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The hormones amylin and calcitonin interact with receptors within the same family to exert
their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its
inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity,
while the more potent calcitonin extracted from salmon additionally inhibits gastric
emptying, promotes gallbladder relaxation, increases energy expenditure and induces
satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates
plasma glucose by delaying gastric emptying after meal ingestion, and modulates
glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to
havemetabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD)
and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor
agonists have demonstrated robust body weight loss, improved glucose tolerance and a
decreased deposition of fat in liver tissue beyond what is observed after a body weight loss.
The translational aspects of these preclinical data currently remain unknown. Here, we
describe the physiology, pathophysiology, and pharmacological effects of amylin and
calcitonin and review preclinical and clinical findings alluding to the future potential of
amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.

Keywords: amylin, calcitonin, dual amylin-calcitonin receptor agonist, DACRA, NAFLD, non-alcoholic fatty liver
disease, obesity, pramlintide
INTRODUCTION

Hepatic steatosis is widely regarded the hepatic manifestation of the metabolic syndrome (1). In
parallel with the increasing prevalence of obesity and its related diseases, non-alcoholic fatty liver
disease (NAFLD) is currently the most widespread liver disease in the world (2–4). Body weight loss
is currently the most effective strategy to improve both measures of steatosis and NAFLD outcomes
(5) and several anti-obesity medications in clinical development have demonstrated improvements
with regards to liver fat content (6, 7). Recent preclinical studies have demonstrated body weight
loss, reduced hepatic steatosis and metabolic improvements in rats following administration of
novel dual amylin and calcitonin receptor agonists (DACRAs) (8–13).
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NAFLD is defined by increased liver fat content (>5%) without
significant alcohol consumption or steatosis caused by any other
mechanism (e.g., medications, hepatitis, autoimmunity or
inheritable diseases) (14, 15). NAFLD covers a spectrum of
stages, ranging from simple accumulation of liver fat to non-
alcoholic steatohepatitis (NASH) with inflammation and
ultimately to hepatic fibrosis and cirrhosis (1). Recently, the
term “metabolic-associated fatty liver disease (MASH)” has been
proposed as a unifying definition of hepatic steatosis in individuals
with overweight/obesity, metabolic dysregulation and/or manifest
type 2 diabetes (16). This definition recognizes the importance of
obesity and insulin resistance, rather than the absence of excessive
alcohol consumption, as a causal factor for the development of
hepatic steatosis. Resonating with this, the prevalence of NAFLD
increases dramatically with the number of metabolic syndrome
criteria present in a population (17). Furthermore, the well-
established association between NAFLD and type 2 diabetes
highlights a potential casual relationship between impaired
glucose metabolism with insulin resistance and hepatic steatosis
(18). Even in prediabetes, increased liver fat content is a central
characteristic (19). Hepatic lipid accumulation may facilitate
resistance to both insulin (20) and glucagon (21), which are
important pathophysiological characteristics of type 2 diabetes
(22, 23). Insulin resistance is regarded a driver of hepatic steatosis
through increased hepatic lipogenesis and exaggerated tissue
lipolysis, ultimately increasing accumulation of fatty acids in the
liver (24).

Currently, bariatric surgery is the most effective weight loss
therapy, but it is costly, associates with a non-negligible risk of
complications and not all patients are eligible for surgery (25).
Therefore, pharmacotherapies to reduce body weight are being
vigorously pursued, and amylin as well as DACRAs are emerging
as potential novel anti-obesity drug candidates, especially in
combinationwith other bodyweight-lowering gastrointestinal peptides.

