that are key
contributors to the calculated communitywide metabolic potential and highlight pu-
tative alternative mechanisms for poorly predicted metabolites. Importantly, our anal-
ysis detects broad trends in metabolite predictability across data sets and serves as a
proof of concept of the use of systematic mechanism-based integration of multi-omic
data to gain new insight into microbial community metabolism.

RESULTS
A metabolic model-based framework for integrating taxonomic and metabolomic
data. We developed a computational framework to systematically link variation in
community ecology with observed variation in its metabolic phenotype (Fig. 1). Our
framework specifically assesses whether the measured between-sample variation in
metabolite abundances can be explained by observed shifts in species composition and
information about the metabolic capacity of each species.

Briefly, our framework first infers the metagenome content for each sample based
on taxonomic composition and available or inferred reference genome information
(35). Inferred metagenomes are then normalized using a previously introduced method
(MUSiCC) (36), resulting in an estimate of the average copy number of each gene across
microbiome genomes. Next, our framework applies a method for predicting relative
metabolic turnover (31), using a metabolic network model to translate the resulting
enzymatic gene abundance estimates into community-based metabolite potential
(CMP) scores. These scores represent the relative capacity of the community in a given
sample to generate or deplete each metabolite, based on metabolic reference infor-
mation that links enzymes to their substrates and products (37). To evaluate these
scores, our framework then compares for each metabolite the differences in CMP scores
between all pairs of samples with the differences in the corresponding measured
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metabolite abundance. Using these pairwise comparisons and a statistical test for
correlation between two distance matrices, our framework evaluates whether there is
an agreement between variation in predicted CMP scores and variation in measured
metabolite abundances. We term those metabolites for which this agreement is
statistically significant “well-predicted.” Finally, our framework uses a perturbation-
based approach to identify the bacterial species, genes, and reactions that are the key
mechanistic contributors to calculated CMP scores. A more detailed description of this
framework can be found in Materials and Methods.

Metabolic model-based prediction explains metabolite variation in the
vaginal microbiome based on taxonomic shifts. We first applied our framework to
data sets pairing bacterial community and metabolomic profiles from the vaginal
microbiome, a relatively simple community typically dominated by a limited number of
species. We specifically analyzed two independently obtained data sets (each consist-
ing of ~70 samples; see Table S1 in the supplemental material), characterizing the
vaginal microbiomes and metabolomes of healthy women and women with bacterial
vaginosis (BV) (22). Samples from the first data set (data set 1) were analyzed for
taxonomic composition using quantitative PCR (qPCR) for 14 vaginal bacterial species
and for metabolites using global liquid chromatography-mass spectrometry (LC-MS)
and gas chromatography (GC)-MS, whereas samples from the second data set (data
set 2) were analyzed using broad-range 16S rRNA gene sequencing and targeted LC-MS
(see Materials and Methods).

In each of these data sets, we used our framework to calculate the CMP score for
each metabolite and in each sample. Of the metabolites assayed in each data set,
roughly 50% could not be associated with a CMP score due to missing or noninfor-
mative annotated metabolic data (see Materials and Methods; see also Table S1 in the
supplemental material) and were accordingly discarded from downstream analysis. The
CMP scores of the remaining metabolites were compared to measured metabolite
abundances as described above to examine whether the observed variation in the
metabolite abundances across samples can be explained mechanistically by variation in
the set of species comprising the community. Surprisingly, we found that 40.2% of the
metabolites analyzed in data set 1 and 34.5% of metabolites analyzed in data set 2 were
well-predicted (see Table S2), suggesting that for a substantial fraction of metabolites,
information about the metabolic capabilities for the member species is sufficient to
explain observed differences in metabolite abundance. We further confirmed that the

FIG 1 Framework for integrating taxonomic and metabolomic data. Species composition is first
used to predict the metagenome’s gene content, which is then paired with reaction information to
estimate the community metabolic potential (CMP) for each sample and metabolite. Variation in
predicted CMP scores is compared to variation in measured metabolite abundances (using pairwise
differences) to identify well-predicted metabolites. A perturbation-based approach is used to
additionally identify key species, gene, and reaction contributors to CMP scores.
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identification of well-predicted metabolites and the correlations observed between
calculated CMP scores and measured abundances are not artifacts of the data covari-
ance structure, using randomized metabolic networks to generate a predictability null
model (see Materials and Methods). We found that randomized networks produced a
consistently lower proportion of well-predicted metabolites than the real network (P �

0.01 for both data sets). Metabolites analyzed in both data sets were generally pre-
dictable at similar levels (� � 0.63, Spearman correlation test) (see Fig. S1). Finally, we
also observed a significant overlap between metabolites for which variation in CMP
scores was significantly correlated with variation in measured metabolite abundance in
both data sets 1 and 2 and in a simple monoculture-based Escherichia coli data set (P �

0.04; Fisher exact text) (see Text S1 and Fig. S2). This finding suggests that our
framework may identify consistent control points in microbial metabolism.

