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Abstract

Introduction: This work aims to characterize the sequence in which cognitive deficits

appear in two dementia syndromes.

Methods: Event-basedmodeling estimated fine-grained sequences of cognitive decline

in clinically-diagnosedposterior cortical atrophy (PCA) (n = 94) and typical Alzheimer’s

disease (tAD) ( n = 61) at the UCL Dementia Research Centre. Our neuropsychologi-

cal battery assessedmemory, vision, arithmetic, and general cognition.We adapted the

event-based model to handle highly non-Gaussian data such as cognitive test scores

where ceiling/floor effects are common.

Results: Experiments revealed differences and similarities in the fine-grained ordering

of cognitive decline in PCA (vision first) and tAD (memory first). Simulation experiments

reveal that our new model equals or exceeds performance of the classic event-based

model, especially for highly non-Gaussian data.

Discussion: Our model recovered realistic, phenotypical progression signatures that

maybeapplied in dementia clinical trials for enrichment, andas adata-driven composite

cognitive end-point.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the leading contributor to the global

dementia epidemic. With no disease-modifying therapeutic currently

available and over 99% of clinical trials concluding without evidence of

efficacy for their putative therapy,1–5 there is an immediate urgency to

improve our understanding of AD, and dementia in general, to inform

these efforts.

It is estimated that measurable changes in biomarkers can occur

decades before a dementia diagnosis is made, such as amyloid abnor-
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mality in typical (memory-led) AD.6 This makes dementia particularly

challenging to study because it is near-impossible to discern precisely

when a given change occurs from a cohort of diagnosed or prodromal

individuals, without following them for a prohibitively long period of

time.

The event-based model7,8 is a computational algorithm specifically

designed to meet this challenge, uniquely using only a cross-sectional

sample such as the baseline visit in a study. The event-based model

estimates the ordered sequence of abnormality in a set of biomarkers

by combining severity information across biomarkers and individuals,
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without reference to a given individual’s clinical status. It has been

applied in both sporadic and familial AD,8–11 Huntington’s disease,12,13

and progressive multiple sclerosis.14 Recently, the event-based model

idea has been extended to a new algorithm for finding data-driven

subtypes of disease,15 demonstrated in AD and frontotemporal

dementia. These investigations, and others,16 focused largely on

neuroimaging biomarkers, made possible by the increasing availability

of large datasets such as from the Alzheimer’s Disease Neuroimaging

Initiative and the Dominantly Inherited Alzheimer Network.

