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Optimising non-invasive brain-
computer interface systems for 
free communication between naïve 
human participants
Angela I. Renton   1*, Jason B. Mattingley   1,2,3 & David R. Painter2

Free communication is one of the cornerstones of modern civilisation. While manual keyboards 
currently allow us to interface with computers and manifest our thoughts, a next frontier is 
communication without manual input. Brain-computer interface (BCI) spellers often achieve this by 
decoding patterns of neural activity as users attend to flickering keyboard displays. To date, the highest 
performing spellers report typing rates of ~10.00 words/minute. While impressive, these rates are 
typically calculated for experienced users repetitively typing single phrases. It is therefore not clear 
whether naïve users are able to achieve such high rates with the added cognitive load of genuine free 
communication, which involves continuously generating and spelling novel words and phrases. In two 
experiments, we developed an open-source, high-performance, non-invasive BCI speller and examined 
its feasibility for free communication. The BCI speller required users to focus their visual attention on 
a flickering keyboard display, thereby producing unique cortical activity patterns for each key, which 
were decoded using filter-bank canonical correlation analysis. In Experiment 1, we tested whether 
seventeen naïve users could maintain rapid typing during prompted free word association. We found 
that information transfer rates were indeed slower during this free communication task than during 
typing of a cued character sequence. In Experiment 2, we further evaluated the speller’s efficacy for free 
communication by developing a messaging interface, allowing users to engage in free conversation. 
The results showed that free communication was possible, but that information transfer was reduced 
by voluntary textual corrections and turn-taking during conversation. We evaluated a number of factors 
affecting the suitability of BCI spellers for free communication, and make specific recommendations for 
improving classification accuracy and usability. Overall, we found that developing a BCI speller for free 
communication requires a focus on usability over reduced character selection time, and as such, future 
performance appraisals should be based on genuine free communication scenarios.

Overview.  Free and open communication is fundamental to modern life, scientific enterprise and democratic 
discourse. The rising prevalence of technologies such as virtual/augmented reality1–6 has created new opportuni-
ties for hands-free communication and control. Brain-computer interfaces (BCI), which translate measurements 
of the user’s brain activity into computer commands to control external devices7–11, present emerging forms of 
hands-free communication. BCI spellers are virtual keyboards that decode brain activity patterns allowing users 
to select characters in sequence to spell words and, ultimately, freely communicate12. BCI keyboards mimic man-
ual keyboards, which extend the user by allowing them to physically manifest their real-time thoughts, interface 
with the internet and communicate remotely. BCI communication systems, including spellers, have long been 
used in clinical settings to facilitate communication in cases of quadriplegia, anarthria and amyotrophic lateral 
sclerosis13–15. These systems are often developed using electroencephalography (EEG), which allows for portable, 
flexible and affordable devices16. BCI has the potential to revolutionise communication, and yet its potential 
for creating free communication in healthy users is largely unexplored17. Here, we developed an open-source, 
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high-performance, non-invasive BCI communication system, and explored how the numerous free parameters 
involved in testing, design, and algorithm implementation can be altered to optimise performance and usability.

Remarkable progress had been made in the development of signal processing and classification algorithms to 
decode the brain activity underlying BCI control commands12,18–21, including faster and more accurate classifica-
tion of neural activity evoked by flickering virtual keyboards6,12,21,22. For communication, the original and most 
prevalent BCI speller uses the P300, an event-related potential (ERP) component modulated by attention. P300 
spellers require multiple iterations for single character selection, and it may take minutes to type a single word23–29 
when not combined with predictive text30. Spellers based on the steady-state visual evoked potential (SSVEP), 
which rely on a combination of gaze shifting and attention-related entrainment of visual cortical neurons to 
flicker frequency, allow higher information transfer rates (ITRs) due to increased signal-to-noise ratio (SNR) of 
SSVEPs relative to ERPs22,31–35. For instance, Chen et al.21 and Nakanishi et al.36 developed SSVEP-based spellers 
with information transfer rates (ITRs) of ~267 and ~325 bits per minute (bpm) respectively for cued spelling, 
both with mean classification accuracies of ~90%. These ITRs are the fastest to date, with other state-of-the-art 
spellers averaging ~146 bpm (108, 124, 144, 151, 167 & 181 bpm respectively)34,37–41. This impressive improve-
ment suggests that BCI spellers may become a viable option for hands-free communication outside of clinical 
settings.

Despite advances in signal processing and classification, BCI spellers have rarely been explored for free com-
munication in healthy individuals. True free communication involves translating momentary thoughts to text, 
continuously and in real time. However, current tests of “free” spelling often involve users repeating a small num-
ber of phrases provided by the experimenter, either from memory or with assistance from salient cues21,36. While 
algorithms may allow ultra-high ITRs on cued tests, it is not clear that naïve users can cope with the significant 
cognitive load associated with BCI operation to freely communicate at these rates. Consider for instance the 
virtual keyboard developed by Chen et al.21, which produced unprecedented ITRs of ~267 bpm. Their approach 
was to combine joint frequency/phase modulated flicker with filter-bank canonical correlation analysis (CCA), 
providing high accuracy for large set sizes (40 keys) and short trial durations (1 s). The reported ITRs, however, 
likely overestimate free communication speed for several reasons. First, the classification assessment consisted 
of users BCI typing the phrase “HIGH SPEED BCI” three times, interleaved by one-minute breaks. Testing on a 
single, cued phrase scarcely resembles free communication, which involves the increased cognitive load of gen-
erating thoughts, planning phrases, spelling words, and locating the correct characters, all in real-time. Second, 
ITR was calculated based on a set size of 40 keys. Although all keys were used for template generation, only nine 
were actually used for typing at test (i.e., “H”, “I”, “G”, “S”, “P”, “E”, “D”, “B”, “C”), violating the preconditions of 
ITR calculation18,42,43. Finally, in the study of Chen et al.21, the majority of participants were experienced users, 
having trained on previous BCI systems, as well as the 200 practice trials in which target letters were highlighted 
by salient cues. This focus on cued spelling and testing on experienced users may hinder progress toward the 
development of plug-and-play, brain-based free communication in healthy, naïve users17,44. To address this con-
cern, we developed an open-source, high-performance, non-invasive BCI speller and designed a testing protocol 
to determine its suitability for genuine free communication in naïve users.

A non-invasive interface for brain-based free communication.  BCI systems provide a promising 
avenue for the development of hands-free communication applications for healthy users. We therefore devel-
oped a state-of-the-art filter-bank CCA SSVEP BCI speller (Fig. 1)21,38, examined its suitability for genuine free 
communication, and evaluated the parameters influencing its performance. In Experiment 1, we tested whether 
seventeen naïve users could maintain rapid typing during prompted free word association45. In Experiment 2, 
we developed a social BCI communication interface, allowing two users to have a free conversation. To facilitate 
free communication, we introduced seven important changes to previous top-performing virtual keyboards21,38.

Reductions in character selection time.  (1) We changed the keyboard layout from alphanumeric to QWERTY, 
which is highly familiar to users46. (2) We reduced the number of flicker frequencies (from 40) to 28, excluding 
numbers and punctuation characters, which were deemed superfluous to free communication. (3) We displayed 
the three last classified characters at the top of every key, allowing users to monitor decoding while entering vir-
tual keystrokes. This likely reduced working memory load as well as the number of saccades required between 
classification intervals.