We next examined whether well-predicted metabolites tend to be associated with
specific metabolic categories or host state. We found that well-predicted metabolites
spanned a range of metabolic categories (Fig. 2A). Specifically, well-predicted metab-
olites represent all major metabolic categories, with many well-predicted metabolites
being associated with amino acid metabolism, an important category of microbe-
mediated processes in this environment. Additionally, 60% and 40% of the strongly
BV-enriched metabolites, including known metabolic markers of BV (38), such as the
amino acid catabolites N-acetylputrescine, spermidine, and citrulline, were predicted
well in each data set (Fig. 2B).

Interestingly, we also observed a substantial portion of metabolites for which
variation in the CMP scores was strongly negatively correlated with variation in
measured abundances (25.6% in data set 1 and 29.3% in data set 2; see Table S2 in the
supplemental material). These “anti-predicted” metabolites were often linked to a
well-predicted metabolite either by a reversible reaction (which is not factored into
CMP score calculation) (7 and 4 metabolite pairs in data set 1 and 2, respectively) or by
a reaction synthesizing the anti-predicted metabolite from a well-predicted metabolite
(6 and 2 metabolite pairs). For example, in data set 1, glutamate is well-predicted, while
glutamine, a metabolite that can be synthesized from glutamate, is anti-predicted,
suggesting that other, unaccounted-for factors influence its abundance in this envi-
ronment. Overall, anti-predicted metabolites were adjacent to well-predicted metabo-
lites more frequently than expected by chance (15 and 8 metabolite pairs, P � 0.005
and P � 0.03 in data set 1 and 2, respectively, by a permutation-based test; see
Materials and Methods). Such anti-predicted metabolites may be the result of missing
information about community composition or genomic capacities. However, they may
also point to environmentally regulated points in metabolism (as opposed to

FIG 2 Metabolite predictability across metabolic categories (A) and disease states (B) in the vaginal
microbiome. Well-predicted metabolites are defined as those for which variation in CMP scores is
significantly correlated (using a Mantel test) with variation in measured metabolite abundance at
a false discovery rate (FDR) of 0.01. Anti-predicted metabolites are similarly defined as those for
which variation in CMP scores is significantly negatively correlated with variation in measured
metabolite abundances (FDR 0.01). Metabolic categorization is based on KEGG data, and disease
enrichment is based on a Wilcoxon rank sum test for association with bacterial vaginosis (BV) with
a Bonferroni-corrected P value of <0.1.
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microbiome-controlled metabolites), where an environmental change in metabolite
abundance and nutrient availability give rise to taxonomic shifts in the microbiome. Put
differently, in contrast to well-predicted metabolites that are likely produced by the mi-
crobiome, so that an increase in their abundance correlates with an increase in the
abundance of species that have the capacity to synthesize them, an increase in the
abundance of anti-predicted metabolites can potentially be introduced by the envi-
ronment and selects for species that have the capacity to degrade them (see Discus-
sion).

A small set of BV-enriched bacterial species explains a large portion of the
metabolome variation. We next examined the contribution of individual species to
the calculated CMP scores of each metabolite. We quantified each species’ contribution
as the correlation between a CMP score that is calculated based on that species alone
(e.g., ignoring all other species in the community) and the community-wide CMP score
described above (Materials and Methods). We defined species for which this correlation
was above 0.5 as key contributors. We first focused on data set 1, in which only a small
number of species was assayed but the availability of absolute concentration data
(owing to the use of qPCR) may better distinguish key species in the community. In
total, we found that 10 of the 11 species analyzed in data set 1 were key contributors
to at least one metabolite. Importantly, the vast majority of metabolites (93.9%) had 4
or fewer key contributors, yet the particular combination of species varied widely across
metabolites. This suggests that shifts in the abundance of each metabolite (and in
particular shifts associated with the BV state) may be attributed to a small number of
species rather than to community-wide dysbiosis. For instance, although both
N-acetylputrescine and citrulline are BV-enriched polyamine metabolites, the increased
abundance of N-acetylputrescine in BV is driven in both data sets mostly by the
genomic capacities and variation in the abundance of Prevotella species, while citrul-
line’s enrichment is driven primarily by Atopobium vaginae and Eggerthella. Species
contributing to the CMP scores of anti-predicted metabolites also recover known
processes: for example, Lactobacillus iners is the only key species contributor driving the
anti-prediction of glycerol in data set 1 (due to L. iners’ genome encoding glycerol
utilization genes). A recent metatranscriptomic study of vaginal L. iners found evidence
that this species is largely the only member of this community that uses glycerol as a
carbon source (39), which combined with our results, suggests that a vaginal environ-
ment with glycerol availability may promote L. iners growth.

