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Abstract

Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious
mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive
processes in a single model. Our model uses Penna’s bit-strings to capture different age-specific mutational patterns. Each
pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes
compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-
frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential
effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with
negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These
results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation
accumulation seems to be unimportant at evolutionarily relevant ages.
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Introduction

The evolution of senescence is explained by two main

approaches: a non-adaptive theory (mutation accumulation [1])

and adaptive theories (antagonistic pleiotropy [2], disposable soma

[3]). Generally, the first approach assumes that senescence is an

evolutionary burden due to late-acting deleterious mutations that

accumulate in the germline, whereas the second assumes that

senescence is a negative byproduct of an adaptive process

constrained by tradeoffs of early benefits against less important

later costs. Both approaches rest on the observation that the force

of selection declines with age. As quantified by Hamilton [4], the

selection pressure on changes in mortality at some particular age

in a non-growing population is proportional to remaining

reproduction at that age. Remaining reproduction is captured

by the sum of age-specific reproductive contributions, weighted by

the probability of being alive at that age. The proportion of

reproduction remaining to an organism at some age inevitably

dwindles over adult ages from 100% at reproductive maturity to

0% at the age of last reproduction. Assuming that mutation

pressure is the same across ages, mutations that take their affect at

late ages accumulate at higher frequencies because of the declining

force of selection.

Which of the two complementary processes – adaptive or non-

adaptive – is more important in explaining senescence? This is still

a major, unresolved question that has spurred important empirical

and theoretical work [5]–[12].

Reliable empirical evidence for adaptive explanations seems

stronger than for non-adaptive ones: tradeoff processes have

received wide experimental support, in the lab [5] and in the wild

[13]–[16], as reviewed by Partridge and Barton [7] and more

recently by Flatt and Promislow [17]. Evidence supporting

mutation accumulation has been found [18], [19], [9], [20], but

the conclusiveness of this evidence has been questioned because it

is difficult to empirically distinguish between mutation accumula-

tion and antagonistic pleiotropy [21], [22], [9]. Recent work

suggests that current methods to do so are not decisive [12].

Several theoretical models have been developed to explain how

mutation accumulation shapes mortality patterns (e.g., [23], [24]

and [10]). We are, however, aware of only one theoretical model,

developed by Charlesworth [21] that incorporates mutation

accumulation within the framework of life history tradeoffs.

Though he concludes that ‘‘in principle, the accumulation of

age-specific mutations can cause a senescent decline in life-history

traits’’, the question of whether senescence is mainly a by-product

of evolution optimizing life history traits within given constraints

or mainly results from mutation accumulation, remains unan-

swered. To answer this question, we combine mutation accumu-

lation and life history optimization in one model within a

framework that is different from (yet, as we will show below,

complementary and consistent with) the quantitative genetics

approach applied by Charlesworth. In our framework, the genome

of a species is represented by a ‘‘bit-string,’’ an approach

popularized in biology as the Penna Model [25] (see [26] for

review).

Methods

We assume a non-growing population with non-overlapping

generations of one-sex haploids facing constant background

mortality. As in the Penna Model, individuals are represented by

their genome. The genome is given by a string of zeros and ones.
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Zero stands for a non-mutated gene and one stands for its mutated

variant. In our model, genes code for the level of mortality at

consecutive ages. Genes may also have an effect on reproduction,

as will be discussed later.

Following the basic corollary of mutation accumulation theory

(genes responsible for senescence have age-specific effects on

fertility and mortality), in our model genes are expressed at the

beginning of their respective age-intervals. Their action persists

until the end of life. The age of expression of the gene is assumed

to be equivalent to the age when the gene’s effect becomes

apparent in changing mortality. A genotype with no mutations at

any loci (i.e., corresponding to a vector of zeros only) experiences

constant mortality, equal to the constant background death rate

me. We assume that mutated gene increases mortality additively by

a constant d from that age onwards (an additive, cumulative effect

as in e.g., [23]). When there is no mutation in an age-specific gene,

the death rate stays at the same level as in the previous age

interval. Thus, mortality for genotype g at age x is given by

mx(g) = p(x,g) d+me, where p(x,g) captures the number of expressed

mutations at age x.