In contrast to neuroimaging, most analyses of complex cogni-

tive datasets have relied on traditional statistical approaches rather

than data-driven methods. Methods of detecting cognitive change are

important both for improving disease characterization and progno-

sis in affected individuals, and for detecting and predicting change in

individuals who are asymptomatic and at-risk (of sporadic disease) or

presymptomatic (have a familial/genetic disease).17 Optimizing meth-

ods for analyzing cognitive change is especially important in the con-

text of clinical trials, because cognitive and functional outcomes are

currently the only accepted means for proving efficacy of a drug. This

is relevant to both symptomatic trials and secondary prevention tri-

als, because neuropsychological tests may be sensitive to dementia

between 10 and 17 years before diagnosis.18

Evaluation of longitudinal change within and across cognitive

domains presents a number of specific challenges. First, performance

across cognitive tasks is not independent. General factors (eg, dis-

ease severity) and collateral deficits (eg, visuoperceptual problems

limiting performance on a visual memory test) can influence test-

ing across domains. Second, cognitive profiles across tasks are often

described qualitatively because test properties and normative samples

differ across tasks. Third, the psychometric shape of tests can differ

markedly. Tests involving graded difficulty yield relatively linear score

distributions among healthy control participants, whereas other tests

may yield skewed, highly non-Gaussian score distributions owing to an

excess of very-easy or very-difficult items. These properties influence

the likelihood of clinical populations showing ceiling or floor effects at

any given point in their disease progression. Fourth, practice effects

mask longitudinal change, for example, test familiarity and/or reduced

anxiety may conceal evidence of cognitive instability or decline.19

We aremotivated to understand disease progression in Alzheimer’s

and dementia, with a focus on impact for interventional trials and in the

clinic. International Working Group criteria now include explicit def-

inition of atypical forms of AD,20,21 of which posterior cortical atro-

phy (PCA) is acknowledged to be one of the most common.22,23 It is

of fundamental importance to understand disease progression in both

typical and atypical AD if the field is to advance. PCA is a clinico-

radiological syndrome characterized by progressive decline in visual

processing and other posterior cognitive functions, relatively intact

memory and language in the early stages, and atrophy of posterior

brain regions.20,21 PCA is most commonly caused by AD, with greater

presence of amyloid plaque and/or neurofibrillary tangles in the pos-

terior cortices than in individuals having the more-typical, amnestic

presentation.24,25 Detailed longitudinal studies of cognitive change in

PCA are understandably rare.26

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using

PubMedand foundnodata-drivenestimationof cognitive

decline in posterior cortical atrophy.

2. Interpretation:Ourdata-driven results reveal newunder-

standing into the sequence of detectable cognitive

decline in posterior cortical atrophy and tAD, including

the first direct comparison. Our novel method produces a

fine-grained prognostic tool useful for staging individuals

based on their cognitive profile, and for predicting subse-

quent decline.

3. Future directions:We foreseemultiple avenues for future

work. (1) Validation of our model using larger datasets in

tAD. (2) Application of these models to clinical trials in

tADandposterior cortical atrophy (enrichment; anddata-

driven composite cognitive end-points). (3) Wider appli-

cationof our newmethod inother neurodegenerativedis-

eases and beyond neuropsychological test scores, includ-

ing data-driven subtypingof diseases. (4)Working toward

making KDE mixture modeling a more general statistical

methodology.

TABLE 1 Demographics of participants

PCA ( n = 94) tAD ( n = 61) HC ( n = 23)

Age (years) 64.2 (7.9) 65.8 (7.7) 60.2 (5.7)

Gender (m:f) 35:59 38:23 11:12

MMSE, mean (std) 21.4 (5.1) 19.6 (4.9) 29.5 (0.7)

N visits, mean (std) 2.5 (1.3) 1.6 (0.6) 1.8 (0.4)

Abbreviations:HC, healthy control;MMSE,Mini-Mental StateExamination;

PCA, posterior cortical atrophy; tAD, typical Alzheimer’s disease.

Herewe aimed to estimate the sequence of cognitive decline in typ-

ical AD (tAD) and PCA. This necessitated development of a new event-

basedmodel designed specifically to handle highly non-Gaussian input

data for data-driven assessment of cognitive decline.We validated our

new model in simulation experiments (documented in Supplementary

Material) before applying to patient data from our cohorts.

2 MATERIALS AND METHODS

2.1 Participants in the two dementia cohorts

Patients with a clinical diagnosis of PCA ( n = 94) or tAD ( n = 61) were

recruited between October 2005 and June 2016 at the UCL Demen-

tia Research Centre in London. Healthy controls (HC) ( n = 23) were

sampled from the Young Onset Alzheimer’s Disease study (Table 1)

at the same center. Our control group is younger than both patient

groups (Mann-Whitney U test, P < .05). Patients were recruited via

attendance at the Cognitive Disorder Clinic at the National Hospital
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forNeurology andNeurosurgery, orwere recruited by individual refer-

ral from neurologists to whom they expressed interest in taking part

in observational research. All PCA patients met both Tang-Wai et al.24

and Mendez et al.27 criteria based on available information at base-

line and expert retrospective clinical review by consultant neurologists

and neuropsychologists with expertise in cognitive neurology. PCA

participants were excluded if they also met criteria for another neu-

rodegenerative syndrome, thus our PCA group fulfils consensus cri-

teria for PCA-pure.23 Patients with PCA and patients with tAD ful-

filled research criteria for probable AD.28,29 Examples of excluded syn-

dromes include dementia with Lewy bodies, corticobasal degenera-

tion, and prion disease; with clinical features such as visual hallucina-

tions, pyramidal signs, reduplicative phenomena, parkinsonism, dysto-

nia, myoclonus, and ataxia. Additionally, tAD patients did not fulfil clin-

ical criteria for logopenic variant of primary progressive aphasia30 nor

frontal variant AD.20 Event-based models (see Section 2.3.1) were fit

to baseline data for PCA and tAD separately. Follow-up visits were

used to assess longitudinal self-consistency of eachmodel: themean ±
std number of visits per patient is 3.1 ± 1.1 (range 2–6) for PCA and

2.2 ± 0.4 (range 2–3) for tAD. We investigated controlling for visual

acuity to avoid confounding visual cognition, butwe found it impossible

to separate acuity from cognition in our PCA patients — even on acuity

tests intended to be robust to deficits in visual processing. Information

on patient medication was not routinely collected in our cohorts.