We further examined the number of metabolites (and specifically, well-predicted
metabolites) for which each species was a key contributor to CMP score calculation. We
found that in data set 1, Eggerthella sp. 1 and Megasphaera type 1 were key contributors
to a particularly high number of metabolites relative to the contributions of other
species (Fig. 3). BV-enriched metabolites that were well-predicted primarily by these
two species alone include N-acetylneuraminate, ethanolamine, and the lipid metabo-
lites 4-trimethylaminobutanoate/gamma-butyrobetaine and 3-methyl-2-oxobutanoate
(see Fig. S3 in the supplemental material). Notably, these are neither the most abun-
dant nor the most variable species in this data set, although Eggerthella sp. 1 is the most
differentially abundant species between healthy and BV samples based on Wilcoxon
rank-sum tests (P � 10�8), whereas Megasphaera is fifth most differentially abundant
(P � 10�9). Eggerthella also has the largest genome of any of the analyzed species in
terms of the number of protein-coding genes (2,936 genes). Combined, these findings
illustrate that the species contributing most significantly to potential shifts in disease-
associated metabolic phenotypes may not necessarily be the most abundant or most
variable species and that observed metabolic shifts are the product of complex
dependencies between ecological dynamics and metabolic capacity.

These trends are partially recapitulated in data set 2 (see Fig. S4 in the supplemental
material). Specifically, 31 of the 171 operational taxonomic units (OTUs) in this data set
were key contributors to at least one metabolite. Again, most metabolites (64%) had 4
or fewer key contributors, but the combination of OTUs varied across metabolites. Of
the 42 metabolites analyzed in both data sets, 26 share at least one key contributing
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genus, including 9 of the 11 metabolites that were well-predicted in both data sets (see
Fig. S4B). Interestingly, however, the OTUs that contributed to the CMP scores of the
most well-predicted metabolites in data set 2 included an OTU (227000) identified as
BVAB1, an OTU (4377809) corresponding to the bacterium Mageeibacillus indolicus
(previously known as BVAB3), an OTU corresponding to Prevotella amnii (663885),
another Prevotella OTU (403822), and an OTU in the genus Parvimonas (132546) (of
which only M. indolicus and P. amnii were analyzed in data set 1). An OTU correspond-
ing to the Eggerthella species noted in data set 1 was also a key contributor to many
well-predicted metabolites. Relatively low contributions to CMP scores by Lactobacillus
crispatus (typically associated with health) and Atopobium vaginae were consistent
between the two data sets. Given the difference in taxonomic profiling methods
between the two data sets (qPCR versus 16S rRNA gene sequencing), the difference in
the way genomic content was inferred (reference genomes versus PICRUSt-based
predictions), missing reference genomic information for three species assayed in data
set 1, and the focus on selected metabolites of interest in data set 2, the variation in the
key contributors obtained is perhaps not surprising. For example, the increased impor-
tance of M. indolicus in data set 2 could be a function of differences in the features of
metabolites assayed and analyzed between the two data sets, and/or it could be from
differences in reference information; a total of 88 of 732 Kyoto Encyclopedia of Genes
and Genomes (KEGG) orthology groups (KOs) differed in copy number between the
reference genome used for prediction in data set 1 and the predicted genome content
for the corresponding OTU in data set 2. The full list of key species contributors can be
found in Table S2.

Well-predicted metabolites tend to be involved in condition-specific me-
tabolism. We next set out to identify key gene contributors to each metabolite’s CMP
score, by calculating the correlation between the original CMP scores and a CMP score
calculated when the link between the gene in question and the metabolite was deleted

FIG 3 Key species contributors to metabolites in the vaginal microbiome. Each species that
participated in the calculation of CMP scores in data set 1 is shown along the y axis. The x axis
indicates the numbers of well-predicted and anti-predicted metabolites (as well as those with
nonsignificant predictions) for which that species was a key contributor (see Materials and Methods).
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from the metabolic model (Materials and Methods). Genes for which this correlation
was �0.5 were considered key contributors for that metabolite, and any reaction
catalyzed by the enzyme encoded by that gene was considered a key reaction
contributor. This analysis relates specific combinations of reaction information and
genomic shifts to the predicted potential for metabolite variation, allowing us to
examine whether our approach recovers known metabolic mechanisms (see Fig. S3 in
the supplemental material). For example, the CMP scores for well-predicted amino acid
derivatives, including N-acetylputrescine and citrulline, were driven by synthesis en-
zymes forming part of amino acid catabolism pathways and encoded by BV-associated
bacteria (see Fig. S3A and B). A subset of amino acids, including glutamate and
phenylalanine, were well-predicted on the basis of a combination of available biosyn-
thesis pathways and the predicted abundance of tRNA synthetase genes and degra-
dation pathways. Pyruvate levels were slightly lower in BV samples and well-predicted
primarily by acetolactate synthase, which catalyzes the first step diverting pyruvate to
branched-chain amino acid synthesis. This mechanism is consistent with the overall
shift from carbohydrate-based to amino acid-based metabolism that is typical of the BV
state. In another example, Srinivasan et al. (22) have noted that the depletion of
reduced glutathione in BV samples is surprising, as the BV vagina is a relatively reduced
environment (40). Our framework predicts this shift in glutathione well in both data sets
(prediction levels of 0.49 and 0.30 in data sets 1 and 2, respectively) and attributes it to
a lack of glutathione peroxidase genes in Lactobacillus species that predominate in
healthy vaginal samples (see Fig. S3C). Genes in cofactor synthesis pathways also
tended to contribute to predictive CMP scores for metabolites in these pathways,
including nicotinate, NAD�, and FAD�.