This review summarises amylin and calcitonin physiology
and pathophysiology in obesity and NAFLD and provides insight
into the potential therapeutic role of pharmacological doses of
amylin and calcitonin of relevance to metabolic diseases
including obesity and NAFLD.
AMYLIN

Amylin is a 37-amino acid peptide hormone (Table 1) mainly
produced in the pancreatic beta cells and co-secreted with insulin
in response to ingested nutrients (Figure 1) (28, 29). The hormone
has a well-established role as a satiety signal; an effect that is
mediated via direct action on amylin receptors in specific areas of
the brain, i.e., area postrema and the nucleus of the solitary tract
(30, 31). Amylin is also an efficacious inhibitor of gastric emptying,
which further facilitates satiation (32–34), and may suppress
glucagon secretion via central mechanisms (35, 36). There are
several isotypes of the amylin receptor (37) which all are G protein-
coupled receptors consisting of two units; a core unit constituted by
the calcitonin receptor (7-transmembrane receptor) and one of
three receptor activity-modifying proteins (RAMP1-3) (37).
Stimulating the amylin receptor complex increases the
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production of intracellular cyclic adenosine monophosphate (38,
39). The tissue distribution of the amylin receptor complex is
difficult to describe for a number of reasons: 1) the calcitonin
receptor (the core unit) has two subtypes which interact with
RAMPs, 2) RAMPs are associated with other receptors than the
amylin receptor complex, and 3) there is a lack of selective
pharmacological tools and antibodies to target specific amylin
(RAMP/calcitonin) receptor complexes (26). Current data
indicate that several brain regions including the area postrema
and hypothalamus are important sites for amylin action (40, 41). In
a knock-out mouse model, lack of the calcitonin receptor
specifically in proopiomelanocortin-expressing neurons in the
hypothalamus lead to increased adiposity, glucose intolerance
and decreased energy expenditure (41). Furthermore, amylin
receptors are not selectively activated by amylin alone and
interact indiscriminately with other hormones of similar
structure (i.e., calcitonin, calcitonin gene-related peptide, and
adrenomedullin) (42). Calcitonin, for instance, has been shown
to activate several subtypes of the amylin receptor (42). In a similar
manner, it has been shown that amylin has affinity for both
calcitonin and amylin receptors (43). Several amylin receptor
antagonists have been identified, but as alluded to above, these
compounds also have selectivity issues, and do not distinguish
between amylin receptor subtypes (26). Therefore, the importance
of the individual receptor in mediating the endogenous actions of
amylin is difficult to establish.
THE ROLE OF AMYLIN IN OBESITY

Several studies point to a role of amylin in the hormonal
regulation of food intake and body weight. Amylin has several
characteristics of a satiating hormone: 1) it is released after food
ingestion (28, 29), 2) it has a short half-life (~13 min) with rapid
onset of action (44, 45), and 3) it dose-dependently decreases food
intake when administered to rats mainly in supraphysiological
Frontiers in Endocrinology | www.frontiersin.org 3
doses (40, 45, 46). This effect also translates into human trials with
amylin receptor agonism (see further details below). The role of
endogenous amylin as a satiating agent is supported by the
observation that injection of the amylin receptor antagonist
AC187 intravenously or directly into the area postrema acutely
increases food intake in rats (47, 48). In addition to its effect on
satiety, preclinical studies suggest that endogenous amylin also has
the characteristics of an adiposity signal (i.e., a body weight-
regulatory hormonal factor circulating in proportion with body
fat mass), much like insulin and leptin, namely the ability to
increase energy expenditure and lower body weight via central
mechanisms (49, 50). In rats, chronic intravenous administration
of amylin leads to body weight loss and diminished fat deposition,
whereas centrally administered amylin, in addition to lowering
body weight, also seems to reduce the target body weight set by the
brain (49–52). Supporting its role as an endogenous adiposity
signal, acute and chronic amylin antagonism with AC187 has the
opposing effect and increases food intake and body weight of rats
(50). As an adiposity signal, amylin enhances the satiating effect of
cholecystokinin (CCK). This is evidenced by the synergistic acute
effect of co-administered CCK and amylin on food intake when
infused intraperitoneally inmice (53) and further supported by the
diminished action of CCK in mice models of amylin deficiency
(54) and in rats after infusion of amylin receptor antagonists (55,
56). Chronic intraperitoneal infusion of CCK decreases food intake
in rats, but has little effect on body weight due to a compensatory
increase in meal frequency (57). Contrary to this, chronic
subcutaneous infusion of amylin reduces both meal size and
frequency with concomitant body weight loss in rats (46).
Interestingly, amylin also interacts with leptin in the control of
energy metabolism in a number of preclinical studies, supporting its
combined role as a satiety and adiposity signal (58–61). In rats with
obesity or functional leptin resistance, the effect of amylin agonism
on eating behaviour is still observed for 24 h after injection of an
amylin agonist (58). Furthermore, intraventricular administration
of leptin seems to enhance the inhibitory effect of amylin on
FIGURE 1 | Proposed physiological actions of amylin and calcitonin receptor activation. DACRA, dual amylin and calcitonin receptor agonist; CT, calcitonin; blue
arrows indicates effects related to amylin; green arrows indicates effects related to calcitonin; orange arrows indicates effects related to insulin. Figure elements from
smart.servier.com under CC BY 3.0.
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short-term eating, suggesting synergism in the actions of these
hormones (59). Additionally, amylin re-sensitizes obese rats to
leptin when co-administered with a leptin agonist for 14 days
(60). As opposed to leptin, amylin show a preserved anorectic
response when investigating obese and hyperamylinaemic rats (61).
In fact, several rodent studies suggest a well-preserved anorectic
response to acute amylin administration in otherwise obese and
leptin-resistant states (26, 60, 61), thus making amylin a promising
candidate for pharmaceutical weight loss therapy. Furthermore, an
additive effect on weight loss is also observed in obese individuals
when amylin and leptin agonists are chronically co-administered,
adding further evidence to the interaction between leptin and
amylin (60). The chemical properties of human amylin
predisposes the hormone to aggregate and form amyloid fibrils,
which are often found in pancreatic islets of individuals with type 2
diabetes and possibly contribute to beta cell destruction (62). For
this reason, infusions of human amylin are difficult to perform,
often requiring highly supraphysiological dosages to elicit little or no
effect (63, 64). However, several stable amylin analogues with the
ability to induce body weight loss have been developed (further
details below).