Data collection was approved by the National Research Ethics Ser-

vice Committee London (UK National Health Service Health Research

Authority). All participants providedwritten informed consent accord-

ing to guidelines established by the Declaration of Helsinki.

2.2 Neuropsychological tests

Weemployedabatteryof tests that are routinely used in the clinic31–35

and in pharmacological36 and non-pharmacological37 clinical trials

involving PCA. We used the same battery of neuropsychological tests

on each cohort, which allows direct comparison of cognitive decline

across the two dementia syndromes. The battery includes assessments

of episodic andworkingmemory, visuoperceptual and visuospatial pro-

cessing, arithmetic, and general cognition. The full list of tests and the

primary cognitive domain tested by each is shown in Table 2, along

with abbreviations used in the results section. Descriptive statistics of

scores for each test and per patient group are provided in Table S1.We

found no significant age-related effects in any of the cognitive tests,

which reassures us that group differences are due to disease.

2.3 Statistical analysis

2.3.1 Event-basedmodel

The event-based model7 is designed to estimate a data-driven, prob-

abilistic sequence of biomarker “events” that represents an underly-

ing cumulative process, using a cross-sectional set of observations.

These can be any biomarkers. In the context of neurodegenerative

TABLE 2 Cognitive domains tested by our neuropsychological test
battery

Cognitive

domain Neuropsychological test Abbreviation

Vision A Cancellation time (time) A Cancel (time)

A Cancellation time (number

missed)

A Cancel (n

Miss)

VOSP Fragmented Letters Fragmented

Letters

VOSPDot Counting Dot Count (n

correct)

Efron Shape Discrimination Shape Discrimi-

nation

VOSPObject Decision Object Decision

Memory Short RecognitionMemory Test

(Words)

SRMT (W)

Short RecognitionMemory Test

(Faces)

SRMT (F)

Paired Associate Learning PAL

Digit Span (Forwards, total) Digit Span (F)

Digit Span (Forwards, maximum) Digit Span (F

Max.)

Digit Span (Backwards, total) Digit Span (B)

Digit Span (Backwards, maximum) Digit Span (B

Max.)

General

cognition

MiniMental State Examination MMSE

Arithmetic GradedDifficulty Arithmetic

(addition)

GDA (add)

GradedDifficulty Arithmetic

(subtraction)

GDA (sub)

GradedDifficulty Arithmetic (total) GDA (tot)

aFor further details onmany of these tests, we refer the reader to [31–37]

diseases, an event corresponds to a group-level statistical deviation

from normality/health (defined by data from controls) toward abnor-

mality/disease (defined by data from patients), with the full sequence

of events representing the cumulative effects of neurodegenerative

disease progression. The ordering of events is determined probabilis-

tically, in a data-driven manner, by pooling biomarker severity (event

probability) across individuals. Conceptually, higher prevalence corre-

sponds to an earlier position in the sequence. The event-based model

estimates both the sequence and uncertainty in the sequence. Event

probability is a function of the likelihood of an event having occurred

Pr(xij|Ei) (“post-event”), or having not occurred Pr(xij|¬Ei) (“pre-event”),
via a two-component univariate mixture model (see Section 2.3.2).

Assuming independent observations and biomarkers, the likelihood of

an ordered sequence S is [8]

Pr(X|S) = N∏
j=1

[
M∑

m=0

{
m∏
i=1

Pr(xij|Ei) M∏
i=m+1

Pr(xij|¬Ei)
}]

(1)

wheremeasurements x ∈ X come from i ∈ M eventmarkers and j ∈ N

individual samples, such as participants in a disease cohort.
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In the absenceof prior information, a uniformprior distributionover

sequences is used and the characteristic ordering Ŝ is the sequence

that maximizes the likelihood Pr(X|S) in (1). This requires a search

among the M! possible sequences, which quickly explodes to preclude
an exhaustive search when M exceeds ∼ 10, necessitating approxi-

mation of this maximization. The search is performed using a combi-

nation of multiply initialized gradient ascent and Markov chain Monte

Carlo sampling.