We further characterized the set of key gene contributors of each metabolite and
explored their relationships with metabolite predictability (see Fig. S5 in the supple-
mental material). Most metabolites had only a small number of genes with the potential
to enzymatically impact them, and of these, most were identified as key contributors.
Interestingly, well-predicted metabolites tended to have a higher proportion of the set
of relevant genes as key contributors in both data sets (P � 0.002 and P � 0.09 in data
sets 1 and 2, respectively; Wilcoxon rank-sum test). Surprisingly, the key genes for
well-predicted metabolites were less variable across samples than those for other
metabolites (P � 0.08 and P � 0.002 in data sets 1 and 2, respectively; Wilcoxon
rank-sum test). We also examined whether the key gene contributors for each metab-
olite encoded enzymes solely catalyzing reactions synthesizing the metabolite in
question, degrading it, or both (see Materials and Methods). We found that BV-enriched
metabolites with key gene contributors that are associated only with synthesis enzymes
were almost always well-predicted (11 of 13 metabolites across both data sets) (Fig. 4;
see also Fig. S6). Conversely, metabolites depleted in the BV state and with key gene
contributors encoding only degradation enzymes also tended to be well-predicted (18
of 31 metabolites across both data sets) (Fig. 4; see also Fig. S6). These trends suggest
that the most predictable variation resulted from the transition between these two
conditions, in particular, the impact of the presence or absence of novel metabolic
synthesis and degradation capacities in BV, rather than shifts in the abundance of more
widely found metabolic pathways.

Application to gut microbiome communities reiterates metabolic trends
and highlights community complexity. Finally, we explored the application of this
framework to samples from gut microbial communities, bearing in mind the caveats of
increased environmental influences resulting from diet, as well as increased community
complexity. Specifically, we applied this framework to two additional data sets, one
evaluating the impact of antibiotic treatment with cefoperazone on the cecal contents
of specific-pathogen-free mice (data set 3) (23) and another profiling the microbiome
and metabolome of humans with inflammatory bowel disease and healthy controls
(data set 4) (15, 41). Because the second study used shotgun metagenomic sequencing,
in its analysis, we did not need to predict metagenome content from community
composition and instead estimated gene abundances directly (see Materials and
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Methods) (42). As expected given the more complex and unstable community envi-
ronment, we observed lower proportions of well-predicted metabolites in these data
sets (see Fig. S7 in the supplemental material), but we also identified interesting
patterns in the relationships between variation in community composition and metab-
olism in these settings.

Data set 3 recapitulated many metabolite predictability trends observed in our
analysis of the vaginal microbiota, including successful prediction of metabolite varia-
tion and the effects of perturbation on community ecology and metabolism. In total, 39
of the 116 metabolites (33.6%) assayed and analyzed in this data set were well-
predicted. Interestingly, we observed substantial overlap in the identities of the me-
tabolites that were well-predicted and anti-predicted in this data set with those
predicted similarly in data sets 1 and 2, as well as a general positive correlation between
prediction levels across data sets (Fig. 5). One well-predicted metabolite of interest is
gamma-aminobutyrate (GABA), which was enriched in the subset of samples from mice
6 weeks after antibiotic treatment. Key contributor analysis indicated that increased
synthesis from 4-aminobutanal by an OTU in the genus Oscillospira and a Clostridiales
OTU drove the CMP score variation for this metabolite. Several products of carbohy-
drate metabolism were also well-predicted, including the sugars stachyose and man-
nose. Analysis of key contributors revealed that the oligosaccharide stachyose is
predicted on the basis of its depletion by glycosidases from diverse Firmicutes taxa,
including Ruminococcus and Turicibacter, while mannose is predicted on the basis of
increased production via glycan degradation from mannoglycans by several OTUs in
the Clostridiales order in healthy samples. These shifts reflect the impacts of increased
glycan degradation potential in the microbiome of mice from the control cohort
compared to those treated with antibiotics. As in the BV data sets, synthesis products
found to be more abundant in the more diverse microbiome of the control cohort were
most likely to be predictable (48% of 29 such metabolites were well-predicted).

