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Abstract
Tn-seq is a high throughput technique for analysis of transposon mutant libraries. Tn-seq

Explorer was developed as a convenient and easy-to-use package of tools for exploration

of the Tn-seq data. In a typical application, the user will have obtained a collection of se-

quence reads adjacent to transposon insertions in a reference genome. The reads are first

aligned to the reference genome using one of the tools available for this task. Tn-seq Ex-

plorer reads the alignment and the gene annotation, and provides the user with a set of

tools to investigate the data and identify possibly essential or advantageous genes as those

that contain significantly low counts of transposon insertions. Emphasis is placed on provid-

ing flexibility in selecting parameters and methodology most appropriate for each particular

dataset. Tn-seq Explorer is written in Java as a menu-driven, stand-alone application. It

was tested on Windows, Mac OS, and Linux operating systems. The source code is distrib-

uted under the terms of GNU General Public License. The program and the source code

are available for download at http://www.cmbl.uga.edu/downloads/programs/Tn_seq_

Explorer/ and https://github.com/sina-cb/Tn-seqExplorer.

Introduction
We use the term Tn-seq to refer to a range of transposon insertion sequencing techniques that
use a random transposon mutant library and high-throughput sequencing to study fitness of
mutant strains and/or to identify genes that are essential or advantageous for growth under a
specific set of conditions. Thanks to the novel advances in deep sequencing technologies, this
technique has become useful for understanding gene function and the genetics behind microbi-
al physiology. [1,2,3,4,5,6].

Even though the rationale and the overall technique of Tn-seq is straightforward, there are
different variations in the methodology to achieve the expected results [4]. In general terms,
DNA is extracted from a library of transposon mutants before and after the library is grown
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under controlled conditions for a fixed amount of generations. DNA is sheared in a random
fashion by mechanical methods and the ends are repaired. Alternatively, DNA is fragmented
by restriction enzymes. In either case, small enrichment/sequencing adapters are attached to
the resulting DNA fragments. Transposon-chromosome junctions are enriched by PCR, PCR-
affinity purification technique (gel size selection plus biotin probe-streptavidin magnetic
beads) or the Tn-seq circle method [5]. Finally, high-throughput sequencing is used to se-
quence either the transposon-chromosome junctions, when the fragments are sequenced by
using the primer sites in the adaptors previously attached, or the chromosomal sites adjacent to
the inserted transposons, when custom-made primers that bind to the end of the transposon
are used. These sequence reads are aligned to a reference genome in order to determine the lo-
cations of transposon insertions. The goal of the subsequent data analysis is to establish the
exact location of each transposon insertion and the number of sequence reads mapped to each
insertion site, and determine the number of insertions/reads in a specific genomic region. This
information is subsequently used to identify genes with a significantly low number of transpo-
son insertions/reads detected in the mutant library as genes that are possibly essential or ad-
vantageous for growth. The data can also be utilized to study fitness by analyzing the frequency
of the insertion mutants in the population over time as a direct relation of the growth rate of
the mutant strain [7].

Several methods were developed for analysis of Tn-seq data [1,3,8,9,10]. Some of these
methods employ a null model to estimate the expected count of transposon insertions in each
gene; if the actual count is significantly lower than the expected count the gene is considered es-
sential [9]. An alternative approach is based on separating the populations of essential and
non-essential genes using as a guide the distribution of transposon insertion densities among
all genes in the genome. This technique takes advantage of the observation that the distribution
is generally bimodal with essential and non-essential genes constituting separate peaks [10,11].
Another approach involves comparison between two samples from cultures grown under dif-
ferent conditions or extracted at different time points, where one sample is used as a baseline
against which the other is compared [1,5]. In addition to these techniques, we developed a slid-
ing window approach, which avoids comparisons among genes of variable length by compar-
ing instead insertion counts in a sliding window of fixed size [2].

Our experience in the analysis of Tn-seq data and the considerations elaborated below influ-
enced our goals in developing Tn-seq Explorer. We aimed to design an easy-to-use interactive
application that would allow users to explore their data in order to determine the most appro-
priate method for detection of genes that may be essential or advantageous, or for studying fit-
ness. Tn-seq Explorer provides useful complementary tools for data analysis, as well as
flexibility in selecting parameters that are most appropriate for each particular dataset.

Methods

Insertion density approach
The goal of the method is to generate hypotheses on the essential or advantageous nature of
specific genes for growth under different conditions, in which the mutant libraries were cul-
tured, utilizing the basic premise that mutants with insertions in essential genes would not be
viable. Note that we use the term “essential” in reference to genes that are absolutely required
for growth under any condition as well as genes that are conditionally-required for growth
under a specific set of conditions. The term advantageous refers to genes which are not abso-
lutely essential, but when truncated by the transposon insertions the fitness of the mutant de-
creases. Essential genes and advantageous genes are characterized by a low density of
insertions in the Tn-seq data.