2.3.1.1 Patient staging

An individual sample Xj (vector of measurements across biomarkers i

for an individual j) is staged within a given sequence via the data likeli-

hood. For example, by finding the stage m thatmaximizes the individual

likelihood9:

argmax
m

Pr(Xj|S,m) = argmax
m

m∏
i=1

Pr(xij|Ei) M∏
i=m+1

Pr(xij|¬Ei). (2)

2.3.2 Mixturemodeling and our new event-based
model

Disease severity varies among patients, so we fit a two-component

mixture model to determine event probability for each biomarker

(cognitive test scores in this work). This probabilistic assignment of

individuals into two subgroups — pre-event and post-event — allows

patients to have combinations of normal and abnormal observations

across biomarkers, which in turn allows for the sequence of events to

be estimated. Previous event-based models have incorporated para-

metric mixture models — most commonly a Gaussian mixture model,

which works well for many data types including imaging markers that

have been the primary application of the event-based model to date.

However, a Gaussian mixture model can be highly inappropriate for

skewed data, such as the cognitive test scores considered here. Indeed,

we show in Supplementary Material that Gaussian mixture modeling

produces erroneous event sequences, necessitating our alternative,

nonparametric mixture model proposed here — see Figures S3, S4,

and S5.

We emphasize that events are inherently probabilistic. While we

use the language of events having “occurred” or not, this is in an

explicitly probabilistic sense. This is one of the event-based model’s

key benefits — that explicit biomarker cutpoints are not required.

We now discuss how the mixture modeling is used to calculate event

probabilities.

2.3.2.1 Parametric, Gaussian mixture modeling

Two-component Gaussian mixture model fitting involves estimating

the mean and variance of each component, and a mixture weight.

We initialized the pre-/post-event components using the diagnostic

labels control/diseased.We initialized equalmixtureweights of 0.5 and

would terminate the fit if either weight exceeded the range [0.1,0.9] to

ensure that components do not vanish when the data from diagnostic

groups overlap considerably. Parameters were optimized to minimize

the negative log-likelihood of the data given the mixture model, using

the sequential least-squares programming (SLSQP) algorithm. These

choices of constraints, initial parameters, and the SLSQP algorithm are

similar to the classic event-basedmodel.8,9

2.3.2.2 Non-parametric, kernel density estimation mixture

modeling

Kernel density estimation (KDE) is a non-parametric method for esti-

mating a probability density. The KDE estimate f̂(x) of a function f(x)
with an independent and identically distributed sample {xj} drawn

from a distribution with an unknown density is given by

f̂(x) = 1
Nh

N∑
j=1

K
( x − xj

h

)
, (3)

where K is a non-negative zero-mean kernel function that integrates to

unity and h is a positive smoothing factor called a bandwidth. With an

appropriate choice of K, KDE naturally extends tomultivariate density

estimation. In this work we estimate mixture model components using

the KDE implementation in scikit-learn,38 with a default (Gaussian)
kernel and default parameters for all values except the bandwidth

(see below). The choice of kernel function K is not dependent upon

the datatype of the biomarker being modeled. For example, there is

no restriction against using a smooth kernel function when modeling

discrete-valued cognitive test scores.

The KDE approach enables data-driven estimation of probability

densities that do not follow a parametric distribution, which is partic-

ularly useful for cognitive test scores that are susceptible to ceiling

effects and floor effects. Our novel mixture modeling algorithm incor-

porates non-parametric mixture modeling using KDE components. As

for our Gaussian mixture modeling, we initialized the mixture model

components using the labeled data (HC, diseased), and start with

equal mixture weights that are restricted to values within the range

[0.1,0.9] to ensure that components do not vanish.We choose to fix the

biomarker bandwidth h using Scott’s normal reference rule39 applied

jointly on both groups. A variable bandwidth would be sensible for

KDE of highly skewed data with sparsely populated tails. Our full algo-

rithm is given in the Supplementary Material and code is available at

https://github.com/noxtoby/kde_ebm_open.

2.3.3 Cross-validation

We performed cross-validation of our event-based models by

re-estimating each full model (event distributions and maximum-

likelihood sequence) on 100 bootstrap samples (sampling with

replacement). The resulting bootstrapped model tends to overesti-

mate positional variance in the event sequence.