The maximum age v in the population is set to the age when

remaining reproduction falls below 0.0001 for the non-mutated

genotype, since ages beyond that point do not significantly alter

fitness for any genotype (see e.g., [27] and [28]). As in the Penna

Model, we divide ages into equal intervals, usually 10 in our

model. Assuming 10 genes proved to be the best compromise

between model precision and computing demands.

We assume infinite population size. Hence the expected

frequency of each genotype can be determined exactly. As an

illustration, imagine the case of only two loci with frequencies of

deleterious alleles p1 and p2 in a given generation. Four genotypes

are possible: genotype [00] with no gene mutated, genotype [10]
with the first locus mutated, genotype [01] with the second locus

mutated, and genotype [11] with both loci mutated. Table 1

shows how the distributions of these genotypes can be converted

into frequencies p1 and p2 of mutated genes. Our simulation begins

with an initial distribution of genotypes. The choice of a particular

initial distribution did not affect the results of the model (see

Results). From generation to generation, frequencies of genes

change, depending on the fitness of each genotype. We assume

that all individuals are born at the same initial size, independent of

genotype. Following standard life history approaches (e.g., [27]

and [29]–[33]) size, W(t), at age t changes according to

dW (t)

dt
~Y(W (t)): ð1Þ

where Y(W) denotes production rate, i.e., the rate at which

surplus energy can be allocated to growth and/or reproduction.

Production rate is assumed to be an increasing and concave

function of size,

Y(W )~e{lp(t,g)aW b, ð2Þ

with constant, non-negative parameters a and b,1, assuring

diminishing returns from increase of body mass. Parameter a is set

to 0.2. It scales size and time units in the model, which are not the

focus of our analysis. Parameter b is set to 0.75, as is typically done

in similar models (e.g., [34]–[36]).

Unlike standard approaches, we incorporate an exponential

factor that captures the effect of an individual’s genotype on

energy production. We assume that mutations influence energy

production of genotype g via their number p(t,g) expressed at age t

and via the strength of their effect as captured by the constant,

non-negative parameter l. Thus, genotypes with more mutated

and expressed at age t genes are less efficient in producing its own

or offspring tissues at the age t.

Energy calculated according to (2) can be allocated to growth or

to reproduction. Previous models of this kind have shown that the

optimal resource allocation strategy in such a setting is to invest all

energy into growth until reproductive maturity and thereafter to

switch all allocation to reproduction [37] (see [33] for review). The

same holds true for our modified model including an exponential

factor. Hence the optimal life history strategy is characterized by a

single life history trait, the optimal age at maturity, denoted by t.

Size at maturity can be calculated solving (2):

W (t(g))~ a(1{b)

ðt(g)

0

e{lp(t)dtzW0
1{b

0
@

1
A

1
1{b

, ð3Þ

where W0 is the size of a newborn individual, which is set to one.

After maturity it is optimal to invest all energy into reproduction:

the reproductive rate per one time unit at age t is given by

mt(t(g))~
0 : tvt(g)

Y(W (t(g))) : tw~t(g)

� �
: ð4Þ

Reproductive output is equivalent to the amount of energy

invested in reproduction. Note that energy is measured in units

equivalent to offspring size because it is normalized to one.

The benefit of a later age at maturity t(g) is a larger adult size

and so larger amount of energy that can be devoted to

reproduction and the cost is a lower chance of surviving until

maturity. Note that for l = 0, mutations do not affect production

rate and thus the rate of reproduction. In this case, reproduction is

constant over adult ages. Otherwise, if l.0, then reproduction

declines with age as later acting mutations are expressed, reducing

the efficiency of reproductive energy production.

As extensively discussed elsewhere, the appropriate measure of

fitness for this kind of life history model is reproductive value at

birth [38], [39], which for organisms living in a stationary

population reduces to the net reproductive rate, here denoted as

R(g) for a genotype g,

R(g)~
Xv

t~t
lt(g)mt(t(g)): ð5Þ

The function lt(g) captures the probability of surviving from birth

to age t for a genotype g. It is determined by its cumulative

mortality experienced until age t,

lt(g)~e
{
Pt

x~0
mx(g), ð6Þ

where mortality for genotype g at age x is given by mx(g) = p(x,g)

d+me.