Tn-Seq Explorer
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The technique utilizing insertion density on a gene-by-gene basis was applied by Langridge
et al. [10] and subsequently adopted by other authors. Each gene is assigned a value equal to
the count of reads or unique insertions mapped to this gene, divided by the length of the gene.
If the insertions/reads are distributed randomly throughout the genome the density of inser-
tions is expected to be approximately equal for all genes (apart from random variance). Howev-
er, the empirical distribution of insertion densities among different genes is generally bimodal,
separating non-essential genes that are not affected or only weakly affected by selection from
essential or advantageous genes that feature low insertion densities due to selective elimination
of the corresponding mutants. The point separating the two peaks in the distribution can be
used as a cutoff value where genes with lower insertion densities are considered essential
whereas genes with higher insertion densities are assigned putative non-essential status. Al-
though this approach can be seen as problematic because it compares insertion densities
among genes of varying sizes while ignoring the fact that random variance in insertion densi-
ties is higher for smaller genes, it has been successfully used in situations where the insertion
densities are high, that is, for mutant libraries with a high level of saturation [10,11].

Sliding window approach
One particular challenge we faced in the analysis of theM.maripaludis Tn-seq data [2] was a
relatively low saturation of the mutant library, which made some of the previously used meth-
ods problematic. The Tn5 transposon utilized in that work inserts at random positions in the
genome, with only a weak preference for specific sequences [12,13]. However, although the
Tn-seq experiments produced millions of reads, these reads were mapped to tens of thousands
of unique positions in the genome, suggesting that all sequence reads came from a rather limit-
ed number of unique mutants. Polyploidy of the studied organism,M.maripaludis, further ex-
acerbated some of the difficulties in the data analysis.

Additional challenges were posed by strong biases observed in the distribution of mapped
sequence reads. If every unique transposon insertion (or unique mutant) had an equal chance
to yield a sequence read the distribution of number of reads per unique insertion should be
similar to a normal distribution, although it could be skewed to some extent by selection
against insertions in essential genes and presence of insertion “hot spots” [14]. In reality, the
distribution resembles a power law distribution, which is indicative of strong biases in how
likely different mutants are to be detected by the high-throughput sequencing. For example,
one of our mutant libraries was represented by 2,593,856 sequence reads which could be reli-
ably mapped to the genome but all these reads were mapped to only 23,962 unique insertions
(defined by a position in the genome and the orientation of the transposon)—an average of
108 reads per unique insertion. In one extreme, this library included nine insertions repre-
sented by>5000 reads and 256 insertions represented by>1000 reads, whereas 5679 (24%)
unique insertions were represented by a single read and 7843 (33%) by 3 or fewer reads. We
considered a scenario where positive selection could lead to proliferation of some specific mu-
tants that outcompete other mutants and the wild-type strain in the culture but the genes that
contained the insertions represented by high numbers of reads also contained other insertions
that were represented by normal or low numbers of reads, arguing that this scenario cannot
fully explain the observed data. We believe that this bias in distribution of reads per unique in-
sertion could be an artifact of the experimental procedures in the preparation of the samples
for sequencing, which involves amplification and enrichment for transposon-chromosome
junctions, or it could arise from other processes that we do not fully understand.

The low level of mutant saturation also affects statistical approaches utilizing a formal null
model to estimate the expected number of sequence reads mapped to a gene [3,9]. The
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drawback of counting all reads mapped to a gene is that sequence reads are not independent
observations for the purpose of statistical evaluations, which could lead to type I errors (false
positive classifications of genes as essential when rejection of the null hypothesis is in reality
not justified). To avoid this issue, the counts of unique insertions per gene can be considered
instead of counts of all sequence reads, while disregarding the information about the number
of reads per insertion [2,10,11]. The advantage of this approach is that unique insertions are
more likely to represent independent observations but the disadvantage is that counts of
unique insertions per gene can be low. This in turn makes the approach based on comparing
insertion densities among different genes problematic because the low counts of unique inser-
tions exacerbate the effect of differences in gene length. To bypass the issues associated with
comparing genes of different sizes, we designed a sliding window approach, which compares
insertion counts in segments of a fixed length.

Our approach is conceptually similar to that used by Zhang et al. [8], instead of counting in-
sertions in genes, we count insertions in overlapping windows of a fixed size. When the win-
dow size is sufficiently large (depending on the overall density of insertions in the genome) the
distribution of the insertion counts is bimodal with low values corresponding to window loca-
tions overlapping with putative essential genes or possibly other essential genomic segments
[2].