Taken together, amylin has acute effects as a satiety signal
combined with homeostatic effects of an adiposity signal on body
weight, suggesting an important role of amylin in the regulation of
body mass. In clinical trials, circulating amylin levels seem to tightly
correlate with fat mass. Studies indicate that basal and glucose or
meal-stimulated levels of amylin are elevated in individuals with
obesity (65–74). This may relate to the role of amylin as a regulator
of body mass but could also be a manifestation of the increased beta
cell secretory activity often found in obesity. These studies are
generally limited by their sample size and contrasting reports have
been published (75). Preclinical studies support the notion of
elevated amylin levels in rats with obesity (76, 77). This might be
a result of decreased amylin sensitivity following prolonged
hyperamylinaemia, but there is currently no evidence of this in
humans. More studies designed to specifically evaluate amylin
secretion and sensitivity in individuals with obesity compared to
individuals with normal weight are needed.
CALCITONIN

Calcitonin is a 32-amino acid peptide hormone (Table 1) derived
from the 116-amino acid precursor pro-calcitonin and secreted
from the C cells of the thyroid gland. As alluded to above,
calcitonin mediates its effects via the 7-transmembrane
calcitonin receptor and a subsequent increase in intracellular
cAMP (38). Due to the interaction with RAMPs, the tissue
distribution of the monomeric calcitonin receptor is challenging
to elaborate, but well-known target organs of calcitonin include
bones and kidneys (78, 79). In humans the secretion of calcitonin
is stimulated by ingestion of calcium (80). Calcitonin has a strong
hypocalcaemic effect via inhibition of osteoclasts (Figure 1) (79)
and promotion of renal excretion of calcium, presumably by
inhibiting tubular reabsorption of calcium (79). Since the
discovery of calcitonin in 1962 (81), great effort has been put
into the description of its inhibitory effect on osteoclasts and the
Frontiers in Endocrinology | www.frontiersin.org 4
increased calcium excretion in humans whereas any other
physiological effects have not been described. Human calcitonin
is often considered a rudimentary hormone, mainly due to the fact
that hypersecretion or deficiency of calcitonin (as seen in patients
with thyroid medullary cancer) is not associated with bone
abnormalities (82). Furthermore, the more potent form of
calcitonin originating from salmon has been the preferred
choice of treatment for chronic conditions with hypercalcaemia
until better antiresorptive drugs emerged (e.g., bisphosphonates,
denosumab and raloxifen) (83).
CALCITONIN IN METABOLIC DISEASE