3 RESULTS

Here we present results from our experiments on real data in two

dementia syndromes using our new event-based model incorporating
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F IGURE 1 Data-driven sequence of cognitive decline in posterior
cortical atrophy (PCA): (a) Maximum-likelihoodmodel; (b)
Bootstrappedmodel. The bootstrappedmodel overestimates
positional variance in the sequence (seeMaterials andMethods,
Section 2). Grayscale intensity represents the proportion (0 in white, 1
in black) of the posteriorMarkov chainMonte Carlo samples in which
events ( y-axis) appear in a particular position ( x-axis) in the sequence

a KDE-component mixture model. In Figures S6–S8 we present a com-

parison with the existing state of the art — the classic event-based

model9 incorporating aGaussianmixturemodel.Detailedperformance

evaluation results from our simulation experiments are in Figures S3–

S5, where we show that our new method outperforms the state of the

art method in situations where the underlying biomarker distributions

are similar to those observed from cognitive tests.

3.1 Sequence of cognitive decline in PCA

Figure 1 is a visualization of the probabilistic sequence of detectable

cognitive decline due to PCA that was estimated by our data-driven

method, using the set of neuropsychological tests in our battery. The

posterior positional variance shows the model’s confidence (left-to-

right) in the ordering (top-to-bottom): narrow, dark sections of low

positional variance show high confidence in the ordering. Figure 1A

(left) shows the maximum-likelihood model and Figure 1B (right)

shows a more conservative estimate of the variability in the sequence

using bootstrapping.

In agreement with clinical knowledge, our results suggest that mea-

sures of visual processing become abnormal earlier in PCA patients (A

Cancellation (time) and VOSP Fragmented Letters), while the model

estimates relatively latedeficits in episodicmemory (ShortRecognition

Memory Test [SRMT] and Paried-Associate Learning [PAL]), although

in the case of PAL this may be influenced by missing data (see Supple-

mentary Material). The location of PAL does not affect the ordering of

other events. Deteriorating performance on an arithmetic test (GDA)

was estimated to be the earliest event, although the bimodal nature

of the positional density under bootstrapping (Figure 1B, top rows)

may reflect heterogeneity within PCA. Tasks having higher demands

on working memory (Digit Span backward) appeared earlier than sim-

pler short-term memory tasks (Digit Span forward), although the lat-

ter is less certain as indicated by the weakly bimodal positional density

under bootstrapping.

F IGURE 2 Data-driven sequence of cognitive decline in typical
Alzheimer’s disease (tAD): (A)Maximum-likelihoodmodel; (B)
Bootstrappedmodel. See Figure 1 for further explanation of positional
variance diagrams

Our model produces results more consistent with intuition and

expectations than the classic event-based model (Figures S3–S9).

Specifically, in our model the highly correlated subscores (total items

correct and maximum span) of both the forward (F, F max.) and back-

ward (B, B max.) Digit Span tests appear in successive positions in the

event sequence, as expected.40 The same cannot be said of the clas-

sic event-based model incorporating a Gaussian mixture model (Fig-

ure S6) where these subscores are almost maximally separated in the

sequence. In the case ofGDA subscores, the situationmay appear to be

reversed (our model separates correlated subscores, while the classic

event-based model does not) until one considers the aforementioned

bimodal nature of the bootstrapped density for GDA in Figure 1B. This

warrants further investigation.

3.2 Sequence of cognitive decline in tAD

Figure 2 is a visualization of our method’s data-driven sequence of

detectable cognitive decline due to tAD, using the same set of neu-

ropsychological tests as for PCA in Figure 1.

In agreement with clinical knowledge, our results suggest that

tAD patients show early deterioration in episodic memory (PAL and

SRMT) with visual processing deficits clearly confined to the end of

the sequence, even in the more-variable bootstrapped model of Fig-

ure 2B. This is largely a reversal of the sequence estimated for PCA,

with the exception ofGDAwhichwas among the earliest events in both

dementia syndromes (see Discussion in Section 4). Digit Span was also

involved very early, although the bootstrappedmodel contains bimodal

positional density either side of episodic memory (PAL and SMRT),

whichmay reflect heterogeneity within tAD.