Tn-seq Explorer includes a tool to determine automatically an appropriate window size.
This tool is based on an empirical observation that for small window sizes the distribution of
insertion counts per window resembles an exponentially decreasing function and as the win-
dow size increases the distribution becomes bimodal, with the left peak corresponding to the
population of essential (or advantageous) genes and the wide right peak to non-essential genes
(Fig 1). Starting with a small window size, the distribution of insertion counts per window is
determined and a fit to exponential function is evaluated by the coefficient of determination
(R2). The smallest window size with R2 below a cutoff value is deemed appropriate for the li-
brary at hand. The cutoff value is dependent on the window size and has been determined by a
heuristic analysis of empirical data and simulations. The users can override the recommended
window size if they deem a different window size more appropriate for their data.

Once the appropriate window size is determined and counts of insertions per window are
known, each annotated gene is assigned an essentiality index (EI; Fig 2). For a gene that is larg-
er than the window size, the essentiality index is the largest insertion count in any of the win-
dows fully embedded in that gene. For genes smaller than the window size, EI is the smallest
insertion count among all windows that fully encompass the gene at hand. Note that the sliding
window approach does not completely remove the uncertainty affecting small genes because if
a small essential gene is surrounded by non-essential DNA all windows overlapping that gene
can have high insertion counts, and as a result this gene could be incorrectly classified as non-
essential (as opposed to the insertion density approach, which is more likely to classify short
genes incorrectly as essential). However, the sliding window can detect clusters of essential
short genes (e.g., ribosomal protein gene operons which are present in most prokaryotic ge-
nomes [2,15]).

In addition to assigning EI values to individual genes, Tn-seq Explorer also provides a list
of genomic regions predicted to be essential as contiguous segments consisting of overlapping
windows with low insertion counts. See ref. [2] and the related supplementary information
at (http://www.pnas.org/content/suppl/2013/03/01/1220225110.DCSupplemental/pnas.
201220225SI.pdf) for detailed description of the method and additional justification, as well as
examples of its application.

Tn-Seq Explorer
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Additional tools for data analysis
Tn-seq Explorer provides several tools for analysis of biases in the Tn-seq data. Plots of distri-
bution of sequence read counts per unique insertion are available to analyze biases possibly
arising from mutations hot spots or artifacts in the enrichment and amplification procedures,
and to decide whether analysis of read counts or unique insertion counts is more appropriate

Fig 1. Screenshots of distribution of unique insertions per window for window sizes 400, 550, 700, 850, 1000, and 1500 bp. The analyzed genome
(M.maripaludis S2) was scanned with a sliding window of the given size shifted by 10 bp in each step, counting the number of unique transposon insertions
within each window. The vertical axis shows the number of window positions that yield the insertion count shown by the horizontal axis.

doi:10.1371/journal.pone.0126070.g001
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for the given mutant library. Inspecting the distribution of insertion or read counts per window
of a fixed size can also reveal possible anomalies in the distribution of transposon insertions in
the genome. In addition, a complete list of all unique insertions characterized by the location in
the genome and orientation (strand), and the number of reads mapped to this insertion is
stored as a tab-delimited table and available if a detailed investigation of particular genomic re-
gions is needed.

Additional tools are provided for comparison between different mutant libraries. Identify-
ing genes with large differences in essentiality indices or insertion densities in mutant libraries
grown under different conditions can quickly isolate candidate genes that are essential under
one set of conditions but not the other. This can be done from a tabular output in a spreadsheet
format or in an interactive graph generated by Tn-seq Explorer.

Tn-seq Explorer allows for automatic adjustments of gene starts and ends because transpo-
son insertions near the 30 end of the gene are less likely to disrupt the gene function and there-
fore insertions may be found near the gene 30 ends even in essential genes [16]. Adjustment at
the 50 end can be made to account for possibly mis-annotated translation start sites. The auto-
matic gene start and end adjustments can be set in terms of a number of nucleotides to be ex-
cluded, as percentage of the gene size, or a combination of both. For example, the users can
choose to exclude insertions located in the first 30 nucleotides and the last 20% of the gene.
The default parameters are set to exclude the 20% of the gene size at the 30 end and 5% at the 50

end. Moreover, the genome annotation can be manually modified, for example, to add genes
that may have been recently discovered but are not included in the annotations downloaded
from online databases, or correct gene start and end coordinates if they are believed to
be inaccurate.

Results and Discussion

Tn-seq Explorer features and implementation
System requirements. Tn-seq Explorer is a standalone Java application. It was tested on

Windows, Mac OS, and Linux systems and requires Java Virtual Machine version 7 or latter
(http://www.java.com/en/download/). The Bowtie2 feature in Tn-seq Explorer has been tested
on Mac OS, Linux, and 64-bit Windows systems but it is not available on 32-bit versions of the
Windows operating system.