The algorithm to determine the effect of mutational load on the

optimal life history pattern can be described as follows. Given an

initial frequency distribution of genotypes, for each specific

genotype g we calculate the optimal age at maturity t(g) that

maximizes fitness R (g). Gene frequencies Q(g) are determined by

the routine exemplified in Table 1.

Two processes alter gene frequencies from generation to

generation: selection and mutation. Selection is driven by the

genotype-specific fitness R(g) and gene frequencies Q(g). The new

distribution of genotypes in the next generation after selection but

Mutation Accumulation vs. Tradeoffs
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before mutation, Q*(g), can be found by multiplying each

frequency Q(g) by the expected number of offspring R(g) and

normalizing these results to frequencies:

Q � (g)~
Q(g)R(g)P

g[G Q(g)R(g)
, ð7Þ

where G is the set of all possible genotypes (see also Table 2).

Mutations then alter the frequencies of alleles and thus the

distribution of genotypes. We assume a constant probability M of

mutation per locus. Back mutations, being usually orders of

magnitude less frequent, are neglected in the model. The

transition graph presented in Fig. 1 for the case of two loci

exemplifies the procedure to calculate genotype frequencies after

mutation.

These two routines, selection and mutation, are repeated until

equilibrium frequencies of genotypes are reached. The equilibrium

condition is fulfilled when the sum of absolute differences between

two distributions of genotypes from two consecutive generations is

lower than 0.00000001. Once an equilibrium distribution of

genotypes is obtained, mean mortality at age x in the population

can be calculated as

�mmx~

P
g[G Q(g)lx(g)mx(g)

�llx

, ð8Þ

where �llx is mean chance of surviving to age x:

�llx~
X

g[G
Q(g)lx(g): ð9Þ

Mutational load measures the decrease of average fitness in a

population and can be calculated using the Crow and Kimura [40]

equation

L~
Rmax{�RR

Rmax
, ð10Þ

where Rmax is maximum fitness among genotypes (i.e., for the

non-mutated genotype in our model) and �RR is mean fitness for all

genotypes present in the population:

�RR~
X

g[G
Q(g)R(g): ð11Þ

The mean optimal age at maturity �tt is given by

�tt~
X

g[G
Q(g)t(g): ð12Þ

Results

We tested our model under different combinations of per locus

mutation rates, M = 0.0001, 0.001 and 0.01, different effects of

mutations on mortality, d = 0.001, 0.01 and 0.1, different effects of

mutations on the reproduction rate, l = 0, 0.1 and 1, and different

levels of background death rates, me = 0.01, 0.02 and 0.03. As

discussed later, we believe that these values of parameters cover

the range likely to occur in nature. For each set of parameters we

tested three different initial distributions of genotypes: (i) no

mutations, (ii) 50% of accumulated mutations in each locus and

(iii) 90% of accumulated mutations in each locus. Equilibrium was

reached for all possible combinations of parameters (not shown).

Table 1. Converting a distribution of genotypes into a distribution of mutations: Example for 2-locus case.

Genotype Frequency of genotype

Contribution of each genotype to frequency of mutated
locus

L1 L2 L1 L2

0 0 Q [00] 0 0

0 1 Q [01] 0 Q[01]

1 0 Q [10] Q [10] 0

1 1 Q [11] Q [11] Q [11]

Frequency of mutations at L1 and L2: p1 =S(…) p2 =S(…)

Note that p1 and p2 are frequencies of mutations at loci L1 andL2. 2-locus case is shown for simplicity, but at least 10 locus cases are considered in the paper.
doi:10.1371/journal.pone.0034146.t001

Table 2. Effect of selection on genotypes frequencies.

Genotype Frequency of genotype Fitness of genotype Product New frequency Q*

L1 L2

0 0 Q [00] R [00] Q [00]R [00] Q [00]R [00]/Z

0 1 Q [01] R [01] Q [01]R [01] Q [01]R [01]/Z

1 0 Q [10] R [10] Q [10]R [10] Q [10]R [10]/Z

1 1 Q [11] R [11] Q [11]R [11] Q [11]R [11]/Z

Normalization factor: Z =S(…)

Example for 2-locus case.
doi:10.1371/journal.pone.0034146.t002
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The initial gene frequencies had no effect on the resulting

frequency distribution of genotypes in mutation-selection balance,

i.e., the population reaches the same equilibrium independently of

initial conditions.

