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Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these 
infections have increased due to demanding contextual circumstances, such as 
environmental changes, increased migration of people and product distribution, rapid 
demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. 
Internal variables that influence viral immunity have received attention along with these 
external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), 
particularly the present probiotics, plays a vital role in the host immune system by mediating 
host protective immunity and acting as an immune regulator. Bacteriocins possess 
numerous health benefits and exhibit antagonistic activity against enteric pathogens and 
immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis 
of the GIM/host immune system negatively affects viral immunity. The interactions between 
bacteriocins and infectious viruses, particularly in COVID-19, through improved host 
immunity and physiology are complex and have not yet been studied, although several 
studies have proven that bacteriocins influence the outcomes of viral infections. However, 
the complex transmission to the affected sites and siRNA defense against nuclease 
digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for 
their biofunctional properties and underlying mechanisms in the treatment of bacterial 
and fungal infections. However, few studies have shown the role of probiotics-derived 
bacteriocin against viral infections. Thus, based on the results of the previous studies, 
this review lays out a road map for future studies on bacteriocins for treating viral infections.
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INTRODUCTION

Viral infections are the primary cause of numerous diseases 
and deaths (Villena et  al., 2020). These infections affect several 
tissues and organs, such as the colon (e.g., rotavirus), upper 
respiratory tract and lungs (e.g., rhinovirus and influenza), 
liver (e.g., hepatitis B virus), leukocytes [e.g., human 
immunodeficiency virus (HIV)], spinal cord (e.g., poliovirus), 
and vascular endothelial cells (e.g., Ebola; Dreyer et  al., 2019; 
Weeks and Chikindas, 2019; Foysal et  al., 2020; Jenab et  al., 
2020; Villena et  al., 2020). Some viruses are more vulnerable 
to extreme conditions because of a weakened immune system. 
Histological examinations of patients with viral infections 
revealed severe destruction of tissue structure, resulting in their 
death (Jayawardena et  al., 2020).

Previous studies have investigated various sources of 
antimicrobial agents from natural plants. Numerous antiviral 
agents have been proposed and verified as therapeutic targets 
in viral drugs (Muhammad et  al., 2018; Umair et  al., 2020, 
2022; Riaz Rajoka et  al., 2021; Senan et  al., 2021; Youssef 
et  al., 2021; Rajoka et  al., 2022). Several treatments act as 
effective tools in viral infections, such as gene therapy; 
administration of pro- and anti-inflammatory cytokines, pegylated 
interferon-α (IFN-α), and ribavirin; recombinant human tumor 
necrosis factor-alpha (TNF-α) antagonist treatment; and highly 
active antiretroviral therapy, which includes multiple antiretroviral 
agents; or a combination of these therapies (Lehtoranta et  al., 
2020; Lopez-Santamarina et  al., 2020). However, viral genome 
mutations are lethal for viral replication and cause viral resistance 
to the adopted antiviral therapies. Therefore, it is necessary 
to provide other preventive or supplementary interventions.

The gastrointestinal tract (GIT) is a complex ecosystem hosting 
millions of resident microorganisms, known as the gut microbiota 
(GM; Libertucci and Young, 2019). The microbiome consists of 
microorganisms and their genetic material and plays an essential 
role in host physiology and metabolism by supplying genetic 
elements absent in the host genome (Hall et al., 2017). Additionally, 
a strong correlation exists between COVID-19 infection and the 
GM community (Chen et al., 2020). Further, it has been reported 
that patients with COVID-19 demonstrate a reduced number of 
Lactobacillus and Bifidobacterium due to intestinal microbial 
dysbiosis (Chen et  al., 2020).

In particular, when probiotics, the “cultured” (living) 
microorganisms beneficial to the host, are ingested in adequate 
amounts (Quilodrán-Vega et  al., 2020; El-Saadony et  al., 2021) 
as a compliment or element inherent in food, they principally 
improve the GM composition (Minj et al., 2021), treat dysbiosis, 
and prevent viral diseases (Hill et al., 2014). Notably, bacteriocins 
are antimicrobial peptides produced by significant bacterial 
cell lines (Khalil et  al., 2022; Le Morvan De Sequeira et  al., 
2022; Naseef et  al., 2022). Additionally, these bacteriocins 
modulate the systemic immune and mucosal systems of humans 
and animals, protecting them from several viral infections 
(Alvarez-Vieites et  al., 2020).

However, the interactions between viral diseases and the 
immunity induced by probiotics remain unknown, including 
the mechanism of the reported antiviral activity of probiotics. 

Moreover, proteolytic enzymes degrade bacteriocins, causing 
their instability in different body parts, such as the GIT, serum, 
liver, and kidneys, thus limiting their industrial applications 
(Weeks and Chikindas, 2019). Given these considerations, the 
present review provides a comprehensive overview of the role 
of the probiotics-based bacteriocin as an immune-modulating 
agent in combating viral infections, its stability in the GIT 
microbiota, and the bacteriocin mechanisms of immune 
modulation. Furthermore, the evolving zoonotic viruses and 
their animal reservoirs for viral progenitors will be  described 
in this study, including the viral transmission route from animal 
to human, focusing on the most recent published studies.