In data set 4, only a very low proportion of the metabolites analyzed were well-
predicted (6 of 31), which is likely due to a markedly smaller sample size and potentially
noisier metabolomic data and identifications. Interestingly, however, four of these six

FIG 4 Trends in metabolite predictability in terms of key gene contributors. Area plots depict the
numbers of metabolites in data set 1 whose CMP scores are driven by synthesis, by degradation, or
by both in relation to their association with the host state and their predictability. The width of each
box corresponds to the number of metabolites associated with each host disease state (enriched in
BV samples, depleted in BV samples, or neither), and the height corresponds to the number of
metabolites that are well-predicted, anti-predicted, or not significantly predicted (also indicated by
color). See Fig. S6 in the supplemental material for a similar plot describing metabolite prediction in
data set 2.
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metabolites (chenodeoxycholate, glycochenodeoxycholate, glycocholate, and tauro-
cholate) are primary conjugated or unconjugated bile acids, which form part of a tightly
regulated pathway of host-microbial cometabolism with hormonal signaling functions.
This enrichment of bile acid-associated products among the well-predicted metabolites
(P � 0.03; Fisher exact test) highlights the important role of microbiome ecology in
microbial metabolism of bile acids in the gut. Specifically, higher levels of bile acid
metabolites in irritable bowel disease cases have been noted previously in this data set
(41). Our results show that this shift in bile acids is concordant with variation in the
abundances of microbial bile salt hydrolase genes.

DISCUSSION

Above, we have introduced a novel analytical framework that represents an important
step toward a principled systematic and mechanistic integrative analysis of microbial
community composition and metabolomic data. Our framework goes beyond ad hoc
correlation-based analysis and aims to assess the correspondence between ecology
and metabolic phenotype based on the existing body of knowledge about microbial
genomes and metabolic capacities. By evaluating metabolite variation in terms of the
functional implications of ecological shifts, we identified a large share of the vaginal
metabolome whose variation can be explained by shifts in ecology-based and
community-wide enzymatic potential. This high predictability is somewhat surprising,
as our framework ignores many factors that could potentially impact this link, including
strain variation, gene and protein expression, and metabolic fluxes (14, 43, 44). This
finding suggests that ecological dynamics and their impact on community metabolic
capacities likely play a major role in mediating broad metabolic differences between
microbiomes.

Furthermore, our characterization of key species and gene contributors to calculated
CMP scores and, consequently, to the predictability of each metabolite provides
evidence that particular BV-associated species have substantial effects on the metabo-
lome. By comprehensively identifying species whose enzymatic capacity and variation
across samples are consistent with the observed shift in the abundance of a particular

FIG 5 Metabolite predictability is consistent between vaginal and mouse cecal data sets. The plot
shows the relationship between the level of predictability for each metabolite (measured as the
Spearman correlation between pairwise differences in calculated CMP scores and pairwise differ-
ences in measured metabolite abundances) in data set 1 (human vaginal microbiome samples) and
data set 3 (mouse gut samples). Colors indicate metabolites that are well-predicted in both data sets
or anti-predicted in both data sets. Metabolites that are well-predicted in both data sets are enriched
for amino acid catabolites, including phenylacetate, spermidine, and beta-alanine.
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metabolite, we were able to gain deeper insight into the drivers of species-metabolite
dynamics in the vaginal microbiota and bacterial vaginosis. Specifically, our analysis of
key species contributors identified a subset of BV-associated species (Eggerthella sp. 1,
Megasphaera type 1, and Mageeibacillus indolicus) as particularly likely to be important
drivers of metabolic variation in this environment. The low contributions of lactobacilli
suggest that their importance in the vaginal microbial ecosystem is not described well
by current reference knowledge of their role in canonical pathways. Alternatively, this
can be attributed to having twice as many women with BV as without BV in our data
sets, of which only some women without BV had abundant L. crispatus. More generally,
we observed that the abundance of metabolic capacities (based on taxonomic com-
position) is often sufficient to explain measured variability in the abundance of many
BV-associated metabolites. This intriguing result suggests that while information about
ecological shifts may not necessarily provide a comprehensive understanding of
changes in flux in core metabolic reactions, it is often sufficient to account for the
accumulation or depletion of many more peripheral metabolites that vary most dra-
matically between health and dysbiosis.