Figure 2 reveals that mutation accumulation does not greatly

alter the optimal age at maturity (left-hand column) and does not

increase mutational load very much (right-hand column).

Compared to the non-mutated genotype, the largest reduction in

mean optimal age at maturity, observed for the highest mutation

rates, was less than 7%. Moderate and small mutation rates

reduced mean maturity by less than 1% and 0.1%, respectively.

Very similar impacts were observed for mutational load. Altering

the effect (d) of mutations on mortality or the effect (l) of mutations

on the reproduction rate did not significantly affect the results.

Figures 3, 4 and 5 provide evidence that the influence of

mutation accumulation on shaping life history patterns can

generally be neglected at ages that are relevant for fitness. The

frequencies of mutations that accumulate at different ages under

different combinations of mutation rates M with different

magnitudes of effect d of mutations on mortality (Fig. 3), with

different magnitudes of effects l of mutations on reproduction

(Fig. 4), and with different levels of background mortality me, are

zero or minor at ages that contribute significantly to evolutionary

fitness. Mutations accumulate strongly at ages when selection

pressure is low, i.e., when remaining reproduction is less than 1%

(Figs. 3 and 4) and when the probability of surviving to that age is

low (Fig. 5).

Figure 5 shows that even under conditions that are most

favourable for mutation accumulation (small mutational effects on

mortality, no mutational effects on reproduction, high mutation

rates), less than 1% of a cohort will be alive when mutations start

accumulating and raising mortality. For moderate and low

mutation rates, the differences between the mean survival curve

and the survival curve for non-mutated case is negligible for 99.9%

of the population. Although the most mutated genotype exhibits a

survival curve that is very distinct from the average, such a

genotype is so infrequent that its influence can be neglected.

Note that in Fig. 5, frequencies of accumulated mutations are

reflected in the step-sizes of the mortality trajectory. The steps in

the pattern of mean mortality are slightly tilted to the right,

because the population is heterogeneous with respect to mortality.

Since the number of discrete age classes exceeds the number of

genes, individuals with high numbers of mutations die earlier

within an age-class, leaving the remaining survivors with a lower

mean level of mortality. Steps would be strictly horizontal if the

number of genes matched the number of discrete age-classes.

Figures 3, 4 and 5 confirm the results shown in Fig. 2: the

reduction of the mean age of maturity due to mutation

accumulation is minor. The variability of age at maturity across

genotypes is very low even for high mutation rates and slightly

increases when effects of mutations on mortality or on reproduc-

tion become stronger.

Generally, the frequency of mutated genes is low over fitness-

relevant ages. It increases with age. This increase is faster the

higher the mutation rate (Fig. 3), and it is slower, the larger the

adverse effects of mutations on either mortality or reproduction

(Fig. 3 and 4). A higher background death rate increases the

frequency of mutated genes expressed early, but comparing

mortality patterns across rows (i.e., across different magnitudes of

background mortality) in Fig. 5 reveals that its role is relatively

minor.

Last but not least we took a particular result by Charlesworth

[21] a step further, which is necessary to shed light on the main

question of our paper. Based on the numbers given in Table 2 of

his article, our Figure 6 demonstrates the fitness relevance of ages

when mutation accumulation disturbs optimal life history patterns

significantly. We find that in Charlesworth’s model, mutation

accumulation seems to be important in shaping life history traits

only at ages that contribute little to fitness. Over the part of life

history that is important to fitness, i.e., when the death of an

individual of that age would imply a loss of many potential

offspring (in his model ages 0 to 4), the value of the optimal life

history trait is changed little by the influence of deleterious

mutations. Though Charlesworth’s model, based on quantitative

genetics, is very different from ours, results of both models are

consistent: the optimal life history pattern without adverse

mutations does not diverge significantly from the optimal life

history pattern under a load of mutations.

Discussion

Discussion of the Results
Baudisch [24] hypothesized that mutation accumulation may be

a minor force in shaping life histories. Our results support this

hypothesis. In accordance with the prediction of mutation

accumulation theory [1], [4], we find that the frequency of

deleterious mutations increases with age. But mutations equilibrate

at significant levels only when selection pressure is low, which

occurs at ages that contribute negligibly to fitness. Even for the

highest mutation pressure (mutation rates of 0.01 per gene or 0.1

per genome), mutation accumulation reduced mean optimal age at

maturity and mean fitness by less than 7% compared with the non-

mutated genotype.