Increases in classification accuracy.  (4) To reduce potential interference from endogenous alpha oscillations, 
we used a higher frequency range (10.0–15.4 Hz rather than 8.0–15.8 Hz). (5) We developed a procedure to cal-
culate the optimal phase shift for the sinusoid templates, thereby tailoring the templates to each individual. (6) 
We increased the flicker period (from 0.50) to 1.50 s, and the flicker-free interval (from 0.50) to 0.75 s. (7) We 
developed an averaging method to increase SSVEP SNR, allowing participants with low classification accuracy to 
potentially use the BCI communication system.

Results
Experiment 1: Results.  QWERTY classification assessment.  Classification templates derived from cued 
template training (N = 20 repetitions/key; Fig. 2a) were evaluated by having naïve participants freely BCI type 
the complete QWERTY sequence three times, without guiding cues (Fig. 2b). This preliminary test revealed that 
the BCI naïve participants could use the communication system with varying degrees of voluntary control, with 
classification accuracy from 22.62–100.00% (M = 75.37, SD = 21.67), corresponding to ITRs of 9.51–128.2 bpm 
(M = 80.41, SD = 8.51; Fig. 3a). All ITRs were calculated based on the method of Wolpaw et al.18,47, which is com-
monly used for BCIs42. The calculation is as follows:
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Where N represents the number of possible choices – here N = 28 keyboard keys. P represents the classification 
accuracy, the calculation of which is described for each stage of the experiment in the methods section. Finally, T 
represents the selection time for each character, which included both the visual stimulation and flicker-free peri-
ods for all ITR calculations in this study. Thus, T was 2.25 s (1.50 s stimulation + 0.75 s flicker-free) for both The 
QWERTY Classification Assessment and BCI Free Communication stages of Experiment 1. Finally, we converted 
selection times from seconds to minutes to express ITRs in bpm. Reliable free communication was deemed too 
difficult when classification accuracy was less than 80%. Therefore, only participants with high classification accu-
racy were considered for the free communication task. Approximately half of the group was classified on either 
side of this accuracy threshold (accuracy > 80%; N = 9/17; M = 92.29, SD = 2.20 | accuracy < 80%; N = 8/17; 
M = 57.47, SD = 18.13; Fig. 3a). However, one high accuracy (82.14%) participant elected to undergo retraining 
rather than free communication, citing frustration with misclassification. Thus, 8 participants performed the 
free communication task, while the remaining 9 participants underwent retraining instead. The retraining group 
did not complete free communication, but instead undertook a modified template training procedure, described 
below.

The retraining group (N = 9/17) completed template generation based on a double flicker epoch to increase 
SSVEP SNR. The flicker signal was presented twice in sequence (3.0 s), and the average of the two epochs (1.5 s 
each) was treated as the single-trial EEG. Again, performance was evaluated by having participants BCI type the 

Figure 1.  BCI virtual keyboard for free communication. (a) Participants operated the real-time feedback loop 
to freely type words and phrases using their brain activity alone. Participants selected characters in sequence by 
focusing their attention and fixating their gaze on sinusoidally flickering keys of a virtual QWERTY keyboard 
on a computer display, which evoked oscillatory SSVEP responses at the corresponding flicker frequency/
phase in the EEG. EEG time-locked to flicker was extracted, bandpass filtered to five harmonic ranges and 
then submitted to a filter-bank CCA with respect to a bank of individualized training templates. The classified 
frequency was the template most highly correlated with the real-time EEG, with the corresponding character 
displayed as feedback at the top of each key. Participants were free to select the next character, or to select the 
backspace key [<] to make a correction. The image of the head was created by Dr. David J. Lloyd. (b) Example 
timeline of visual stimulation and evoked EEG involved in BCI typing of the word “SENT”. Each key flickered 
at a unique frequency/phase for 1.5 s, followed by a 0.75 s flicker-free period, during which the letter was 
classified and participants shifted their attention to the next key. Focusing attention on a key potentiated the 
corresponding SSVEP response, increasing the likelihood that the corresponding letter would be classified. 
τ refers to the SSVEP delay relative to flicker onset, calculated separately for each frequency and harmonic. 
(c) Spatial organisation of the virtual keyboard’s flicker frequencies/phases. Each key flickered at a unique 
frequency/phase, ranging from 10 Hz/1.5π – 15.4 Hz/0.95π.

https://doi.org/10.1038/s41598-019-55166-y


4Scientific Reports |         (2019) 9:18705  | https://doi.org/10.1038/s41598-019-55166-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

complete QWERTY sequence three times, without guiding cues (n.b. character selection time T = 3.25 s [3.00 s 
stimulation + 0.75 s flicker-free] for the QWERTY Classification Assessment of the re-training group). A paired 
samples t-test demonstrated that classification accuracy (%) was significantly higher for the double (M = 78.04, 
SD = 19.96) than single flicker epoch (M = 60.22, SD = 18.85; t8 = −4.34, p = 0.002; Fig. 3b), a mean improve-
ment of ~18%. This increase in classification accuracy resulted in ITRs (bpm) that did not differ significantly for 
the double (M = 50.41, SD = 6.57) and single flicker epochs (M = 54.12, SD = 8.41; t8 = 0.75, p = 0.476), despite 
the much longer flicker duration (×2). The double flicker epoch resulted in 6/9 participants being classified 
with greater than 80% accuracy, increasing the system’s suitability for free communication. The classification 
improvement using the double epoch average indicated that filter-bank CCA’s algorithms depend on high SNR 
and single-trial SSVEP phase consistency.

BCI free communication.  To determine whether the BCI system was suitable for genuine free communi-
cation in naïve users, high accuracy participants (N = 8/17) freely generated words/phrases that were semantic 
associates of word prompts (Fig. 2c; Supplementary Information, Appendix 1). Participants first manually typed 
their intended words/phrases using a standard keyboard, and then attempted to replicate these character strings 
using BCI typing. This allowed us to quantify classification accuracy during free communication.

Participants could successfully freely communicate using the BCI system, generating a large variety of unique 
words and phrases in response to the prompts (Supplementary Information, Appendix 2). Example prompt/
associate pairs include: “GREAT”/“DIM SUM”, “IMPORTANT”/“MUM” and “PLACE”/“IT PUTS THE LOTION 
ON ITS SKIN”. Participants generated 1–10 words/prompt (M = 1.80, SD = 0.53), selecting each key at least once 
([X] & [Z]) and up to 201 times ([backspace]; M = 21.26 selections, SD = 8.77). Participants generated words of 
average complexity (word length: M = 5.13 characters, SD = 0.22), equivalent to the average length of English 
words (5.10 characters)48. Free communication was perhaps most strongly evident in the ability of many prompts 
(selected at random) to produce different successfully BCI typed associates across participants (e.g., prompt: 

Figure 2.  The three phases of Experiment 1, which allowed BCI free communication through prompted 
free association. (a) Template training. Participants (N = 17) were cued to focus their attention and gaze on 
each flickering key in a random order (N = 20 repetitions/key). Keys were cued prior to and during flicker. 
Participants with low classification accuracy (< 80%), determined via QWERTY classification, underwent 
retraining with an increased flicker duration (3.0 vs. 1.5 s) to improve single-trial SSVEP SNR. (b) QWERTY 
classification. Participants freely BCI typed the complete QWERTY sequence, without guiding cues other 
than feedback displayed at the top of each key. Flicker-free periods allowed participants 0.75 s to redirect 
their attention to the next uncued key. The three previous classified letters were displayed at the top of each 
key, allowing participants to monitor classification while performing keystrokes. (c) BCI free communication 
undertaken by participants with high classification accuracy (>80%). Prompt words allowed participants 
to freely associate words/phrases. To assess accuracy, participants entered intended character strings using 
a manual keyboard before BCI typing. A new prompt was presented when participants either matched the 
intended character string using BCI, or had entered three times more characters than in the intended string.
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“END”; associates: “OF THE DAY”, “FINAL”, “HOLIDAY”, “START”). This indicated that communication 
depended on the participants’ individual real-time thoughts and that the association task successfully tapped free 
communication.