Fig 2. Diagram of EI assignation per gene. a) For a gene larger than the window size, the EI correspond to
the window with the larger number of unique insertions among all windows embedded on that gene. b) For
genes smaller than the window size, EI is the smallest insertion count among all windows that fully
encompass the specific gene. 20% of the 30 end and 5% of the 50 end of every gene is truncated. Green
rectangles represent the target gene, gray rectangles represent surrounding genes. Blue boxes represent the
selected sliding window for determining the EI of the target gene; dashed blue boxes represent other sliding
windows for the target gene. Numbers in the corner of the boxes represent the number of reads per window.

doi:10.1371/journal.pone.0126070.g002
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Input and output. The primary input is the alignment of sequence reads to the reference
genome in the SAM format [17]. Popular tools for alignment of sequence reads to a reference
genome sequence, such as Burrows-Wheeler Aligner (BWA) [18] or Bowtie [19], can generate
the SAM-formatted output. Bowtie2 [20] can be started directly from the Tn-seq Explorer
menu and Tn-seq Explorer provides a brief guidance how to obtain the data using BWA.
When Tn-seq Explorer runs on Linux it can attempt to download, install and run the BWA di-
rectly from the Tn-seq Explorer menu.

The gene annotation (including gene locations and functional descriptions) is another re-
quired input. For publicly available completely sequenced genomes, Tn-seq Explorer can
automatically download the required files from the NCBI FTP server (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria/). Alternatively, the users can prepare the annotation files themselves in an
appropriate format.

The primary output is a tab-delimited text file that can be opened as an Excel spreadsheet.
The lines in the table relate to annotated genes and most data analysis tasks performed by Tn-
seq Explorer add new columns to the spreadsheet, which contain the results of that task, such
as assigning each gene an essentiality index or insertion density. Some tasks generate a graphi-
cal output or a separate file.

A typical session with Tn-seq Explorer. A typical session starts with the user setting up a
new project by providing the information about the studied genome including the gene anno-
tation. The next step consists of preparing the mutant library files. For the purposes of Tn-seq
Explorer, each library is represented by a SAM-formatted file that contains sequence reads
from a Tn-seq experiment aligned to the reference genome. The subsequent data analysis as-
sumes that the 50 ends of the aligned reads correspond to the sites of transposon insertions. A
project can include multiple libraries, e.g., growth under different conditions, different time
points, or duplicate experiments. Tn-seq Explorer processes each SAM file to identify unique
insertions (characterized by a unique position and orientation in the genome) and the number
of sequence reads representing each unique insertion. Most subsequent analyses provide op-
tions to count all reads or only unique insertions. At this stage, the users can investigate biases
in the distribution of reads to determine the most appropriate method for data analysis. There
is also an option to exclude all unique insertions represented by a single read (or a small num-
ber of reads) if the user believes that these could be false observations arising from misaligned
sequence reads.

After the initial processing of the SAM file, the following step involves determining the ap-
propriate window size if the user decides to use the sliding window method. An appropriate
window size is such that exhibits bimodal distribution of insertion counts per window with
separate peaks corresponding to windows with low number of insertions (presumably overlap-
ping with essential genes or other essential segments of the genome) and windows with high
number of insertions, which are unaffected or weakly affected by selection under the given
growth conditions. Tn-seq Explorer includes a feature to recommend the appropriate window
size automatically by evaluating the distribution of insertion counts per window but users can
also visually inspect the insertion count distributions for different window sizes and override
the default values.

Once the libraries are set up and the appropriate window size determined, the subsequent
data analysis is performed in the menu tab ‘Manage data tables’. The primary tool in this part
assigns essentiality indices to the annotated genes. Alternatively, the insertion densities (or raw
insertion/read counts) can be assigned to each gene and added to the spreadsheet. To accom-
modate analysis of Tn-seq data obtained with Mariner transposon, which inserts specifically at
TA sites, Tn-seq Explorer includes an option to normalize the insertion counts relative to the
number of TA sites in a gene instead of gene size. All tools can be applied repeatedly for
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different mutant libraries and/or for different parameters (e.g., different adjustments of gene
ends or different window sizes in the sliding window approach), and each time a new column
is added to the spreadsheet. The users can edit the spreadsheet to remove unwanted data or
sort or otherwise rearrange the data as long as the overall format of the table is maintained. Ad-
ditional tools allow comparing data in a pair of columns, which can be helpful in identifying
genes with divergent insertion densities in different libraries (e.g., different growth conditions).