Figure 1. Illustration of changes in frequencies of particular
genotypes due to mutations for the exemplary 2-locus case.
The mutation rate per locus is constant and equals M. Backward
mutations are neglected. For example, genotype [10] can only mutate
into genotype [11] (with probability M) or remain the same (with
probability 12M). The probability of changing the genotype is
multiplied by current frequency of the respective genotype to calculate
the new frequency. The frequency of each genotype decreases due to
mutations in this genotype and increases due to mutations in other
genotypes. The change in frequency of genotype [10] is equal to the
inflow from genotype [00] minus the outflow to genotype [11]; thus
the new frequency Q*[10] equals Q[10]+M?(12M)?Q[00]21?M?Q[10].
2-locus case is shown for simplicity, but at least 10 locus cases are
considered in the paper.
doi:10.1371/journal.pone.0034146.g001
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We found an inverse relation between strength of the effect of a

mutation and the equilibrium frequency of accumulated muta-

tions. Selection pressure opposes an increase in mortality equally

strongly, either for many small or for few big mutations. In shaping

the age at maturity and mutational load, the effect size of

mutations played a minor role. The parameter that captures the

constant background mortality in our model had virtually no effect

on the qualitative profile of mutation accumulation. It strongly

affects lifespan and age at maturity, but this is not surprising.

Lifespan is inversely related to mean mortality, and if lifespans are

short, maturity must occur early to ensure sufficient reproduction.

High environmental mortality compresses a life history into a

shorter time interval. Phrasing this finding in terms of ‘‘pace’’ and

‘‘shape,’’ two concepts that have recently been suggested by

Baudisch [41], background mortality determines the pace of

mutation accumulation, but it does not affect the shape of

mutation accumulation. The ‘‘relative age’’ (in term of proportion

of total lifespan) at which mutations equilibrate at significant

frequencies remains the same for different background mortality

levels. For different levels of background mortality, the age when

all or almost all genes are mutated corresponds consistently to ages

when remaining expected at birth reproduction is very low. We

found the optimal age at maturity to occur roughly at 25% of

maximum lifespan (consistent with the idea of life history

invariants proposed by Charnov, e.g., [42], [43] and [34]).

Discussion of the Model
As new features, representing an organism’s genotype by a bit-

string, we explicitly include size and its effect on reproduction via

energy production within an optimal resource allocation model to

study the evolution of senescence under mutation selection

balance. In our model, a mixture of many genotypes reaches

mutation-selection equilibrium. At this equilibrium most geno-

types can still mutate, but the frequencies remain unchanged

because of the counterbalance of selection. Genotypes with higher

mutational load have lower chances of surviving and thus lower

fitness and contribute less to the next generation; hence their

frequencies decline. Equilibrium is maintained. Since the model

operates on frequencies, population size does not matter.

The model is based on ten age-classes (corresponding to 10

genes), because this number was the best compromise between the

speed of computations and precision of the results. To evaluate the

influence of the number of genes on outcomes, we ran the analysis

for several different numbers of genes, holding the genome-wide

mutation rate constant. In models with larger number of genes the

age-specific mutation rate M was set at a correspondingly lower

value. We found that both mutational load and age at maturity

were only weakly sensitive to the number of genes. Allowing for

smaller age-classes and correspondingly more age-dependent

genes led to smoother mortality patterns, but it did not alter their

qualitative shape. We are confident that our choice of gene

number does not bias our results, since each ‘‘gene’’ can be split

into smaller parts with a simultaneous decrease of the age-specific

mutation rate. Consequently, our model results should hold

assuming many genes with small effects or few genes with large

effects.

We assume that mutated genes increase mortality additively.

Theoretically it is possible that different combinations of mutations

Figure 2. Reduction in mean optimal age at maturity �tt due to mutation accumulation (left column) and mutational load (right
column) under different levels of the adverse effect of mutations on reproduction l. Background mortality me = 0.01 for all graphs. The
different levels of adverse effects of mutations on mortality are captured by circles (d = 0.001), stars (d = 0.01) and squares (d = 0.1).
doi:10.1371/journal.pone.0034146.g002
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could together generate detrimental effects that could be not only

additive. While in the future it might be interesting to test a non-

additive model, we do not believe that it would lead to

qualitatively different results.