3.3 Patient staging and longitudinal self-consistency
ofmodels

We use patient staging to assess model self-consistency. A valid

model consistent with the progressive nature of dementia will pro-

duce non-decreasing disease stages for individuals from baseline

to follow-up(s), within model uncertainty. Our disease progression
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models are trained on baseline data, with longitudinal self-consistency

assessed on follow-up data (a separate test set, albeit from the same

individuals). Described mathematically in Section 2, within each

dementia syndrome we assigned an event-based model stage to each

individual using Equation 2, which is akin to aligning an individual’s

cognitive profile (test scores) with the maximum-likelihood model. We

emphasize that these are self-consistency checkswithin amodel which

are not useful for direct model comparison purposes.

Figure 3 summarizes the distribution of event-based model stages

in PCA (left) and tAD (right) as histograms. As expected, HC gener-

ally perform better across all tests and are assigned to early stages.

Commensurately, patients generally exhibit poorer performance and

are assigned later stages — mostly very late stages. The only notable

exception is a small fraction of tAD patients who have been assigned a

very early event-based model stage in Figure 3B. These four patients

havemild symptoms (MMSE score ≥ 24, mean 25.7) and all performed

considerably better than other patients on Digit Span Forwards and

GDA (the earliest events), which dominated the mild abnormality in

later events includingMMSE.

Quantitatively, our models show high longitudinal self-consistency.

We calculate the proportion of pairs of visits within individuals having

non-decreasingmodel stage, withinmodel uncertainty (positional vari-

ance). In PCAwe found 244 of 262 available follow-up combinations to

be consistent ( 93%). In tAD we found 34 out of 39 ( 89%). These self-
consistency results are not influenced by baseline stage (early vs late)

because the number of visits per patient is comparable across base-

line stages.

4 DISCUSSION

Wehave revealed fine-grained representations of deterioration across

cognitive domains in two dementia syndromes: PCA and tAD. This

was enabled by a novel event-based model for estimating data-driven

sequences of cognitive decline in neurodegenerative diseases, as well

as uncertainty in the sequences.

We estimated sequences of cognitive decline that are broadly con-

sistent with clinical criteria for, and reports of progression in, PCA and

tAD. This supports the use of our method in biological applications

where high-precision staging is required, such as for screening in clin-

ical trials. Decline in the five-principle visual tests was estimated to

occur earlier (A cancellation time, Fragmented Letters, Dot Counting,

Shape Discrimination), or at a comparable stage (Object Decision), in

PCA relative to tAD (mean 5.6 ± 4.2 positions earlier, among 17 pos-

sible positions). Likewise, decline in the three-principle episodic mem-

ory tasks (shortRecognitionMemoryTest forWordsandFaces, and the

Paired Associate Learning test) was estimated to occur somewhat ear-

lier in tAD than PCA (mean 4.3 ± 5.9 positions earlier). Arithmetic per-

formance was estimated to decline early in both patient groups, which

might relate to this graded task being designed both to obtain a nor-

mal (Gaussian) distribution of scores and also to avoid floor and ceiling

effects. Furthermore, the timed nature of the Graded Difficulty Arith-

metic (GDA) test makes it sensitive to general decline in attention and

processing speed (affected in both dementia syndromes), in addition

to acalculia.

We validated our models by assessing longitudinal self-consistency

of patient staging on a separate test set: the follow-up data in each

cohort. In PCA, we observed 93% longitudinal consistency (non-

decreasing patient stage at follow-up), and in tADwe observed 89%.
We further assessed the robustness of our results by comparing

themaximum-likelihoodmodelswith their bootstrapped counterparts,

the latter of which tends to overestimate uncertainty. The estimated

sequences are robust, with the 2D positional density maps remaining

consistently close to the diagonal.

A number of previous studies in PCA found broadly supportive

results. Our finding that visual and visuospatial deficits (eg, A Cancel-

lation time/Object Decision) precede those in memory (MMSE) was

also found in refs. [40–42]. Our finding of early mathematical difficulty

(GDA) agrees with ref. [42].

In Supplementary Material we demonstrated the superiority of our

new event-based model over the classic event-based model which

incorporates Gaussian mixture modeling (in simulation and in applica-

tion to real data), especially for highly non-Gaussian data such as found

in standard neuropsychological tests where ceiling effects and floor

effects are common. When the input data are close to Gaussian, both

models perform well and the classic event-based model is probably

the better choice for model parsimony (see Supplementary Material).