Project file structure. Each project is assigned a folder in which the project files are stored.
The files created by Tn-seq Explorer are stored as tab-delimited text files and can be modified
by the user. For example, the users can modify the annotation by adding or removing genes.

Source code availability. Tn-seq Explorer source codes are available under the terms of
GNU General Public License (http://www.gnu.org/licenses/gpl.html). We encourage users with
appropriate skills to add new functionality to Tn-seq Explorer. In particular, users can adopt
the Tn-seq Explorer framework and add new tabs to the menus that provide new functions, in-
cluding their own methods for Tn-seq data analysis.

Testing of Tn-seq Explorer on previously published data and comparison
with alternative software for Tn-seq data analysis

Reanalysis ofM. maripaludis Tn-seq data. We compared the performance of the sliding
window approach implemented in Tn-seq Explorer with the online server ESSENTIALS [9] by
analyzing the same data by the two programs. We used the library ofM.maripaludis S2 mu-
tants from our previously published work [2]. This mutant library was grown for 14 genera-
tions in rich medium without antibiotic selection. Sequence reads from the Tn-seq experiment
were mapped to theM.maripaludis genome using the Burrows-Wheeler Aligner [18] and the
resulting SAM file was used as input for both Tn-seq Explorer and ESSENTIALS. The window
size in Tn-seq Explorer was set to 550 nucleotides, the value determined as optimal by the soft-
ware, and ESSENTIALS was run with the default parameters. ESSENTIALS assigns each gene
the value LogFC, or log-fold-change, which is a logarithm of the ratio of the observed and ex-
pected counts of sequence reads mapped to that gene. We used the LogFC values from ESSEN-
TIALS and compared them to the essentiality indices (EI) from Tn-seq Explorer. ESSENTIALS
also assigns p-values to each gene but we found the p-values to be unrealistically low and un-
suitable for classification of genes as essential or nonessential. Specifically, of the 1772 genes
in our data set, only 193 had the FDR-adjusted p-value>10–5 and 1129 genes had p<10–50,
which suggests that the null model used by ESSENTIALS is not a sufficiently accurate represen-
tation of the studied system.

Both LogFC and EI values show bimodal distributions with the left peak corresponding to
putative essential genes (Fig 3). For EI, the minimum separating the two peaks is at 7, whereas
for LogFC the minimum is at -3.72. We therefore consider genes with EI�6 to be predicted es-
sential by Tn-seq Explorer and those with LogFC<-3.72 predicted essential by ESSENTIALS.
Using these criteria, 554 of the 1772 annotated genes are predicted to be essential by both pro-
grams, 134 are predicted essential by Tn-seq Explorer but not ESSENTIALS, 25 are predicted
essential by ESSENTIALS but not Tn-seq Explorer, and 1084 are predicted non-essential by
both programs. Therefore, the predictions are in agreement for 92% of genes. The agreement
improves to 94% if a more conservative cutoff EI�4 is used for Tn-seq Explorer. Fig 4 shows
the comparison between the EI and LogFC values for all genes. The complete data are provided
in S1 Dataset.

We compiled a list of 104 genes believed to be essential and 89 genes believed to be non-es-
sential in the rich medium in our previous work [2]. This classification was based on consider-
ations of the gene functions, known aspects of theM.maripaludis physiology, mutagenesis
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studies, and additional available information. All 104 genes believed to be essential were classi-
fied as such by Tn-seq Explorer; eighty-two had EI = 0, seventeen EI = 1, four EI = 2, one
EI = 3, and none EI>3 (S1 Dataset). Five of these genes were classified as non-essential by ES-
SENTIALS (LogFC>-3.72), including tetrahydromethanopterin S-methyltransferase subunit
G (MMP1566), DNA-directed RNA polymerase subunits N and A” (MMP1326 and
MMP1364), 50S ribosomal protein L18P (MMP1418), and DNA topoisomerase VI subunit A
(MMP1437). Among the 89 genes believed to be non-essential, one gene, coenzyme F420-
reducing hydrogenase subunit delta, was assigned EI = 5, which is higher than any of the EI val-
ues for genes believed to be essential but below the cutoff we used, we therefore consider it a
false positive prediction by Tn-seq Explorer. None of these genes were classified as essential by
ESSENTIALS (see S2 Dataset for complete data). If we accept this small dataset as an accurate
‘gold standard’, we could conclude that both programs deliver a very good accuracy. Tn-seq
Explorer provides slightly better sensitivity (100% as opposed to 95% for ESSENTIALS),

Fig 3. Distribution of counts of unique insertions in a sliding 550 bp window from Tn-seq Explorer
(top) and distribution of LogFC values from the ESSENTIALS output.

doi:10.1371/journal.pone.0126070.g003
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whereas ESSENTIALS has a slightly better specificity due to one false positive from Tn-seq Ex-
plorer (100% versus 99%).