The highest genome-wide mutation rate per generation

assumed in our calculations was 0.1. In nature, the mutation

rates per total effective genome per sexual generation were

estimated for Mus musculus as 0.9, for Homo sapiens as 1.6, for

Drosophila melanogaster as 0.14 and for Caenorhabditis elegans as 0.036

[44], or by indirect methods: Drosophila as 0.3–0.5 and mammals

around 1.0 [45]. We argue that the value 0.1 chosen in our model

is high, because only a fraction of genes act in an age-specific

manner. A value of 0.1 for humans implies that fewer than 6.3% of

genome-wide mutations have age-specific effects, while for

Drosophila melanogaster this value of 0.1 implies that more than

71% of mutations have age-specific effects. The existence of a

subset of genes with age-specific effects has been confirmed in

large-scale demographic-studies for novel germ-line mutations on

mortality rates in Drosophila melanogaster and Caenorhabditis elegans

[18], [19], [46]–[][48] (see [49] for review) but they do not give an

estimate for the percentage of genome wide mutations that are

age-specific. Pedro de Magalhaes et al. [50] in their extensive

meta-analysis of age-related gene expression profiles for mice, rats

and humans (about 5mln gene expression measurements) found

only 63 genes that change their expression with age. Given that

the number of protein-coding genes of mice, rats and humans are

at the magnitude of 20000–25000 genes [51], [52], 63 is small. If

the Magalhaes et al.’s results reflect the true percentage of age-

specific genes, then the impact of mutation accumulation might be

even weaker than suggested by our results.

Previous models of mutation accumulation to explain the shape

of mortality patterns are based on the approach by Hamilton [4].

These models consider mutation-selection equilibrium at each age

separately, assuming a marginal change in mortality at one age

while all other ages remain unaffected. The age-specific muta-

tional pattern is then derived by combining the mutational load

found for each age. Such a ‘‘linear’’ approach has been criticized

by Wachter and colleagues [10] who developed a more general

approach. In our model the mutation profile across all ages affects

the selection pressure for each single age, thus our model is in this

sense nonlinear, because it allows for mutations to accumulate

simultaneously at all ages. We believe that allowing a multitude of

genotypes with their specific mortality patterns and fitness values

competing with each other makes our model more realistic than

previous models.

In our model we assume population size to be constant but there

is no generation overlap, thus no specific assumptions about

density dependence are necessary [53] (Please compare with

Charlesworth’s model [21] where overlapping generations were

assumed and population size was controlled just after birth). The

assumption about non-overlapping generations is introduced for

simplicity. It allows us to use classic life-history optimization

Figure 3. Equlibrium frequencies of mutations at different loci for background mortality me = 0.01 and no effect of mutations on
production rate (l = 0) under different mutation rates M and different effects of mutations on mortality d. The vertical lines represent
mean age at maturity (solid) with standard deviation (dashed). The thick solid line captures the fraction of remaining reproduction, which is
proportional to Hamilton’s force of selection.
doi:10.1371/journal.pone.0034146.g003
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methods where the net reproductive rate is maximized. Including

overlapping generations in our model would be difficult and would

complicate the understanding of the model. We expect that

including overlapping generations would mainly prolong the time

(number of generations) that is needed to achieve mutational-

selection equilibrium but would not much alter the equilibrium

itself. We thus do not believe that our results would be affected

significantly.

The model presented here assumes that the optimal age at

maturity varies depending on the genotype, i.e., for every genotype

a corresponding optimal age at maturity is calculated given levels

of background and internal mortality. In this way, we allow age at

maturity to be influenced by environmental conditions and by

epistasis. Empirical evidence for age-specific epistatic effects (age-

specific change in gene6genetic background interactions) is given in a

study of Drosophila melanogaster by Spencer and Promislow [49]. We

assume that every individual with a specific genotype matures at

the same age. Allowing for variance in the age at maturity within

the same genotype would complicate our model greatly. Given,

however, that the variance in optimal age at maturity across

genotypes is close to zero for most of the cases studied (Fig. 3), we

expect that assuming zero variance in the optimal strategy within a

genotype does not restrict our results significantly. Having virtually

the same optimal age of maturity for all genotypes, mutational

variance of this trait inside one genotype should not play an

important role, especially when we expect strong stabilizing

selection [21]. In this case, the assumption of an epistatic

interaction between age at maturity and mutational background

(genotype) may be not necessary.