Classification accuracy and ITR are often determined by instructing users to repeat phrases or cycle system-
atically through the keyboard. We included such a classification assessment, with the aim of contrasting free 
communication performance. ITRs during free spelling (92.41 bpm) were lower than during this systematic 
QWERTY assessment (109.56 bpm). Indeed, a paired samples t-test revealed that classification accuracy (%) 
was significantly lower during free communication (M = 84.22, SD = 3.09) than on the QWERTY assessment 
(M = 92.29, SD = 2.20; t7 = 2.96, p = 0.021; see Fig. 3c). The performance cost of free communication (~8%) might 
be partly attributable to increased demands on memory and search during free communication, and indicates 
that instructed assessments overestimate free communication ITRs.

Factors affecting the feasibility of BCI free communication.  As classification accuracy varied substantially across 
participants, we investigated a number of contributing factors. To evaluate SNR, we examined average FFT ampli-
tude spectra for each frequency during the (single epoch) template generation phase, undertaken by both the 
low and high accuracy groups. Averaged SSVEPs for each frequency (N = 20 × 1.5 s epochs) were zero-padded 
to 5.0 s to allow 0.2 Hz spectral resolution and separation of adjacent flicker frequencies (Fig. 4a). To evaluate 
the effect of SNR on classification accuracy, we calculated the difference in FFT amplitude spectra between the 
high and low accuracy groups (Fig. 4b). SSVEP amplitudes were larger for the high compared with low accuracy 
group, especially for the first three harmonics. The grand mean SSVEP amplitude topographies of the first har-
monics revealed maximal amplitudes at occipitoparietal sites, consistent with previous frequency tagging studies 
of attention49–51, with larger amplitudes for the high compared with low accuracy group (Fig. 4c). This effect was 
confirmed statistically: classification accuracy (%) was strongly positively correlated at the between-subjects level 
with the mean SNR of the first harmonic flicker frequencies (r15 = 0.84, p < 0.001; Fig. 4d). These results demon-
strate that SSVEP SNR is critical for reliable free communication.

Related to SSVEP SNR, the range of stimulation frequencies is a free parameter likely to affect classification 
accuracy. Assessment of the first harmonic SSVEPs revealed that SNR was lower for frequencies in the alpha 
range (10.0–12.0 Hz) than for higher frequencies (12.0–15.4 Hz; Fig. 4e). This may owe to interference at lower 
frequencies from phase-misaligned endogenous alpha oscillations52. Consistent with this interpretation, across 
the cued frequency spectrum (10–15.8 Hz), classification features (Rfi) on the QWERTY assessment were numer-
ically higher for template frequencies in the alpha range (10–12 Hz) compared with those above (>12 Hz). Note 
that these classification features reflect the statistical similarity between the real-time EEG and the training tem-
plates of each frequency (see also Experiment 1: Methods; Individualized Filter-Bank CCA Classification). Thus, 
these patterns of higher classification features in the alpha range reflect an increased likelihood of the real-time 
EEG being misclassified as an alpha frequency. The effect of low SNR for classification features in the alpha range 
was apparent only for the low accuracy group (Fig. 5a), increasing the likelihood of misclassification specifically 
for low accuracy individuals. Thus, avoiding stimulation frequencies in the alpha range might increase the feasi-
bility of free communication.

Our filter-bank CCA algorithms used multiple stimulation frequency harmonics. Prima facie, the inclusion 
of additional harmonics might improve accuracy, as classification is based on more information. To examine 

Figure 3.  Accuracy during QWERTY classification and free communication. (a) Individual differences in 
QWERTY classification (single flicker epochs: 1.5 s). Participants classified with greater than 80% accuracy 
(N = 8/17) advanced to free communication, with the remaining participants undergoing retraining with 
a double flicker epoch (3 s). (b) Box plot of QWERTY classification for the low accuracy group with 1.5 s 
single and 3 s double flicker epochs. (c) Box plot of performance for the high accuracy group on QWERTY 
classification and free communication via prompted association. In these and subsequent box plots, coloured 
rings represent individual participants, the central bars represent the median, outer bars represent the 25th and 
75th percentiles, and the whiskers extend to the absolute maxima.
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this, we classified the baseline template data ten times, incrementally including an additional harmonic at each 
step (i.e., [1]: f1; [2]: f1, f2; [3]: f1, f2, f3 …). As depicted in Fig. 5c, classification accuracy in fact benefited from 
fewer rather than more harmonics. To assess this statistically, classification accuracy (%) was submitted to a 
two-way mixed ANOVA with group (high accuracy, low accuracy) and number of harmonics (1, 2, 3, 4, 5, 6, 7, 
8, 9, 10) as factors. There were significant main effects of group (F1,15 = 25.95, p < 0.001, ηp

2 = 0.63) and number 
of harmonics (F9,21 = 8.05, p = 0.005, ηp

2 = 0.35; Greenhouse-Geisser adjusted, Mauchly’s W < 0.001, X2 = 263.23, 
p < 0.001), but no significant group × number of harmonics interaction (F9,21 = 0.39, p = 0.388, ηp

2 = 0.06). Thus, 
the effect of the number of harmonics was statistically similar for the high and low accuracy groups. Importantly, 
the main effect of harmonic was better explained by a quadratic (F1,15 = 37.60, p < 0.001, ηp

2 = 0.638) than linear 
trend (F1,15 = 4.08, p = 0.062, ηp

2 = 0.214), confirming an overall benefit for fewer harmonics. Examination of 
the individual-level data indicated that classification accuracy peaked for some participants after only one har-
monic, while others benefited from the inclusion of up to seven harmonics (see Table 1 for the optimal number 
of harmonics for each participant). Classification accuracy was significantly higher when using each individual’s 
optimal number of harmonics (M = 79.55, SD = 20.83) than the five harmonics used in real-time (M = 75.35, 
SD = 21.69; t16 = −3.36, p = 0.004; Fig. 5b), although modestly so (~4%). Thus, free communication can be facil-
itated by selecting the optimal number of harmonics separately for each individual.