It is difficult to evaluate the role of endogenous calcitonin in
metabolic diseases for a number of reasons: 1) only few studies
have applied human calcitonin in humans, 2) there are currently no
antagonists available which selectively target the monomeric
calcitonin receptor (26), and 3) studies applying the more potent
salmon calcitonin reveal effects attributable to amylin receptor
activity as well (84). As reviewed in the following sections, the
actions of salmon and human calcitonin are not directly
comparable. A few studies have used mammalian calcitonin to
investigate effects beyond those related to calcium and bone
metabolism. Interestingly, both human and porcine calcitonin
infusions inhibit the insulin response to acute glucose
administration in humans (85–87). But whether this effect has
physiological relevance remains tobedetermined. Ina studywith26
subjects, who were mainly overweight but with normal glucose
tolerance, there was an increase in serum calcitonin levels after a
75-g oral glucose tolerance test which correlatedwith insulin levels,
suggesting a possible relationship between insulin and calcitonin
(88). This is in concert with the observation that insulin directly
stimulates calcitonin release in the perfused pig thyroid gland (89).
Additionally, higher endogenous calcitonin levels in individuals
with obesity has been reported (90). Finally, procalcitonin is
expressed in adipose tissue and its expression associates with
obesity, insulin resistance and metabolic syndrome (91). Taken
together, research thus far gives some indication that a correlation
between calcitonin and insulin might exist in man, but studies
designed specifically to affirm this are warranted.
AMYLIN AND CALCITONIN-BASED
PHARMACOTHERAPIES

Pramlintide
Pramlintide is a Food and Drug Administration (FDA)-
approved amylin analogue, developed for individuals with type
1 diabetes or insulin-treated type 2 diabetes as an adjunct therapy
to mealtime insulin (92). Pramlintide has pharmacological
properties comparable to human amylin, but with enhanced
stability, thus making it suitable for subcutaneous administration
in humans (44). It is a relatively short-lived peptide with a half-
life of ~20–45 min in humans, thus requiring administration
with every meal to diminish postprandial plasma glucose
January 2021 | Volume 11 | Article 617400
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excursions (44, 93). Inspired by rat amylin, which is less prone to
dimerize, the enhanced stability of pramlintide compared to
human amylin was achieved by introducing three amino acid
substitutions (pro25,28,29) into the sequence of human amylin
(26) (Table 1). In addition to reducing postprandial plasma
glucose excursions, pramlintide has demonstrated body weight-
lowering capabilities in several clinical trials (94–112). In a 6-
week randomised, blinded, placebo-controlled multicentre trial,
60 obese individuals (average body mass index (BMI) = 35.3 kg/
m2) were titrated to 180 µg pramlintide injected subcutaneously
before each meal to test the translatability of the body weight loss
observed in trialswith pramlintide in individualswithdiabetes (94).
After 6 weeks, the mean change in body weight from baseline was
-2.04 kg, corresponding to a weight loss of roughly 2%. This was
highly significant compared to theplacebogroup. In a 4-month trial
of similar design, the majority (88%) of 108 obese individuals
(average BMI = 37.9 kg/m2) were titrated to 240 µg meal time
pramlintide injected subcutaneously three times daily (95). The
resulting average body weight loss of 3.7% was highly significant
compared to the placebo group. To evaluate the sustainability of
these results, a 12-month randomised, double-blinded, placebo-
controlledmulticentre trial with 146 obese subjects (average BMI ~
37 kg/m2) evaluated the effect of pramlintide combined with life-
style intervention on long-term body weight loss (96). An initial 4-
month dose escalation period evaluated different doses (120, 240,
and 360 µg) and administration frequencies (two or three times
daily) for pramlintide andwas followed by an 8-month extension of
the pre-assigned pramlintide treatment regime. At 4 months, body
weight reduction was comparable to previous pramlintide trials,
ranging from 3.8 to 6.1 kg depending on pramlintide dose.
Interestingly, after 12 months, the body weight loss was sustained
across all pramlintide treatment regimens except for those treated
with 120 µg twice daily. This is encouraging, as gradual bodyweight
regain is a common observation following lifestyle-induced weight
loss (97, 113, 114). In obese individuals with insulin-treated type 2
diabetes, pramlintide dose-dependently reduces body weight (98–
104). The body weight-lowering effect of pramlintide is also seen in
individuals with type 1 diabetes (105–112).