Another innovative feature in our scenario of our model is that

mutations have dual negative effects on energy acquisition and

allocation. These effects act indirectly via mortality or via

production rate. Mutations directly increase mortality and

(eventually, if assumed) decreases production rate. Given lower

survival chances, the optimal age at which energy allocation

switches from growth to reproduction (maturity) happens earlier;

early maturity means less time for growth and thus a lower size at

maturity; smaller size means lower energy acquisition. We can

observe the same situation for lowered production rate. Conclud-

ing, both allocation and acquisition can be affected by mutations.

The effect of mortality on optimal life history patterns can be

found in many papers e.g., [42], [54] and [30], please see also

section ‘‘discussion of the results’’.

Conclusions
We conclude that mortality patterns over fitness relevant ages

are mainly determined by life history tradeoffs. Mutation

accumulation could have a significant impact on senescence

patterns only if mutations would significantly alter those tradeoffs.

But this is unlikely, as Charlesworth [21] found that genetic

correlations (and thus tradeoffs) seem to be largely unaffected by

mutation accumulation except under extreme conditions. Our

Figure 4. Equilibrium frequencies of mutations in different loci for background mortality me = 0.01 and adverse effect of mutations
on mortality d = 0.001 under different mutation rates M and different effects of mutations on production rate l. The vertical lines
represent mean age at maturity (solid) with standard deviation (dashed). The thick solid line captures the fraction of remaining reproduction, which is
proportional to Hamilton’s force of selection.
doi:10.1371/journal.pone.0034146.g004
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model provides evidence that mutation accumulation may be

responsible for a rapid increase of mortality at the end of life. This

increase appears, however, at ages that are unimportant for fitness.

Humans today survive to ages at which reproduction is impossible

or rare, though indirect contributions to fitness resulting from care

of offspring and the offspring of offspring may still be significant.

Hence, the age trajectory of mortality for modern humans may be

shaped in part by mutation accumulation at old and oldest-old

ages. But for other species and for humans over most of their

existence, our results suggest that the role of mutation accumu-

lation in shaping adult (but not senile) mortality patterns and

earlier life history traits, such as age at maturity, is negligible.

Background mortality (not dependent directly on mutation

accumulation and indirectly on age) is mostly responsible for

both age at maturity and the pace of deleterious mutation

accumulation, whereas it is almost neutral for the shape of the

accumulation.
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Figure 5. Age-dependence of mean hazard rate (solid lines with steps) and mean survivability (solid decreasing lines) given d = 0.01
and l = 0 for different levels of extrinsic mortality me and mutation rate M. Dashed decreasing lines represent survivorship for non-mutated
(upper lines) and maximally mutated genotypes (lower lines). The dashed lines with steps represent mortality of maximally mutated genotypes, while
mortality of genotypes without mutations lies on the x-axis. Black dots represent mean age at maturity. For all cases the frequency of the maximaly
mutated genotype is close to zero or numericaly equal to zero. Note that maximum age v is smaller the higher the level of environmental mortality
me.Thus, if me = 0.02, then v = 600 and if me = 0.03, then v = 390.
doi:10.1371/journal.pone.0034146.g005

Figure 6. Importance of mutation accumulation vs. optimization
in the model by Charlesworth [21]. Black circles indicate allocation to
reproduction e(x) for a non-mutated phenotype (solid line) and for a
phenotype loaded with mutations (dashed line). White circles represent
the level of remaining reproduction left to an individual at that age
(which captures selection pressure against deleterious mutations).
Without mutations the optimal allocation patterns is approximately
constant. With mutation accumulation, strong differences in allocation
strategy between mutated and non-mutated phenotype appear at ages
when the percentage of lifetime reproduction left to an organism has
fallen below 5%. (Calculations based on Table 2 by Charlesworth [21]).
doi:10.1371/journal.pone.0034146.g006
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