Joint frequency/phase modulated flicker with filter-bank CCA allows high ITRs but can require lengthy indi-
vidualized calibration. In Experiment 1, template generation required ~18.67 minutes of visual stimulation (2 s/
trial × 28 frequencies × 20 trials/frequency). To determine whether shorter calibration is possible, we retrained 
the filter-bank CCA 20 times for each participant, incrementally including an additional trial for each classifi-
cation. Using MATLAB’s fittype and fit functions, which apply the method of least squares, we fitted an inverse 
exponential function to the resulting classification accuracy curve (Fig. 5d):

= − − −ACC a e(1 ) (2)s T i( )

Figure 4.  SSVEP SNR. (a) Grand mean FFT ERP amplitude spectra across all participants plotted for 
harmonics 1–5. Warmer colours indicate higher SSVEP amplitudes. The colour map is scaled to highlight later 
harmonics; the slice through the first harmonic in fact extends to 2.10 μV (b) Differences in grand mean spectra 
for the high and low accuracy groups. (c) Grand mean SSVEP amplitude topographies at the first harmonic, 
averaged across all flicker frequencies, plotted separately for the high and low classification accuracy groups. 
(d) Scatter plot of the positive relationship between mean SSVEP SNR at the first harmonics and QWERTY 
classification accuracy. (e) Grand mean FFT amplitude spectra at the first harmonic for each cued frequency 
during template training.
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Where ACC is classification accuracy, T is the number of training trials, a is the asymptote, s is the scaling factor 
and i is the x-axis intercept53. On average, the high accuracy group required 12 training trials to reach 99% of 
their asymptote (90.34% accuracy). In contrast the low accuracy group was projected to require 33 training trials 
to reach 99% of their asymptote (60.21% accuracy). This suggests that high SNR users require fewer template 
generation trials for reliable free communication, and that template generation duration can be decreased for 
these individuals.

While reducing training is desirable, it would be ideal to eliminate training entirely. We therefore assessed 
whether participants could be cross-classified with other participants’ templates. If cross-classification is feasible, 
the BCI communication system could be used by new users without individualized calibration. As is evident 
from the results of the cross-classification analyses (Fig. 5e), cross-classification depends on the to-be-classified 
individual’s own accuracy. Specifically, participants with high classification accuracy were accurately classified 
with other participants’ templates, while participants with low classification accuracy could not be classified well, 
even with high accuracy templates. For example, close inspection of Fig. 5e reveals that participant #3 could be 
classified at over 80% accuracy using 13/17 participants’ templates. There were three cases in which classification 
accuracy was as good or better using another person’s templates compared with one’s own. This suggests that high 
SSVEP SNR participants could potentially forego template generation entirely and instead freely communicate 
from the outset using generic templates.

Experiment 2: Results.  BCI communication systems should be useful not only for expressing thoughts, 
but also for exchanging thoughts explicitly in conversation with others. To fully evaluate the system’s efficacy for 
free communication, we therefore extended the system to include an asynchronous two-user messaging inter-
face (Fig. 6). Using the default parameters of Experiment 1 (namely, 5 harmonics & 20 training trials for each 
BCI key), we calculated classification accuracy on the template training data by excluding the to-be-classified 
EEG from template SSVEP generation. Due to computational practicalities, the optimal template sinusoid phases 

Figure 5.  Factors affecting the feasibility of BCI free communication, assessed using QWERTY classification 
data. (a) Grand mean classification features (Ri) for each cued frequency for the high and low accuracy groups. 
For each flicker period, the filter-bank CCA produced a classification feature (Ri) representing the correlation 
between the single-trial EEG and templates at each frequency. Correct classification occurred when Ri was 
maximal for the template matching the cued frequency. Template frequencies in the alpha range are indicated 
by the orange bounding boxes (dashed lines). (b) Box plots showing the improvement in classification accuracy 
using the optimal number of harmonics rather than the fixed first five harmonics that were used in real-time. 
(c) Simulated classification accuracy by number of harmonics, plotted for the high and low accuracy groups. 
(d) Simulated classification accuracy by number of training trials, plotted for the high and low accuracy groups. 
The fitted model is an inverse exponential function. (e) Cross-participant classification. To assess template 
generalisability, each participant’s single-trial EEG was classified using all other participants’ templates. The 
leading diagonal represents accuracy when participants were classified using their own templates. The leftmost 
column (read bottom to top) represents the highest accuracy data classified with progressively lower accuracy 
templates. Similarly, the bottom row (read left to right) represents the highest accuracy templates used to classify 
progressively lower accuracy data.
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were calculated using all the training data (see also Experiment 1: Methods; Template Training). Using this pro-
cedure, classification accuracy on the template training data was 96% (ITR = 131.25 bpm; excluding reading 
time) for participant one (P1) and 98% (ITR = 137.12 bpm; excluding reading time) for participant two (P2), 
suggesting that the classification algorithms were ready to be applied in a hands-free conversation (~5.7 words/
minute). Note that these baseline/offline ITRs were calculated using a character selection time T of 2.00 s (1.50 s 
stimulation + 0.50 s flicker-free). The two participants freely conversed using the BCI messaging interface for 
~55 minutes, using an EMG enter key [↵] activated by jaw clenching to complete their messages, view the mes-
saging display and recommence BCI typing. We used muscle rather than brain activity for the submit key to keep 
the number of BCI keys and corresponding CCA classes (N = 28) consistent between Experiments 1 and 2, and 
to ensure that chat text was terminated with maximum reliability/control. The high reliability of the enter key 
allowed us to calculate BCI classification accuracy using backspace keystrokes as a proxy for classification/user 
errors. For consistency with Experiment 1 and previous reports, ITRs were calculated with respect to the BCI 
keys and did not include EMG enter keystrokes. In developing one of the first BCI spellers for free conversation, 
we found that a hybrid EEG/EMG approach was more robust and usable than pure EEG. The participants’ con-
versation focused on recent and upcoming social engagements and their immediate experience using the social 
interface (see Supplementary Information, Appendix 3 for an unedited transcript). In total the two participants 
generated 68 messages (P1: 33; P2: 35), including 349 words (P1: 170, P2: 179), 1,731 characters (P1: 824, P2: 907) 
and 283 spaces (P1: 139, P2: 144). Mean word length was 4.2 characters (SD = 2.2, range = 1–13), and was similar 
for the two participants (P1: M = 4.0, SD = 2.1, range = 1–13; P2: M = 4.3, SD = 2.3, range = 1–13). To evalu-
ate the conversation’s trajectory during recording, the topic of each message was qualitatively scored (Fig. 7a). 
Nine conversation topics were identified, with each participant contributing at least one message to each topic. 
Interestingly, the topics overlapped in time: at least two and as many as five topics were ongoing concurrently. This 
appeared to reflect an emergent feature of the interface, allowing each participant to BCI type continuously, rather 
than iteratively awaiting their partner’s reply.

For both participants, there was a statistically reliable positive Pearson correlation between message length 
and ordinal message number (P1: r31 = 0.39, p = 0.027; P2: r33 = 0.50, p = 0.002; Fig. 7b), suggesting that the par-
ticipants gained confidence in the interface over the course of recording. The participants on average spent 78% of 
the recording duration BCI typing, with the remaining 22% devoted to viewing typed messages. The considerable 
proportion of time spent viewing messages indicated that ITRs calculated offline overestimate pure character 
transfer during free conversation, which naturally entails turn taking.