In the absence of a larger and more reliable “gold standard” in terms of an independently
verified set of essential genes, it is difficult to determine rigorously which predictions are more
accurate. Tables 1 and 2 provide the lists of genes which exhibit the most dramatic discrepan-
cies between the EI and LogFC values. The most significant differences are generally limited to
small genes where the classification may be unreliable and hypothetical genes. Some of the dif-
ferences between the ESSENTIALS and Tn-seq Explorer may also arise from different trunca-
tions of gene starts and ends. ESSENTIALS uses a more complex formula for truncating genes
at the 3’ and 5’ ends which cannot be modified by the users. In that regard, Tn-seq Explorer al-
lows more flexibility in specifying how large portion of the gene at each end should
be excluded.

Reanalysis of Tn-seq data for Pseudomonas aeruginosa. We used Tn-seq Explorer to re-
analyze some of the data from a previously published study of tobramycin resistance in P. aeru-
ginosa [5]. Like our previous work onM.maripaludis, this study utilized the Tn5 transposon
but the Tn-seq experimental methodology included a DNA circularization and exonuclease
treatment to enrich for chromosome-transposon junctions. Because this work aimed specifical-
ly to identify genes responsible for tobramycin resistance, the data analysis centered on a com-
parison between mutant libraries grown in the presence and absence of tobramycin. Using the
library grown in the absence of tobramycin as a control eliminates some of the uncertainties re-
lated to possible biases in transposon insertions as long as they affect both libraries
approximately equally.

We downloaded the raw read data from the European Nucleotide Archive (ENA; http://
www.ebi.ac.uk/ena/data/view/SRP004542) and analyzed libraries SRR073532 (14,152,566
reads) and SRR073533 (10,699,404 reads), which correspond to growth without and with
tobramycin, respectively, in trial 1 reported in the original work [5]. We mapped the reads to

Fig 4. Comparison of EI values from Tn-seq Explorer and LogFC values from ESSENTIALS for the
1772 annotated genes in theM.maripaludis S2 genome.

doi:10.1371/journal.pone.0126070.g004
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the reference genome using BWA. This resulted in 12,642,610 and 9,830,486 reads mapped to
97,618 and 77,281 unique insertions for the two libraries, respectively. These numbers are simi-
lar to those reported by Gallagher et al.; small differences are expected because different soft-
ware were used to map the reads to the reference genome. Because the goal of this study was to
identify genes negatively selected in the presence of tobramycin by a direct comparison

Table 1. Genes with EI<5 (essential according to Tn-seq Explorer) but with LogFC>-1.0 (that is, strongly non-essential according to the ESSEN-
TIALS results)

Length (bp) Locus Tag Gene symbol Description Essentiality Index LogFC

426 MMP1235 moaE molybdopterin biosynthesis MoaE 1 1.80

210 MMP1402 - hypothetical protein 4 1.50

375 MMP1207 - 30S ribosomal protein S6e 1 1.32

612 MMP0256 hisH imidazole glycerol phosphate synthase subunit HisH 1 1.30

336 MMP0022 - hypothetical protein 4 0.47

225 MMP1566 mtrG tetrahydromethanopterin S-methyltransferase subunit G 1 0.34

315 MMP0347 - hypothetical protein 4 0.34

369 MMP0231 - cysteine-rich small domain* 4 0.32

1161 MMP1364 rpoA2 DNA-directed RNA polymerase subunit A'' 0 0.23

549 MMP1196 - hypothetical protein 1 0.20

510 MMP1597 - phosphatidylglycerophosphatase A 2 -0.18

309 MMP1406 - translation initiation factor Sui1 4 -0.23

555 MMP1167 - flavoprotein-like protein 3 -0.32

801 MMP1285 - hypothetical protein 4 -0.50

345 MMP0217 - transcriptional repressor-like protein 4 -0.51

711 MMP1267 - hypothetical protein 3 -0.53

807 MMP1528 pheA prephenate dehydratase 1 -0.56

363 MMP0465 - hypothetical protein 2 -0.58

156 MMP1706 - H/ACA RNA-protein complex component Nop10p 0 -0.61

693 MMP1526 rncS ribonuclease III family protein 4 -0.91

1764 MMP0650 ilvB acetolactate synthase catalytic subunit 1 -0.94

1086 MMP0006 - 3-dehydroquinate synthase 3 -0.99

*Zinc finger-like domain pfam04071

doi:10.1371/journal.pone.0126070.t001

Table 2. Genes with LogFC<-4.0 (likely essential according to the ESSENTIALS results) but with EI>8 (that is, probably non-essential by the Tn-
seq Explorer)