We also extended this method to analyze data sets from the gut microbiota of mice
and humans and identified preliminary mechanistic links in these complex environ-
ments. The lower predictability in this context likely reflected the greater complexity of
these communities and the plethora of factors, both external and internal to the
community, that can potentially affect metabolite abundances. Studying the impact of
such factors on various metabolic processes is an important direction for future
research. Nevertheless, the overlap observed here in the set of metabolites that are
well-predicted across a single organism in culture (E. coli), a simple community (the
vaginal microbiome), and a complex host-associated community (gut microbiome) may
represent shared control points in microbial metabolic networks. This consistency
indicates that across multiple environments, the limiting factor for accumulation or
depletion of these metabolites is the presence or abundance of microbial enzymatic
potential that can directly act on them. This finding further reinforces the credibility of
our framework and the shared features of microbial metabolic regulation across all of
these settings. In addition, the predictability of the metabolic shifts associated with
major ecological perturbations across data sets is consistent with previous metabolic
regulation findings that core reactions tend to be regulated by a precise balance
between precursor metabolite concentrations and enzyme concentrations, and that
intracellular concentrations of core metabolites are generally robust in response to
perturbations (45, 46).

One obvious caveat of our framework and of the resulting findings is the inability to
distinguish between failure to predict due to missing reference information (e.g.,
incomplete genome annotation) and failure due to a range of alternative mechanisms
regulating metabolite shifts and environmental inputs and outputs. For example, our
framework currently does not capture host metabolism, and future work may extend
our model to include human gut metabolic processes. Similarly, our model does not
consider signaling processes, transcriptional regulation, or bounds on metabolic fluxes.
This limitation is further compounded by the use of a broad reaction database, such as
KEGG. For example, our model only assigns effects for enzymes catalyzing nonrevers-
ible reactions. This approach presumably captures major metabolic fluxes for well-
characterized microbes, but the information lost from reversible reactions may hinder
our ability to predict metabolites in other pathways. An extended framework could, for
example, infer reaction directionality from pathway context or constraint-based mod-
eling, or directly from metabolomic data using a machine learning approach.

Such improvements could also help clarify the interpretation of anti-predicted
metabolites, which spanned roughly a third of all predictions across data sets and can
be explained by several potential mechanisms. Anti-predicted metabolites whose CMP
scores are driven by degradation reactions, especially with downstream well-predicted
metabolites, are suggestive of environmentally regulated metabolite changes that
cause taxonomic shifts based on nutrient availability, such as the example of glycerol
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anti-predicted by L. iners. Other anti-predicted metabolites may be explained by
missing reaction information. For example, putrescine and cadaverine are both anti-
predicted based on a high correlation with the abundance of genes coding for enzymes
that utilize these metabolites to synthesize further polyamine derivatives (N-
acetylputrescine and aminopropylcadaverine, respectively). This finding suggests that
other enzymes that are currently not incorporated into our predictions (including
synthesis reactions that are present but lacking information on reaction directionality)
or enzymes from other, unmeasured microbes in these samples are likely important for
driving the accumulation of these metabolites. In other cases, anti-prediction may
suggest alternative metabolic mechanisms controlling metabolite variation, beyond
direct enzymatic regulation.

Finally, the trends revealed by our analysis highlight the tight coordination of
various metabolic processes even in the context of complex communities. Our frame-
work evaluated each metabolite independently, but the resulting predictability trends,
as well as evidence from other studies (14, 22), show that dramatic shifts in metabolite
abundances occur in a strongly coordinated fashion, through a combination of changes
in substrate and enzyme concentrations mediated by a variable range of taxa. The
analysis framework presented here is an important first step toward deconstructing and
interpreting these relationships in mechanistic detail from comprehensive multi-omic
data. In turn, this mechanistic understanding will be vital to ultimately enable the
rational design of strategies to modify the microbiome and its metabolic phenotype
(47, 48).

MATERIALS AND METHODS
Assembling and processing data sets. We obtained several previously published data sets (15, 22, 23,
41, 45) from publicly available databases or through a collaboration, each pairing 16S rRNA gene-based
taxonomic data with metabolomic profiles. For vaginal samples, DNA was extracted for 16S rRNA gene
analysis from vaginal swabs, and cervicovaginal lavage fluid was collected for metabolomic analysis.
Samples from the first data set (data set 1) were analyzed for taxonomic composition using quantitative
PCR (qPCR) with primers and probes specific for 14 vaginal bacterial species and for metabolites using
global liquid and gas chromatography coupled with mass spectrometry for metabolomics. Samples from
the second data set (data set 2) were analyzed by using broad-range 16S rRNA gene PCR coupled with
high-throughput 454 sequencing of the 16S rRNA gene (Roche) and targeted metabolomics using LC-MS
with multiple-reaction monitoring for 180 compounds, chosen partially based on findings from data
set 1. In data set 3, taxonomic composition was assayed using 454 FLX Titanium sequencing of V3-V5
regions of the 16S rRNA gene, and metabolites were measured using global LC-MS and GC-MS
metabolomics. Data set 4 paired Roche 454 shotgun sequencing of sample DNA with Fourier transform
ion cyclotron resonance mass spectrometry metabolomics. See Table S1 for details about each data set.
Metabolite and transcript (microarray) data for the E. coli data set were downloaded from the supple-
mentary material of reference 45 and from the NCBI GEO database, profiling E. coli grown in culture,
treated to cause five different stress-based perturbations, and assayed before and after perturbation. We
included only one time point before perturbation and one immediately after for each biological replicate
in our analysis. We mapped identified metabolite names to KEGG identifiers (IDs) following the same
approach as for data set 2.