As depicted in Fig. 7c, the backspace and space keys were selected most frequently by both participants, and 
together the participants used each BCI key at least once. To test whether the two participants differentially 
selected particular keys, chi-square tests of independence set expected values (N) at half the total number of 
observations for each key. Twenty-four of the 29 keys (including the EMG enter key [↲]) had sufficiently large 
expected values (N > 5) to test statistically, excluding keys [Q], [J], [Z], [X] and [V], which were selected too 
infrequently. Observed and expected values did not differ significantly for any of the keys (χ2s < 3.90, ps > 0.0484; 
α = 0.002; Bonferonni α = 0.05/29 = 0.002), indicating that key selection was similar for the two participants 
during free communication. Counting backspace corrections as classification or participant errors, overall clas-
sification accuracy during free communication was 88% (ITR = 98.86 bpm) for P1 and 90% (ITR = 103.01 bpm) 
for P2, down 8% from training classification. Online ITRs for free communication were calculated using a char-
acter selection time T of 2.25 s (1.50 s stimulation + 0.75 s flicker-free). These results show that the BCI messaging 

Participant Real-time (%)
Accuracy using Optimal 
Number of Harmonics (%)

ITR using Optimal Number 
of Harmonics (bmp)

Optimal Number 
of Harmonics (N)

P06 100.00 100.00 128.20 5

P12 100.00 100.00 128.20 1

P02 98.81 98.81 124.20 2

P08 91.67 92.86 109.24 2

P16 90.48 96.43 117.74 3

P05 86.90 90.48 104.02 2

P13 86.90 94.05 111.97 1

P09 84.52 86.90 96.66 3

P17 82.14 92.86 109.24 2

P10 79.76 82.14 87.50 7

P04 78.57 79.76 83.16 4

P01 61.90 63.10 56.07 6

P07 59.52 64.29 57.84 1

P03 57.14 77.38 78.95 2

P11 52.38 52.38 41.19 5

P15 47.62 54.76 44.34 2

P14 22.62 26.19 12.49 6

Table 1.  Real-time and offline optimized classification accuracy (%) on the QWERTY classification assessment.
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interface was suitable for free communication, and that offline classification performance reflects an upper esti-
mate for ITR during free communication.

Discussion
Free and open communication is central to modern civilisation, allowing people to convey their thoughts and 
interface with computers and the internet. While individuals are remarkably adept at operating manual key-
boards, a next frontier is communication without manual input. Here, we developed a high performance SSVEP 
speller based on filter-bank CCA, examined its feasibility for free communication, and evaluated the free parame-
ters that could be altered to optimise performance. In Experiment 1, we tested whether naïve users could maintain 
rapid typing during prompted free word association. In Experiment 2, we developed a social messaging interface, 
allowing two users to have an unprompted free conversation. Overall, our results showed that traditional cued 

Figure 6.  Experiment 2: BCI communication system for free conversation. (a) Two experienced participants 
used an asynchronous messaging interface to have an unprompted free conversation using a system with only 
six electrodes. This image was created by Dr David J. Lloyd. (b) The keyboard layout was similar to Experiment 
1. The interface additionally included an electromyography (EMG) enter key [↵], controlled by detecting 
jaw clench signals at a frontal scalp electrode, allowing the participants to complete their messages, view the 
messaging display and recommence BCI typing. (c) BCI messaging display. The local participant’s (P1′s) 
messages are indicated with light blue, and the remote participant’s (P2′s) with light grey. The chat icon is 
enabled (bottom left corner), indicating that P2 is currently BCI typing, rather than viewing messages. (d) Three 
parallel threads devoted to reading the EEG, real-time analysis and stimulus presentation (indicated by rounded 
boxes). Inter-thread communication was via parallel port and TCP/IP (indicated by arrows). “Message” 
indicated the BCI typed text, and “status” indicated whether the remote participant was typing or viewing 
messages. The flow of information between threads was identical for P2.
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typing tests overestimate free communication ITRs (Fig. 3c). However, given individualised interfaces involving 
sufficient template training trials (Fig. 5d) and flicker durations (Fig. 3b) and appropriately chosen harmonic 
(Fig. 5b,c) and frequency (Figs. 4e and 5a) parameters, the majority of naïve users would be able to freely commu-
nicate. The single greatest determinant of free communication success was SSVEP SNR, which showed a strong 
positive correlation with classification accuracy (Fig. 4d). Our results suggest that individuals with high SNR 
might begin free communication earlier in recording due to the reduction of training trials and the ability to be 
cross-classified with generic templates (Fig. 5e). The successful brain-based free conversation of Experiment 2 
(Supplementary Information, Appendix 3) suggested that experienced users with high SSVEP SNR could use the 
virtual keyboard as naturally as a manual keyboard, albeit more slowly. Message character counts increased for 
both participants during their free conversation (Fig. 7b), suggesting that experienced users can improve their 
BCI communication efficiency, even when classification parameters remain constant.

Our communication system was made possible by the strong foundations and remarkable recent progress in 
the field of non-invasive BCI spellers. The first BCI speller, based on the P300 ERP, could reliably classify charac-
ters at a rate of 12 bpm (~2.3 characters per min)25. Modern spellers using SSVEPs, which offer higher single-trial 
SNR relative to classical ERPs, can achieve rates of around 146 bpm, an order of magnitude faster than early spell-
ers34,37–41. The seminal development of filter-bank CCA has allowed the report of an unprecedented ITR of 267 

Figure 7.  Free communication results of Experiment 2. (a) Streams of brain-based free conversation. Each 
message was qualitatively scored as belonging to one of nine conversation topics. Each colour represents a 
topic, and each vertical grey line represents a message. Circles higher in the conversation thread for each topic 
represent messages sent by P1, while lower circles represent messages sent by P2. (b) Messages sent for the two 
participants (P1 & P2) as a function of ordinal message number and character count. Brighter colours indicate 
selection of keys later in the keyboard (row three). (c) Key selection counts for the two participants, including 
an EMG enter key [↵] activated by jaw clenching.
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bpm, reflecting a forward step in non-invasive neuroimaging21,38. However, these impressive leaps in ITR were 
predominantly calculated using generic, cued character strings. Ultimately, BCI systems are intended for free 
communication, which is inherently interactive and spontaneous.

Our studies investigated the usability of BCI systems for free communication. As a first step, we developed 
three tests with increasing levels of user freedom and expression: (1) QWERTY classification in which users were 
instructed but not explicitly cued to complete the entire keyboard sequence. In conjunction, we introduced status 
characters at the top of each key that allowed participants to track classification while entering keystrokes. (2) We 
developed a prompted free association task in which the ground truth for character intention was established by 
having users enter the target phrase using a manual keyboard before BCI typing. Free association allowed users 
to generate their own words and phrases with minimal external input. (3) We introduced free brain-based com-
munication, allowing users to converse freely, without input from the experimenter. To support free conversation, 
we developed a social BCI interface that allowed users to view and respond to their conversational partner’s 
messages, received asynchronously. Our results support the use of joint frequency-phase modulated CCA BCI 
systems for free communication, but indicate that ultra-high ITRs are not realistic for free communication given 
current interfaces, which require serial key selection and lack predictive text.

Our results indicate that effective free communication requires a focus on usability rather than fast character 
selection time. Pilot development indicated that naïve users could not reliably make saccades to the next key with 
the short trials durations (i.e., 0.5 s flicker/0.5 saccade) employed in previous work21,38, especially during free com-
munication. For these users, short durations were not conducive to free communication due to the overwhelming 
cognitive load of focusing selective attention on a virtual key, ignoring distraction from adjacent flickering keys, 
planning successive keystrokes, locating the next key and making backspace corrections for misclassifications. 
Even with longer character selection times (1.5 s stimulation/0.75 s flicker-free), the effect of the added cognitive 
load during free communication is illustrated by the ~8% reduction in classification accuracy experienced by 
the eight naïve users of Experiment 1 who progressed from the QWERTY assessment to free communication. 
Consistent with this result, the two experienced users in Experiment 2 also showed an ~8% reduction in classi-
fication accuracy from offline assessment to free communication. This suggests that cued and instructed typing 
tests overestimate free communication ITRs. As an alternative explanation, the apparent classification accuracy 
cost for free communication might instead reflect an overestimation of baseline classification accuracy54,55. Note 
though that our primary goal was to test whether free communication between healthy users using SSVEP BCI 
might be possible with relatively high ITRs. Having achieved this aim, our work paves the road for future studies 
investigating the brain activity patterns unique to free communication compared with cued spelling17. We believe 
that the observed reductions in classification accuracy during free communication may have been more drastic 
if not for measures such as reducing the number of keys, using a QWERTY layout and displaying classification 
feedback on each key.