As outlined above, pramlintide treatment is associatedwith 2%–
6% reductions in body weight across several patient categories,
including individuals with obesity and type 2 diabetes, who are
prone to develop hepatic steatosis. This makes amylin-based
pharmacology a promising candidate for the treatment of obesity
and NAFLD. However, long-term pramlintide treatment is limited
by low bioavailability and the short half-life of the drug, which
makes it less suitable for chronic therapy due to the high
administration frequency (two to three times daily) and therefore
high compliance-related demands. Additionally, pramlintide
monotherapy only has a modest effect on body weight loss
compared to for example glucagon-like peptide 1 (GLP-1)
receptor agonists (115) or the more dramatic changes observed
after bariatric surgery (116). Pharmacotherapies targeting several
mechanisms are currently being extensively explored as potential
weight loss strategies (117). In preclinical and clinical settings,
amylin has been combined with several other compounds with
weight regulatory abilities to elicit beneficial effects on body weight.
Frontiers in Endocrinology | www.frontiersin.org 5
These include agents based on peptide YY (PYY), CCK,
melanocortins, leptin, and GLP-1 as well as small molecule
anorectics (phentermine/sibutramine) (54, 118–123). Only the
GLP-1/amylin combination is currently being developed for
obesity treatment in clinical trials (124). Later in this section, we
review the effect of targeting multiple receptors in the calcitonin
receptor family via novel unimolecular dual agonists, but first we
briefly consider results from studies with other amylin-
based agents.

Davalintide
Davalintide is a 32-amino acid peptide amylin receptor agonist
(Table 1) with enhanced potency, efficacy and duration of action
compared to amylin in rats (125). Davalintide was developed in
response to the low bioavailability and short half-life which
rendered pramlintide therapy for obesity inefficient. The peptide
is a chimera of amylin and salmon calcitonin and shares 49% of the
amino acid sequence of rat amylin and pramlintide (26, 125). The
half-life of davalintide is 26min, and thus, comparable to rat amylin
(126). However, davalintide reduces food consumption in rats for
up to 23 h, compared to only 6 h with rat amylin (125). Further,
davalintide dose-dependently reduces body weight and fat mass in
rats with approximately 2-fold greater efficacy than rat amylin
(125). The prolonged duration is likely explained by slow receptor
disassociation of the salmon calcitonin portion of davalintide (38,
127). Indeed, receptor binding analysis revealed very limited
receptor disassociation of davalintide in the rat nucleus
accumbens (126). As of now, these preclinical studies with
davalintide represent the only available literature on davalintide
and further development of davalintide in humans trials have been
discontinueddue to lackof superiority topramlintideonweight loss
(128). Nevertheless, these few trials with davalintide illustrate how
the calcitonin receptor system may constitute a target for the
treatment of obesity and associated metabolic conditions such
as NAFLD.