We reprocessed 16S rRNA taxonomic sequencing data sets via a standard closed-reference OTU-
picking pipeline using QIIME version 1.8.0 (49–53) and rarefied the resulting OTU tables to the number
of reads in the lowest-coverage sample. For data set 2, we confirmed that this pipeline produced
taxonomic profiles similar to the ones from the pplacer method used in the original publication (the
Pearson correlation across samples of all genera quantified by both methods was 0.97). We did not
normalize the 16S rRNA gene qPCR data of data set 1. A subset of samples in data set 1 also had
associated 16S rRNA gene sequencing data, on the basis of which we removed one outlier sample whose
sequencing results were dominated by a species not profiled by qPCR. For the E. coli gene expression
data, we used the KEGG application programming interface (API) to map gene IDs to KEGG orthology
groups (KOs) for consistency with the other data sets and used the normalized microarray intensities
provided.

Processing of metabolomic data varied depending on the technology used. For data sets 1 and 3, in
which metabolomic profiles were produced by Metabolon, Inc., and included detailed metabolite
identifications, we filtered out compounds without KEGG identifications and used the raw peak area
values. For data set 2 (generated at the Northwest Metabolomics Research Center) and the E. coli data
set, we used the KEGG API (37) to associate named and measured compounds with KEGG metabolite IDs.
For data set 4, which lacked confident library-based metabolite identifications, we used MetaboSearch
(54) to perform a mass-based search against the Metlin, MMCD, LipidMaps, and HMDB databases (55–58),
with a matching threshold of 1 ppm. The KEGG identifications with the smallest mass difference were
assigned as the putative identification, following Tong et al. (24, 33). When multiple putative identifi-
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cations had the same difference in mass from a peak, preference was given to metabolites in the
metabolic network generated based on species abundances, using genomic information as additional
support for the presence of that metabolite. When multiple putative KEGG identifications remained, one
was randomly assigned to that peak. If multiple peaks mapped to the same KEGG metabolite ID, their
abundances were summed. Metabolites with nonzero abundance in �5 samples were discarded from
downstream analysis.

Predicting metagenome content from taxonomic composition. For data sets 2 and 3, we used
PICRUSt (35) to predict metagenome content across samples, based on taxonomic composition, and
normalized the resulting predictions using MUSiCC (release 1.0) (36). To predict genome content from
the qPCR species abundances in data set 1, we searched IMG for available reference genomes. For 11 of
the 14 species profiled, at least one reference genome was available. When multiple reference genomes
were available for a given species, we selected either the highest quality genome or a genome from a
vaginal isolate (in consultation with the researchers that generated this data set). See Table S2 in the
supplemental material for details about the genomes used. We downloaded KEGG orthology (KO)
annotations for these genomes from IMG (January 2014) and predicted the metagenome as a product
of the reference genome KO annotations and species abundances. For data set 4, orthology group
abundances were estimated directly from shotgun sequencing reads using a BLAST-based annotation
pipeline (42).

Metabolic network reconstruction and CMP score calculation. We adapted the predicted relative
metabolomic turnover (PRMT) method developed by Larsen et al. (31) to estimate the metabolic
potential of a microbial community based on measurements of gene content. This method does not
predict metabolite fluxes or concentrations directly; instead, it synthesizes and integrates information
about gene abundances in terms of KEGG orthology groups and a stoichiometric matrix describing the
quantitative relationship between genes and metabolites to provide an estimate of the way the
community composition may impact each metabolite’s abundance.

To this end, we first created a modified stoichiometric matrix M in which each row represents a
particular metabolite and each column represents a particular gene (KO), such that each cell Mij

represents the combined relative capacity for enzymatic gene j to modify metabolite i (see reference 31).
To create this matrix, we utilized pathway reaction information and stoichiometric coefficients from KEGG
(37). Specifically, for each reaction catalyzed by an enzyme coded by gene x that transforms metabolite
A into metabolite B with stoichiometric coefficients c and d, respectively, we subtract c from MAx and add
d to MBx. To focus our analysis on the primary transformations catalyzed by each enzyme, we only linked
genes to reactions and metabolites that are annotated in KEGG metabolic pathways, using the reaction_
mapformula.lst file from the KEGG database (2013 version). We then filtered this matrix to only include
reactions annotated as occurring in a single direction, ignoring all reversible reactions that cannot
contribute to metabolite predictions and all metabolites involved in only reversible reactions. Lastly, we
performed two additional modifications: first, following previous studies (59, 60), we excluded “currency”
metabolites that are involved in reactions associated with 30 or more genes from the final matrix, and
second, following Larsen et al. (31), we normalized each row of M such that all negative elements sum
to �1 and all positive elements sum to 1.