Improving the usability of the BCI speller as a hands-free communication device involves optimising clas-
sification accuracy. Individual differences in classification accuracy were largely attributable to SSVEP SNR. 
Participants with low SNR were retrained using a double flicker epoch, with classification based on the mean 
SSVEP of the two epochs. This nearly doubled character selection time, but greatly increased classification accu-
racy (+18%), allowing ITRs to remain constant. Thus, a focus on usability over character selection time provides 
ITRs sufficient and practical for free communication. Indeed, as users anecdotally remarked through BCI typing: 
“I WANT ONE OF THESE ON MY PHONE” and “TYPING WAS NEVER BETTER”. Ultimately, usable inter-
faces for free communication require serviceable rather than ultra-high ITRs.

A main advantage of communication systems based on filter-bank CCA is that the analysis parameters can 
be adapted and individualised to optimise performance. Our results showed that the most reliable determinant 
of classification accuracy was SSVEP SNR. A relatively simple procedure for optimising performance would be 
to determine SNR across a range of frequencies before template training56. This could help select the optimal 
frequency range, which would be especially advantageous for participants with low SNR in the alpha range. 
Determining the SSVEP SNR early could allow high SNR participants to proceed immediately to free communi-
cation using generic templates, while low SNR participants might undergo double epoch training. Additionally, 
template training could be optimised by real-time modelling of increases in classification accuracy with addi-
tional training trials, which we show is well-characterized by an exponential function that approaches an asymp-
tote. Therefore, real-time evaluation using principled stopping rules might optimise accuracy and minimize 
training time. Real-time evaluation might also determine the optimal number of harmonics for each individual. 
Together, these additional measures would optimise performance and reduce training time, improving usability 
and end-user experience.

The rise of virtual/augmented reality has created new opportunities for BCI communication systems beyond 
their clinical origins. For instance, future systems might allow everyday users to communicate with peers as 
they navigate virtual worlds, or allow others to discretely compose emails while walking to their next business 
meeting. The development of such real-world BCI systems requires usability-centred design. For example, in 
developing BCI for free conversation in Experiment 2, we found that the system was more robust/usable using 
hybrid EEG/EMG rather than pure EEG. Here, BCI spelling was based on EEG activity alone, and the two users 
submitted their entries using an EMG enter key, based on jaw muscle activity. Using EMG ensured that chat 
text was terminated with maximum reliability/control. Our communication system functions as an early pro-
totype for general-purpose use in naïve users, with many open paths. Development could focus, as we have, on 
non-invasive sparse electrode systems, which are suited to affordability and portability. Our results demonstrate 
that well-designed sparse electrode systems can provide high-performance. Real-time classification accuracy was 
~89% for free conversation using only five classification electrodes. We show that individualizing the system can 
improve classification performance by as much as 18%. Further, adaptive interfaces might maximize efficiency 
using general-purpose templates, as shown by our cross-classification analysis, or introduce new features such as 
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predictive text30,57–61 or mental imagery decoding62 to narrow the search space of possible user intentions, increas-
ing efficiency especially for low SNR users.

BCI communication systems have applications hitherto futuristic, made possible by recent advances in signal 
processing and decoding of neural activity patterns. We have shown that appropriate improvements to existing 
systems allow major increases in usability, here enabling free communication in naïve users. More specifically, 
given individually tailored analysis parameters and explicit usability design, filter-bank CCA provides a powerful 
basis for robust BCI free communication. To explore this possibility further, we recommend that performance 
appraisals of future systems reflect their intended modes of naturalistic free communication and control.

Methods
Experiment 1: Methods.  Participants.  Seventeen BCI naïve participants (7 males, age M = 25.12 years, 
SD = 6.82) volunteered after providing informed written consent and were paid $40. All participants were highly 
familiar with the QWERTY keyboard layout (typing speed M = 231.76 characters per min, SD = 52.62 charac-
ters per min; ITR = 1152 bpm) but naïve to the speller. The mean typing speed for the group ranks at the 59th 
percentile of over 46 million runs (https://typing-speed-test.aoeu.eu/). Experiments 1 and 2 were approved by 
The University of Queensland Human Research Ethics Committee and were performed in accordance with the 
relevant guidelines and regulations. The participants provided informed written consent to have their deidentified 
data made open access (Table 2).

Overview of BCI communication system.  The system implemented joint frequency/phase modulated flicker 
paired with a filter-bank CCA (Fig. 1a,b). The joint frequency/phase modulated flicker method relies on con-
stant electrophysiological latency across stimulation frequencies, and sets similar flicker frequencies at uncor-
related phases. Filter-bank CCA improves the classification accuracy of standard CCA by using the SSVEP 
harmonics in combination with the fundamental frequencies. In this study, 28 virtual keys ([A]–[Z], [SPACE] & 
[BACKSPACE]) were arranged in a QWERTY keyboard layout. Each key was tagged with sinusoidal flicker at a 
unique frequency/phase (Fig. 1c).

Experiment protocol.  Phase 1: Template Training. This procedure was used to generate individualised tem-
plates of the neural activity evoked by focusing on each key in the virtual keyboard. A red outline and arrow cued 
participants to foveate and focus their attention on each key. Each key was cued 20 times in a random order. Keys 
flickered for 1.5 s followed by a 0.5 s flicker-free period, during which eye movements could be made to the next 
letter (see Fig. 2a). A 5 s rest period followed each cycle through the keys. The recording duration was ~20 min-
utes, including rests.

Phase 2: QWERTY Classification Assessment. This phase determined classification accuracy using the train-
ing templates. Participants focused on each key for one flicker period, cycling through each row from left to right/
top to bottom, starting at [Q] and ending at [SPACE]. Participants cycled through the keyboard three times. 
Importantly, typing was self-directed as no cue was presented to direct participants’ attention to the correct key. 
Instead, feedback was provided by status characters reflecting the last three classifications, printed at the top of 
each key (Fig. 2b). Classification accuracy (P) was calculated by dividing the number of epochs during which 
the correct/expected letter in the sequence was classified by the total number of epochs in the sequence. The 
flicker-free period was set to 0.75 s. Letter classification took ~0.30 s to compute; thus participants had an addi-
tional 0.45 s to redirect their gaze if necessary, which was ample time to complete an eye movement63. If classifi-
cation accuracy in the testing phase was greater than 80%, participants proceeded to free communication (phase 
3). Otherwise, participants were deemed unable to reliably communicate and underwent retraining in which two 
1.5 s flicker periods were concatenated, with a phase reset after the first 1.5 s. The two 1.5 s epochs were averaged 
together, which improved the SNR for these individuals.

A challenge for free communication is locating and fixating on the correct key before the onset of the next 
flicker epoch. Participants were therefore given three minutes to practice using the BCI system before the free 
communication task began.