Length (bp) Locus Tag Gene symbol Description Essentiality Index LogFC

1254 MMP0707 - sodium/hydrogen exchanger 15 -4.15

74 RNA_7 tRNA-Lys2 Lys tRNA 14 -4.66

230 RNA_45 RNaseP - 13 -6.99

144 MMP0151 rpl40e 50S ribosomal protein L40e 11 -6.25

87 RNA_32 tRNA-Ser3 Ser tRNA 11 -5.52

75 RNA_15 tRNA-Arg3 Arg tRNA 10 -5.25

207 MMP1687 korD 2-oxoglutarate ferredoxin oxidoreductase subunit delta 9 -5.82

85 RNA_13 tRNA-Ser1 Ser tRNA 9 -5.42

591 MMP0350 - hexapeptide repeat-containing transferase 9 -4.72

1185 MMP0356 - group 1 glycosyl transferase 9 -4.66

267 MMP1330 - hydrogenase assembly chaperone hypC/hupF 9 -4.21

doi:10.1371/journal.pone.0126070.t002
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between the two libraries, we used the insertion density method and counted all sequence reads
mapped to each gene.

To make our results comparable to those reported in the original work, we counted reads
mapped to the central 80% of the genes (excluding 10% at each end as opposed to the Tn-seq
Explorer default 5% at 5’ end and 20% at 3’ end), and we excluded from the analysis genes that
had fewer than three unique insertions in the library SRR073532 (growth without tobramycin).
The results are shown in S2 Dataset. Gallagher et al. [5] identified 117 genes as being affected
by tobramycin selection when using as a main criterion that the number of reads mapped to
the gene dropped 2.5-fold in the tobramycin library compared to the one grown in the absence
of tobramycin. That is, the selection ratio (number of reads in the library grown with tobramy-
cin divided by number of reads without tobramycin) was<0.40. Of those 117 genes, 95 have
the selection ratio<0.40 in our data, additional 10 have the ratio<0.50, and two were
excluded for having less than 3 unique insertions. However, we found 369 genes with the
ratio<0.40 that were not identified in the original work as affected by selection (S2 Dataset).
There are several likely reasons for these discrepancies: (i) we analyzed only one of the two
biological replicates available whereas the original analysis utilized both replicates; (ii) Galla-
gher et al. performed additional normalizations of the read counts that we did not include
in our analysis; (iii) they excluded additional genes when “manual examination of the
distribution of hits and reads within the ORF betrayed questionable evidence of negative
selection, even though the strict numerical criteria were satisfied” [5]. We believe that the
large number of “false positives” relative to the results in the original work is in large part due
to careful manual analysis of the data performed by the authors, including manual investiga-
tion of the distribution of insertions within each candidate gene, and demonstrates potential
drawbacks of reliance of automated data processing. In that regard, Tn-seq Explorer provides
several tools for detailed exploration of the data, including access to intermediary data files
in an easy-to-read form (tab-delimited tables readable in Excel or other spreadsheet
applications).

In addition to analyzing the data with the insertion density method, which is most similar
to the method used by the authors of the original work, we also analyzed the two libraries
using the sliding window method and counting only unique insertions. S2 Dataset shows EI
values for each gene in the two libraries (EItobramycin+ and EItobramycin–) and the difference
ΔEI = EItobramycin+—EItobramycin–. Sliding window size 400 bp was used for both libraries. Note
that for the purpose of calculating the difference, each EI value was capped at 10 based on the
reasoning that EI�10 indicates that the gene is probably not essential under the specific growth
conditions. Using difference rather than ratio is justified because the EI values refer to insertion
counts in a window of fixed size and are therefore directly comparable among different genes.
In this evaluation, genes affected by negative selection in the presence of tobramycin should
have negative values of ΔEI. Among the 117 gene identified in the original work, 82 had
ΔEI�-3 and additional 17 had ΔEI = -2. Most of the remaining genes with ΔEI>-2 had large
EI values in both libraries, suggesting that although they may provide a selective advantage in
the presence of tobramycin they are probably not essential. For comparison, 911 of all 5678 an-
notated genes (16%) had ΔEI�-3 (S2 Dataset). Note that these results were obtained by count-
ing only unique insertions, which is a major deviation from the approach we used above and
the one used by Gallagher et al., and the larger deviation from the original results is therefore
not surprising. As we argued above, counting all reads is justified in most situations where the
goal is a differential analysis, that is, analysis of differences in selective constraints between two
libraries. However, alternative methods can be used to gain additional insights and to flag po-
tentially incorrectly classified genes for additional scrutiny.
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Reanalysis ofHaemophilus influenzae Tn-seq data. We also reanalyzed some of the pre-
viously published data forH. influenzae [1]. Unlike the studies ofM.maripaludis and P. aerugi-
nosa which utilized the Tn5 transposon, this work was done with the Mariner transposon,
which inserts specifically at TA dinucleotides. The main goal of this work was to identify genes
required for growth in the lung. In an analogy to the analysis of the P. aeruginosa data above,
the data analysis in this work utilized comparison between a library grown in murine lung and
a control library grown in vitro.