Long-Acting Amylin Agonists
Amylin has been modified by various methods (e.g., by adding a
polyethylene glycol (PEG), glycosylation, or albumin binding motif
to the molecule) to extend its half-life and reduce the frequency of
administration, thus making it more suitable for chronic use in
body weight loss therapy (129–135). In mice, subcutaneous
administration of PEGylated amylin acutely reduces glycaemia
with prolonged action compared to unmodified amylin (129). In
rat models of type 1 diabetes, a PEGylated amylin analogue
prevented meal-induced hyperglycaemia and promoted sustained
normoglycaemia up to 8 h after injection of the amylin analogue
(132). Importantly, acute and chronic studies show that long-acting
amylin analogues decrease body weight and energy intake in rats
(136, 137). Given the convenience of a once-daily injection
compared to several daily injections, long-acting amylin agonists
are attractive to develop and are currently being pursued as novel
anti-obesity and anti-diabetes drug candidates by multiple
pharmaceutical companies. Novo Nordisk is currently testing a
long-acting amylin analogue, AM833, in overweight and obese
individuals in phase I and II clinical trials (138, 139). In a recently
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published phase II trial, the effect of life style interventions along
with increasing doses (0.3, 0.6, 1.2, 2.4 and 4.5 mg) of AM833 once
weekly on body weight was investigated 706 individuals with
obesity/overweight (140). At 26 weeks, body weight had
decreased progressively and dose-dependently without plateau,
with reductions ranging from 6%–10.8%. Compared to placebo
and 3 mg liraglutide once daily, the observed weight loss amongst
participants receiving AM833 was significantly greater for all doses
of AM833 versus placebo and for 4.5 mg once weekly versus
liraglutide. AM833 has also been evaluated for use in combination
with the GLP-1 analogue semaglutide in a phase I clinical trial (124,
141). A total of 80 participants with obesity or overweight were
treated with ascending doses of AM833 in combination with 2.4
mg semaglutide once-weekly (141). After 20 weeks, the participants
receiving the highest dose of AM833 with semaglutide lost an
average of 17.1% body weight from baseline (141). Also, Zealand
Pharma is developing long-acting amylin analogues for treatment
of obesity and diabetes (142, 143). Preclinical data from diabetic
and obese rats models have been released for the compounds
ZP4982 and ZP5461; both molecules are potent activators of
calcitonin and amylin receptors and effectively lower blood
glucose and body weight (142, 143). Compared to twice-daily
preclinical dosing with the GLP-1 analogue liraglutide, once-
weekly dosing of ZP4982 at almost equimolar doses was superior
in terms of body weight loss in an obese rat model (143). A phase I
clinical trial was conducted with a long-acting amylin analogue
developed by Zealand Pharma in cooperation with Boehringer
Ingelheim in 2018, but the collaboration on this analogue was
terminated in 2020 (144, 145).

Salmon Calcitonin
Calcitonin extracted from salmon displays prolonged receptor
activation and binding in humans compared with human
calcitonin (38). It is also superior to mammalian calcitonin with
regards to its hypocalcaemic effects in rats and humans (146).
Interestingly, salmon calcitonin has effects beyond those related to
bone metabolism. In human studies, salmon calcitonin inhibits
gastric emptying and gastrin release following ameal while evoking
a dose-dependent relaxation of the gallbladder both in the
postprandial and fasting state (147, 148). In mice and monkeys,
salmon calcitonin acts anorectically and causes weight loss after a
single administration (149, 150). In chronic studies, oral
preparations of salmon calcitonin also reduce food intake and
body weight in rat models of obesity and diabetes (151, 152).
Furthermore, salmon calcitonin acutely stimulates energy
expenditure during food restriction in rats (153). Human and
salmon calcitonin only have a 50% amino acid sequence
homology (38) (Table 1), and rodent studies applying amylin
receptor antagonists suggest that the anorectic effect of salmon
calcitonin results at least partially from amylin receptor activation
(84). In vitro, salmon calcitonin displays superior binding affinity at
amylin receptors with no discrimination between amylin and
calcitonin receptors (154). Compared to human calcitonin,
salmon calcitonin also displays prolonged activation of human
calcitonin receptorswhen tested inmammalian cell lines expressing
the calcitonin receptor (38).This suggests that salmoncalcitonin is a
Frontiers in Endocrinology | www.frontiersin.org 6
dual agonist with potency at amylin and calcitonin receptors,
highlighting the possibility of targeting these receptors using a
single molecule with dual-receptor agonistic properties.