Phase 3: BCI Free Communication. This phase assessed the BCI system’s suitability for free communication. 
Participants were instructed to generate responses to prompt words in a free association task45. At the beginning 
of each trial, participants were presented with a prompt word, which was randomly selected from a list of 321 
common English words (Supplementary Information, Appendix 1; selected from: https://www.ef-australia.com.
au/english-resources/english-vocabulary/top-3000-words/). Participants used a physical QWERTY keyboard to 
manually type the first word or phrase which came to mind upon seeing the prompt. Participants then attempted 
to replicate the character string using the BCI system (Fig. 2c). When the BCI typed character string matched 
that submitted using the manual keyboard, the trial ended and a new prompt was presented. If participants were 
unable to replicate the target character string after entering more than three times the target number of char-
acters, the trial was aborted and a new prompt was presented. Participants performed the free association task 

Description URL

Experiment 1/2 Source https://github.com/davidrosspainter/brain-to-brain-interface/

Experiment 1 Data https://osf.io/pu3v9/files/

Experiment 2 Data https://osf.io/xsq8y/files/

Table 2.  Online source code and data repositories. Source code includes all template training, real-time 
classification and visual stimulation routines.
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for 30 minutes. Classification accuracy (P) was calculated by comparing BCI-entered characters with the target 
string. Superfluous characters were counted as errors.

EEG Recording and Channel Selection.  EEG data were sampled at 2048 Hz using a BioSemi Active Two amplifier 
(BioSemi, Amsterdam, Netherlands) from 64 active Ag/AgCl scalp electrodes arranged according to the interna-
tional standard 10–20 system for electrode placement in a nylon head cap64. The electrode positions were: AF3, 
AF4, AF7, AF8, AFz, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, 
F8, FC1, FC2, FC3, FC4, FC5, FC6, FCz, FP1, FP2, FPz, FT7, FT8, Fz, Iz, O1, O2, Oz, P1, P10, P2, P3, P4, P5, P6, 
P7, P8, P9, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP7 and TP8. The common mode sense (CMS) active elec-
trode and driven right leg (DRL) passive electrode served as the ground. EEG data were recorded and streamed 
to MATLAB using the FieldTrip real-time buffer65. EEG data were loaded into MATLAB for template generation 
using the BioSig toolbox66. EEG epochs used in real-time and offline analyses were average referenced, baseline 
corrected, linearly detrended and notch filtered at 50 Hz.

To determine the optimal EEG channels for template generation and real-time analyses, averaged SSVEPs at 
each occipitoparietal electrode site (Iz, O1, Oz, O2, PO7, PO3, POz, PO8, PO4, P1, P3, P5, P7, P9, Pz, P2, P4, P6, 
P8, P10) were generated for each of the 28 letters/frequencies. These averaged SSVEPs were zero padded to 5.0 s, 
allowing 0.2 Hz spectral resolution, and submitted to fast Fourier transforms (FFTs). The four channels showing 
maximal FFT amplitudes (µV) at each fundamental frequency were retained, such that template generation and 
real-time classification was based only on the unique channels within this list. These multi-channel data are 
henceforth referred to as single-trial EEG.

Individualized Filter-Bank CCA Classification.  The classification procedure determined which frequency/key 
was most likely selected by finding the template frequency that most strongly correlated with the single-trial EEG, 
as outlined in Fig. 8. The analysis evaluated the overall pattern of five weighted correlations between the three 
input variables: single-trial EEG (x; Fig. 8a), template sinusoids (Z; Fig. 8b), and template SSVEPs (Y; Fig. 8b), 
separately for each potential frequency (fi) and harmonic (nj):
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Figure 8.  Individualised filter-bank CCA classification. (a) Following each flicker period, the corresponding 
single-trial EEG from the occipitoparietal electrodes with the highest SSVEP training amplitudes were bandpass 
filtered to the first five harmonic ranges. (b) Training resulted in template SSVEPs and sinusoids, reflecting 
mean signals for each of the 28 flicker frequencies and first five harmonics (see Methods: Template Training 
for a complete description). (c) Filter-bank CCA evaluated the overall pattern of five weighted correlations 
between single-trial EEG, template sinusoids and template SSVEPs. The filter bank CCA produced a final 
outcome feature for each frequency (Rfi), representing the degree of similarity between the single-trial EEG and 
templates. The frequency with the highest similarity was classified as the selected frequency/key.
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Where ρ(a,b) represents the weighted correlation between variables a and b, and βc(c,d) represents the weights of 
c from the canonical correlation of c and d. The five elements of this vector were combined for each harmonic to 
form a single selection feature, preserving the sign of each weighted correlation:
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The weighted sum of squares across harmonics was computed as the final feature for target frequency 
identification:
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This classification feature (Rfi) was calculated for each frequency. The frequency/key for which the value was 
maximal was identified as the selected frequency/key (Fig. 8c).

Template Training.  Overview. The single-trial EEG recorded during the template training phase was used to 
create individualised templates of the neural activity evoked by focusing attention on each key. Template signals 
consisted of 140 (5 harmonics × 28 frequencies) SSVEPs and 140 sinusoids matching in frequency and phase. To 
increase classification accuracy, the first 0.25 s were excluded, as this reflected a frequency non-specific evoked 
response.

Template Bank of SSVEPs. SSVEPs were constructed by averaging the single-trial EEG across the 20 cued tri-
als for each frequency. SSVEPs were bandpass filtered to five harmonic ranges (n1−5) using a 4th order Butterworth 
filter:
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Where Hz represents the filter frequency, nj represents the harmonic range, f1 represents the lowest flicker fre-
quency, f28 represents the highest flicker frequency, and Δf represents the difference between adjacent frequencies.

Template Bank of Sinusoids. The procedure for generating template sinusoids matching the SSVEP frequen-
cies/phases is outlined in Fig. 9. SSVEPs are apparent in the EEG after an onset delay (τ; Fig. 9a), which poten-
tially varies across individuals and frequencies. The sinusoid phase was therefore calculated separately for each 
SSVEP frequency and harmonic. An initial bank of potential sinusoids was constructed for each frequency (fi) at 
each harmonic range (nj), including 20 distinct phases (ϕk) from 0 to 1.9π (Fig. 9b):

π φ= + < ≤ .( )Y t f n t for s t s( ) sin 2 {0 1 5 ) (7)f n i j ki j

The optimal phase for classification was chosen separately for each frequency and harmonic. To determine the 
optimal phase, all single-trial epochs corresponding to frequency fi were bandpass filtered to the harmonic range 
nj (Fig. 9a). The filtered epochs were correlated (using CCA) with sinusoids at all flicker frequencies and phases 
(0–1.9π) at harmonic range nj (Fig. 9c). For the CCA, the sinusoid was the univariate measure and the single-trial 
EEG was the multivariate measure. For each filtered epoch (1–20) at frequency fi and sinusoid phase (0–1.9π), we 
compared the strength of the canonical correlation (r) with each sinusoid frequency (harmonics of 10–15.4 Hz). 
If the maximum correlation for a given epoch was with a sinusoid at the input frequency (fi), the corresponding 
sinusoid phase was scored as “correct” for that epoch. However, if the maximum correlation was with any other 
sinusoid frequency, the corresponding phase was scored as “incorrect” (Fig. 9d). This allowed us to determine 
the “accuracy” for each phase by tallying across the 20 epochs (Fig. 9e). The phase with the highest accuracy was 
chosen to be the sinusoid phase for frequency fi and harmonic nj. In summary, for each frequency and harmonic, 
we chose the sinusoid phase that maximised classification accuracy by correlating most strongly with SSVEPs at 
the input frequency during training.