The original study [1] classified genes as essential (those with insertion in<5% TA sites in
the control library), those with in vitro growth defect (insertions in<40% TA sites), non-
essential (those with high read counts in both libraries), and genes required for growth in lung
(high read counts in the in vitro control, or ‘input’, library and low read counts in the library
grown in the lung, or ‘output’ library). We compared the S1 (the input library) and S3 (the out-
put library) datasets from the original publication to perform similar classification using tools
available in Tn-seq Explorer. Note that there are some differences in methodology; for exam-
ple, we differentiate unique insertions in opposite orientations even if the insertion is at the
same site (therefore the maximum number of unique insertions is twice the number of TA
sites). We also used cutoffs inferred from bimodality of distribution of reads per TA site (read
density) instead of arbitrary cutoffs of 40% or 5%. Consequently, we classified genes separately
for each library as essential or non-essential with the expectation that genes classified as essen-
tial by Gawronski at al. should be classified as essential in both libraries by our method, genes
originally classified as nonessential should be non-essential in both libraries, genes classified as
required for growth in lung should be essential in the output library but non-essential in the
input library, and those associated with growth defects in the in vitro library may be essential
in both libraries but could also fall into other groups because this classification is based on less
stringent criteria than the essential genes. Genes excluded or not classified in the original work
were excluded from our analysis as well.

The read density cutoffs (number of reads divided by number of TA sites in a gene) were set
to 0.58 and 0.90 for the S1 and S3 libraries, respectively. These values correspond to the mini-
mum separating the main left and right peaks in the read density distribution obtained with
Tn-seq Explorer’s default parameters. The results are provided in S3 Dataset. All genes classi-
fied as essential by Gawronski at al. are classified as essential in both libraries by Tn-seq Explor-
er (read densities lower than the cutoffs). Of the 900 genes classified as non-essential by
Gawronski et al., 23 are classified as essential in the library S3 (output library) and none in S1
(input library). However, most of these 23 genes have the read densities close to the cutoff, pos-
sibly suggesting that the 0.90 cutoff we used is too high. Among the 136 genes classified as re-
quired for lung infection in the original work, we classified 12 as non-essential in both libraries,
whereas 121 were classified as expected, that is, essential in library S3 but non-essential in S1.
Interestingly, 3 of the genes found to be required for infection by Gawronski et al. are not in-
cluded in the current genome annotation. All genes classified by Gawronski et al. as ‘Inferred
in vitro and in vivo growth defects’ are classified as essential in library S3 and ~40% (37 of 98)
were also essential in library S1. Most of genes described by Gawronski et al. as ‘Inferred in
vitro growth defect’ were essential in S3 and some also in S1. The mixed results for the latter
two groups are not surprising because we used only binary classification assigning each gene
an essential or non-essential status whereas Gawronski et al. used a third class, ‘inferred growth
defect’, to cover the area of uncertainty. The results can be considered in good agreement with
those in the original work despite significant differences in the methodology used, use of differ-
ent software in mapping the reads, and that we used only one of two input libraries.
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Conclusions
We designed the Tn-seq Explorer as an alternative to existing software to help biologists ex-
plore and analyze Tn-seq data towards understanding fitness and gene essentiality. One impor-
tant observation we made in the analysis of Tn-seq data is that they can be affected by
apparently non-random biases and that each dataset may require a different approach to its
analysis and/or use of different values of parameters. This is why Tn-seq Explorer provides
tools for interactive exploration of the Tn-seq data, alternative data analysis techniques, and
flexibility in parameter settings to allow the users to determine the most appropriate approach
for each specific experiment. Results obtained with tools implemented in Tn-seq Explorer are
generally in good agreement with those obtained by other methods, although the comparison
with the original analysis of P. aeruginosa data [5] suggests that careful manual investigation of
transposon insertions within individual genes can reduce the number of false
positive classifications.

Supporting Information
S1 Dataset. Comparison of Tn-seq Explorer and ESSENTIALS results forM.maripaludis
mutant library grown in rich medium.
(XLSX)

S2 Dataset. Reanalysis of data for P. aeruginosa and comparison with results in the original
work.
(XLSX)

S3 Dataset. Analysis of theH. influenzae data using insertion density normalized by num-
ber of TA sites and counting all reads.
(XLSX)
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