We note that our new model is capable of working “out of the box” on

both Gaussian and non-Gaussian data, ameliorating the need for pre-

processing steps traditionally used on non-Gaussian data, such as log

transformation. However, it would be straightforward to add an extra

model-selection step to choose the most appropriate mixture-model

for each biomarker if desired.

We highlight some strengths and limitations of our study. First, a

particular strength of our methodology, by design, is its flexibility to

handle non-Gaussian data such as clinical test scores. This was veri-

fied by our extensive performance evaluation experiments in the Sup-

plementary Material. Secondly, our neuropsychological battery inten-

tionally tests cognitive domains specific to PCA and tAD, which is a

strength in terms of both specificity and for comparing two dementia

syndromes, but is a minor limitation in terms of discovery — that is,

our data cannot discover whether an untested domain/function such

as language or motor function is useful in these syndromes. As noted

in many of the original publications on the method,8,9 one limitation

of the event-based model (in general, not our particular model) is the

assumption of events being independent, which is not the case for cog-

nitive tests which will often depend upon multiple domains to varying

extent. Interpretation of results must keep this in mind.

Considering the rarity of PCA, our sample sizes are good, although

modest. The event-based model is relatively robust to small sample

sizes due to (1) its simplicity (the minimum viable sample size is sim-

ply the number of features); and (2) the model being designed to

highlight uncertainty (through the positional variance diagram). In our

experiments the minimum viable sample size was exceeded, often sub-

stantially (17 features, 20–94 observations per feature), resulting in

the precision we observed. The effect of a small sample size on an
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F IGURE 3 Histogram ofmodel stages assigned to healthy controls and patients with posterior cortical atrophy (PCA) and typical Alzheimer’s
disease (tAD)

event-basedmodel is to increase uncertainty in the ordering of events,

which would manifest as increased positional variance such as in the

bootstrapped models in Figures 1B and 2B. A key advantage of the

event-based model is that it explicitly highlights this uncertainty to

reveal parts of the progression where the data may be insufficient to

inform on the precise sequence.

Our results promote further clinical investigation of cognitive

assessment in dementia, such as the early estimated abnormality of

the A Cancellation task in PCA. This suggests that measures intended

to assess executive function/attention but which feature a prominent

visual search component (eg, Trailmaking tasks, Digit Symbol) are sus-

ceptible to visual processing deficits.

Our results motivate us to consider avenues for future work in both

applications and methodological directions: characterizing cognitive

decline in other neurodegenerative diseases (eg, Parkinson’s demen-

tia, Huntington’s disease, familial Alzheimer’s disease), including inves-

tigating thepossibility of cognitive subtypes; applicationof such results

in clinical trials; and working toward turning KDE mixture model-

ing into a more general statistical methodology. The first avenue will

improve disease understanding, for which we foresee wider applica-

tion of our new method on larger datasets involving more individuals

and/or a more extensive battery of neuropsychological tests. Although

themethod has already been used in a few studies,26,43–45 future work

includes application to other multimodal datasets (eg, cognitive and

imagingdata) to reveal insights into theprogressionof neurological dis-

eases. Thiswill include embedding ourmethodwithin the classic event-

based model,8,9 within the recently proposed discriminative event-

basedmodel,46,47 andwithin data-driven disease subtyping algorithms

such as Subtype and Stage Inference (SuStaIn).15 The second avenue

for future work turns this improved disease understanding into quan-

titative tools for clinical trials. This includes enrichment through pre-

cise stratification and subject selection, and using model stage as a

data-driven composite cognitive end-point. This is ongoing work. The

third avenue involves methodological advances, for which we envis-

age starting with performance characterization onmore complex clus-

tering tasks — our formalism is quite general but our experiments

involved only two components/clusters in the mixture model. Such

investigations might also include application to feature normalization

for supervised learning. Additionally, embedding KDE mixture model-

ing within a Bayesian framework would broaden its utility and enable

theuseofweakly informative priors onhyperparameters for constrain-

ing the clustering results. Such constraints can be important for ensur-

ing realistic results in biological applications.48

In summary, our results verify clinical opinion on disease progres-

sion while revealing new insight into the fine-grained sequence of clin-

ical decline in memory-led tAD and vision-led PCA. This fine-grained

understanding promises clinical utility for informing earlier differential

diagnosis, and prognosis through data-driven disease staging — both

are relevant for clinical trials and patient management.
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