Dual Amylin and Calcitonin
Receptor Agonists
Inspired by the pharmacology of salmon calcitonin, DACRAs for
the treatment of obesity and diabetes have been developed (8–13).
DACRAs display equal affinity and enhanced potency at amylin
and calcitonin receptors compared to salmon calcitonin (8). In
Zucker diabetic fatty rats, 4-week treatment with the DACRA
KBP-042 from Nordic Bioscience was compared with salmon
calcitonin and vehicle in a pair-fed design; showing significant
weight loss and improved glucose tolerance compared to both
vehicle and salmon calcitonin (8). In other studies, subcutaneous
injections with KBP-042 lead to substantial body weight loss with
alleviation of leptin and insulin resistance in rats on high-fat diet
compared to rats on normal diet (11, 12). Interestingly, after a 7-
week treatment period, a reduction in liver fat deposition was
observed in the KBP-042-treated rats, but not in a pair-fed control
group of rats (12). The ability to reduce hepatic lipid
accumulation has also been demonstrated with another
DACRA, KBP-089 (10). In rats subjected to a high-fat diet
without therapy for 10 weeks and subsequently to subcutaneous
peptide therapy for 8 weeks, KBP-089 completely abolished the
hepatic steatosis achieved by the initial high-fat feeding (10).
Importantly, this effect was not observed in a pair-fed group of
rats, suggesting that DACRA therapy has beneficial effects on
hepatic steatosis beyond those related to reduced food intake and
weight loss. These peptides show promise in terms of their effects
on body weight and several physiological parameters related to
energy homeostasis and glucose metabolism in rodent models of
obesity and diabetes. From the available literature, it is not clear to
which degree the amylin and calcitonin receptor mediates the
beneficial results obtained in preclinical DACRA studies. In a
rodent study comparing the activity of a DACRA molecule to
native amylin, calcitonin and the combination amylin/calcitonin,
calcitonin receptor activation did not appear to be important for
the weight lowering and satiating abilities of the DACRA
molecule, which were primarily mediated by the amylin
receptor (155). On the other hand, calcitonin and amylin had
additive effects on fasting glycaemia, suggesting that calcitonin
receptor activity may facilitate some of the metabolic
improvements of DACRA molecules after all (155).

A 12-week phase II placebo-controlled clinical trial with 255
patients with type 2 diabetes receiving KBP-042 has been
completed (156), but further development of KBP-042 has
been terminated by Eli Lilly and Nordic Bioscience to focus on
the development of KBP-089, which is reportedly superior to
KBP-042 (157, 158). KBP-089 is currently being tested in a phase
I clinical trial in patients with type 2 diabetes (159). As of now,
no results from clinical trials with DACRA molecules have been
published. Thus, it remains to be established whether the
promising preclinical results obtained with DACRA peptides
will translate into possible treatment strategies for metabolic
diseases such as obesity and NAFLD.
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CONCLUSIONS

A substantial amount of literature describes beneficial metabolic
effects of compounds activating amylin and calcitonin receptors
separately or in combination. These effects include body weight
loss and reduced hepatic lipid accumulation, which are important
cornerstones in the treatmentofobesityandNAFLD.Pharmaceutical
companies are pursuing strategies based on amylin and calcitonin as
viable alternatives to bariatric surgery, the currently most effective
treatment option for obesity.

Preclinical and clinical data support amylin as an anti-obesity
hormone, whereas the role of calcitonin in obesity remains more
uncertain. Nevertheless, salmon calcitonin, like new compounds
suchas long-acting amylinanaloguesandDACRAs,demonstrates a
potential for combined amylin and calcitonin receptor agonism as a
future treatment strategy for obesity and related conditions such as
NAFLD. Disentangling the effects of these dual agonists through
specific amylin and calcitonin pathways may prove to be difficult
Frontiers in Endocrinology | www.frontiersin.org 7
without specific receptor antagonists. Nevertheless, it is relevant to
evaluate fromaclinical perspective inorder tooptimize the effects of
pharmacotherapy targeting amylin and calcitonin receptors. Data
from the clinical programs investigating the new amylin and
DACRA compounds will be very interesting to follow since long-
acting agonists with greater selectivity at amylin or calcitonin
receptors may help elucidate this. However, dedicated studies are
needed to test the translatabilityof thepreclinical dataof amylin and
calcitonindual agonismand todelineate the separate andcombined
physiological effects of amylin and/or calcitonin receptor activity
in humans.
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