The resulting matrix accordingly estimates the relative contribution of each gene to the accumulation
or depletion of each metabolite. We then multiply this matrix M with a matrix G that represents the
abundance of each gene in each sample to obtain communitywide metabolic potential (CMP) scores,
capturing the relative capacity of the metagenome content of each sample to create or deplete each
metabolite.

Comparing CMP scores with metabolomic data. Notably, since CMP scores represent relative
predictions, they can only be interpreted in the context of comparisons between samples (assuming
some baseline metabolite profile across samples). Accordingly, to assess how the CMP scores obtained
compare to the metabolomic variation measured, we performed a Mantel test for each metabolite,
assessing the correlation between pairwise differences (across all pairs of samples) in CMP scores and the
corresponding pairwise differences in measured metabolite abundances. We further corrected for
multiple hypothesis testing using a local false discovery rate (FDR) approach implemented in the R
package qvalue (61) and classified metabolites with both a Mantel P value and FDR q value of less than
0.01 as well-predicted. We evaluated the significance of negative pairwise correlations in a similar
manner, classifying metabolites as anti-predicted based on the same significance cutoffs.

Testing significance with randomly shuffled networks and metabolite labels. Given the covari-
ance structure of the data set, we also wished to quantify whether our framework identified more
well-predicted metabolites than expected by chance. To this end, we repeatedly generated randomized
metabolic networks, ran our framework as detailed above using the randomized network to link genes
to metabolites, and compared the number of well-predicted metabolites obtained with these random-
ized networks to the number of well-predicted metabolites obtained with the original network. To
preserve the core structural characteristics of the original network, random networks were generated
following the edge-shuffling approach outlined in reference 62 (exchanging edges 5,000 times to
produce each network).

We also used a permutation-based approach to evaluate whether anti-predicted metabolites are
linked by a metabolic reaction to well-predicted metabolites more frequently than expected by chance.
To this end, we repeatedly permuted the labels of every metabolite in the network while maintaining a
fixed network topology. We counted the number of times an anti-predicted metabolite was connected
to a well-predicted metabolite by a synthesizing reaction, a depleting reaction, or a reversible reaction
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in these permuted networks and compared the resulting distribution with the numbers obtained using
the original data.

Identifying key species and gene contributors. To quantify the contribution of each species to the
calculated CMP score of each metabolite and to identify key species contributors, we examined
the Pearson correlation between the CMP scores obtained for a given metabolite across samples using
the entire community and the CMP score calculated based on each species by itself (i.e., recalculating the
metagenome content and CMP scores based solely on the abundance of each species separately).
Species for which this correlation coefficient for a given metabolite was �0.5 were considered key
species contributors for that metabolite.

To compare key species contributors between data sets 1 and 2, we identified corresponding species
across the two data sets by searching the Greengenes 97% OTU representative sequence set for exact
matches with the PCR primers used by Srinivasan et al. (22) to generate data set 1. Notably, this mapping
identified OTU 4377809 as Mageeibacillus indolicus (previously known as BVAB3), OTU 227000 (mistakenly
characterized as Shuttleworthia) as BVAB1, and OTU 133178 as Eggerthella sp. 1.

To identify key gene contributors to the calculated CMP scores for each metabolite, we examined the
Pearson correlation between the CMP scores obtained for a given metabolite across samples using the
original stoichiometric matrix and the CMP scores calculated when using a matrix in which the link
between the gene in question and the metabolite was deleted (i.e., zeroing the corresponding entry in
the matrix). Genes for which this correlation was �0.5 were considered key contributors for that
metabolite. We further defined any reaction catalyzed by the enzyme coded by that gene as a key
reaction contributor. In addition, if all of the key reaction contributors of a given metabolite produce that
metabolite, we classified that metabolite’s CMP scores as driven primarily by synthesis. We similarly
classified a metabolite whose key reaction contributors all deplete that metabolite as driven primarily by
degradation.

Data availability. All data sets analyzed in this paper are from published work, and the relevant
sequence data can be found at NCBI under accession numbers SRA051298 (data set 1), SRP056030 (data
set 2), SRP033403 (data set 3), and PRJNA46321 (data set 4). The E. coli data analyzed are available from
the supporting information of the pertaining publication (45) and from NCBI GEO series GSE20305.
Taxonomic and metabolomic profiles for each of the data sets analyzed in this work, as well as the code
for our framework and analysis, are available at: http://elbo.gs.washington.edu/download.html.
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mSystems.00013-15.
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