Stimulus Presentation.  Each key (i) was tagged with sinusoidal flicker at a unique frequency (fi)/phase (ϕi, with 
luminance as a function of time (s) since flicker onset (see Fig. 1):

π φ= + +lum t f t( ) 1
2

(1 sin(2 )) (8)i i

∆= + − ∈ | ≤+f f f i for i i( 1) { 28} (9)i 0

where f0 = 10.0 Hz, Δf = 0.2 Hz

φ φ ∆φ= + − ∈ | ≤+i for i i( 1) { 28} (10)i 0

where ϕ0 = 1.5π, Δϕ = 0.35π
Keys subtended 3.7° 2 of visual angle, and 1.1° separated adjacent keys. Keys were outlined by a 0.1° white 

border. Key characters were presented in green 50 pt. Andale Mono font. During training, keys were cued by a red 
outline and arrow. A white textbox (43.2° × 4.0°) appeared at the top of the display. BCI typed text appeared in 
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this textbox (100 pt. font). During the QWERTY classification assessment and free BCI communication phases, 
the three last classified characters were printed at the top of each key (40 pt. font), allowing participants to keep 
track of their BCI typing.

Stimuli were presented at a viewing distance of 57 cm on a 24-inch ASUS VG248QE LCD monitor running 
at 1920 × 1080 at 144 Hz using the Cogent 2000 Toolbox (http://www.vislab.ucl.ac.uk/cogent.php) running in 
MATLAB R2016b (64-bit) under Windows 10 (64-bit). The computer contained an Intel Xeon E7–4809 v2 CPU 
and NVIDIA QUADRO M4000 GPU. The experiment was conducted in a darkened room and participants’ head 
positions were stabilized with a chin rest. Eye tracking data were also collected for Experiment 1 but are beyond 
the scope of the present report, which focuses on free communication using BCI alone.

Experiment 2: Methods
Two experienced BCI participants (ages of 25 and 33 years) were instructed to have a free conversation using 
their brain activity (Fig. 6a). Both participants provided informed consent for both study participation and the 
publication of the conversation transcript in an online open-access publication. Both participants had previously 
completed three pilot runs in the development of the messaging interface. The two participants viewed separate 
displays and used BCI systems running on separate computers, with BCI typed messages sent across the local area 
network via TCP/IP. In addition to the 28 flickering keys of Experiment 1 (Fig. 6b), we introduced an EMG enter 
key [↵] based on electrical potentials evoked by jaw clenching. The enter key allowed the two participants to com-
plete their entries and to view the sentences/phrases most recently entered by their conversational partner. A chat 
icon indicated whether the second participant was currently BCI typing (icon enabled) or viewing messages (icon 
disabled; Fig. 6c). The two participants used the enter key at will to resume typing. The EMG analysis involved 
FFTs performed on the most recent 1 second of data (spectral resolution: 1 Hz) recorded from the frontal scalp 
electrode FPz. The [↵] key was deemed selected if mean FFT amplitude (µV) in the range of 50–100 Hz exceeded 
the criterion of 4.0 or 4.5 µV, set separately for the two participants. A cool-down period required that successive 
enter keystrokes were separated by > 4 s.

Figure 9.  Procedure for generating the template bank of sinusoids with optimal classification phases, calculated 
separately for each frequency (i) and harmonic (j; five harmonics in total). (a) Single-trial EEG corresponding 
to cued flicker periods of template training was bandpass filtered to harmonic ranges that encompassed the 
lowest and highest frequencies for that harmonic (i.e., njf1 – njf28; e.g., 1 f: 9.8–15.6 Hz). The single trial EEG was 
canonically correlated with (b) each potential template sinusoid (phases 0.0–1.9π), resulting in (c) canonical r 
values representing the correlation between each single-trial epoch and template sinusoids at each phase. (d) 
For each epoch, the analysis identified the maximally correlated template sinusoid frequency. If this frequency 
was the cued frequency (i), the corresponding sinusoid phase was coded as “correct”, otherwise the phase was 
coded as “incorrect”. (e) The mean classification accuracy across epochs determined the optimal phase of the 
sinusoid at each frequency and harmonic. In this example, a sinusoid phase of 0.7π maximized classification 
accuracy.
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The software consisted of three parallel threads devoted to reading from the amplifier, real-time analysis and 
stimulus presentation (Fig. 6d). Communication between threads was via parallel port (DB25) triggers and TCP/
IP using the FieldTrip real-time buffer65. The BCI keyboard and message display were presented using the Unity 
game engine (Version 2018.2.8f1, Unity Technologies) running at 144 Hz and 1920 × 1080 pixels with VSync ena-
bled on an NVIDIA GeForce GTX 1080 GPU. The FieldTrip buffer was managed in Unity using a C# API (https://
github.com/georgedimitriadis/androidfieldtripbufferinunity). Template generation and real-time classification 
were performed using eight workers controlled via MATLAB 2017b’s Parallel Computing Toolbox (64-bit) run-
ning on an Intel(R) Xeon(R) W-2145 CPU @ 3.70 GHz CPU. The calculations underlying template generation 
required ~2 minutes of processing. Real-time classification occurred during the flicker-free period and took on 
average ~259 ms (mean of N = 1340 classifications; SD = 60 ms, range: 135–408 ms).

EEG was sampled at 1200 Hz from g.USBamp amplifiers (one for each participant; g.tec Medical Engineering, 
GmbH, Austria) from six active gel g.SCARABEO Ag/AgCl scalp electrodes connected to a g.GAMMAbox and 
arranged in a g.GAMMAcap according to the international standard 10–20 system for electrode placement 
(Oostenveld and Praamstra, 2001). Note that different amplifiers were used in Experiments 1 and 2. This allowed 
us to test the two participants of Experiment 2 with identical code on identical amplifiers to each other. SSVEPs 
at five occipitoparietal electrodes (Iz, O1, O2, Oz, POz) were used to create training templates and for real-time 
classification of the attended BCI key. As noted, electrode FPz was used for the EMG enter key [↵]. The ground 
electrode was positioned at FCz, and the reference electrode was attached to the left earlobe via a clip. Data were 
band-pass (1–100 Hz) and notch (50 Hz) filtered in real-time at the hardware level. EEG signal quality was estab-
lished by inspection of the real-time traces visualized by MATLAB’s dsp.TimeScope object. The amplifiers were 
controlled using the g.tec NEEDaccess MATLAB API V1.16.00.

The real-time classification algorithms were identical to those of Experiment 1 (including the use of five har-
monics), with the exceptions that the two participants completed 15 (rather than 20) template training blocks 
(420 trials; 14 minutes) and that SSVEP templates and real-time classification were based on five (rather than 
four) occipitoparietal electrodes. As in Experiment 1, the flicker period was 1.50 s, and the flicker-free period 
was 0.50 s for template training and 0.75 s for free communication. The flicker frequencies/phases were iden-
tical to those of Experiment 1. The sinusoidal luminance modulation underlying flicker was calculated based 
on time elapsed from the onset of the first flicker frame using the System.Diagnostics.Stopwatch C# class. Frame 
rates during flicker were confirmed to be stable at 144 Hz using Unity-recorded flip times (Time.deltaTime), 
amplifier-recorded inter-trigger spacing and photodiode measurements. Stimuli were presented on ASUS 
VG248QE LCD monitors at a viewing distance of 49 cm. The experiment was conducted in a darkened room, and 
the two participants were separated via a partition.
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