PROBIOTICS AS IMMUNOBIOTICS

In general, eukaryotic hosts have a high bacterial load, 
predominantly habituating GIT (Bibi et al., 2021; Youssef et al., 
2021; Rajoka et al., 2022). However, some of these microorganisms 
are currently susceptible to pathogenesis (Round and Mazmanian, 
2009). Therapeutic antibiotics occasionally disrupt the intestinal 
microbiota, which subsequently initiate microbial pathogenesis 
(Foysal et  al., 2020).

Probiotics are heat- and pH-stable, colorless, odorless, and 
tasteless, which indicate their suitability in food applications. 
Lactic acid bacteria (LAB) and bifidobacteria are the most 
commonly used probiotic bacteria. LAB essentially preserves 
the integrity of the human gut wall and maintains a healthy 
microbiome, including the inhibition of gut pathogen 
proliferation. Other genera, such as enterococci, and yeast, 
such as Saccharomyces, have been proposed and exploited as 
probiotic agents (Ou et  al., 2019; Jaffar and Zailan, 2021; Lai 
et  al., 2021; Liu et  al., 2022).

Probiotics have the potential for lowering lactose and cholesterol 
levels, cancer prevention, and lowering the risk of secondary 
infections (Li et  al., 2021). Another benefit of probiotics is their 
immunobiotic nature in modulating or enhancing the immune 
(mucosal) system. As viruses are in direct contact with the 
mucosal (respiratory, genital, or gastrointestinal) surfaces, they 
must overcome three lines of defense: (1) the mucus coat, (2) 
innate, and (3) adaptive immune responses. Therefore, probiotics 
interfere with the viruses directly or indirectly to improve their 
phagocytosis (Alvarez-Vieites et  al., 2020). The direct response 
can be subcategorized into two stages (Figure 1): barrier activity 
toward viral particles before entering the epithelial cells and 
the modulation of the host antiviral immune response. Moreover, 
the barrier activity toward viruses includes (1) enhanced mucosal 
barrier activity, (2) direct probiotic-virus association, (3) secretion 
of antiviral inhibitory metabolites (bacteriocins), and (4) inhibition 
of viral attachment to host cells (Belguesmia et  al., 2020). 
Additionally, the effects of probiotic modulation on the immune 
cells can be  observed in lymphocytes, hematopoietic stem cells, 
T cells, macrophages, natural killer cells, and dendritic cells 
(DCs; Alvarez-Vieites et  al., 2020; Belguesmia et  al., 2020; Li 
et al., 2021). Figure 2 illustrates the innate and adaptive antiviral 
reaction mechanisms and immunomodulatory effects of probiotics 
to improve viral phagocytosis (Belguesmia et  al., 2020).
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Probiotics indirectly interfere with the virus by (1) altering 
the condition of the cells, (2) enhancing or suppressing innate 
and adaptive immunity through the associated molecular 
signaling pathways, (3) protecting themselves against viral 
particles that compete for cell-surface adhesion, (4) reducing 
inflammatory processes by controlling innate immunity through 
Toll-like receptors and other signaling pathways, and (5) 
producing antiadhesive substances against the viruses. Thus, 
probiotics prevent its adhesion to the host cell receptor by 
binding to the receptor of the invading virus (Abdolalipour 
et  al., 2020; Alvarez-Vieites et  al., 2020; Villena et  al., 2020).

Cell adhesion is a multistage process classified into specific 
and nonspecific adhesion. Nonspecific adhesion occurs when a 
probiotic enters the cell and is mainly governed by physicochemical 
characteristics, such as contacts or hydrogen bonds (Kumar, 2021; 
Wang et  al., 2021b). Specific adhesion involves the interaction 
between probiotic adhesins and their epithelial receptors, which 
is an irreversible connection that is more potent than nonspecific 
adhesion (Cao et  al., 2020; Hwang et  al., 2022). The adhesion 
capacities of the selected strains were determined by examining 
their bacterial cell-surface features in a Caco-2 cell model, which 
is comparable in morphology to the intestinal epithelium. The 
composition of the microbiota profoundly impacts human health, 

and diet is a critical factor in determining its composition (Cao 
et al., 2020; Kumar, 2021; Wang et al., 2021b; Hwang et al., 2022).

A few strategies for modulating the host immune response, 
such as increasing essential nutrient intake and developing 
potential functional foods, are becoming popular to influence 
the activity of immune cells (Foysal et  al., 2020). Dietary 
supplementation with probiotics enhances the states of the 
intestine, liver, and the immune system as well as the structure 
and functions of genetically modified substances. Probiotics 
considerably enhance the immune-associated metabolic pathways, 
such as amino sugar pathway, nucleotide sugar pathway, interleukin 
17 (IL-17) signaling, and quorum sensing (Alvarez-Sieiro et  al., 
2016). In contrast, the absence of probiotics prevents glyoxylate 
and dicarboxylate metabolism. Bacterial communication via 
extracellular diffusible signaling molecules (quorum sensing) 
enables bacteria to coordinate their group activity and multicellular 
functioning. Bacteriocins also operate as signaling peptides, 
communicating with other bacteria through quorum sensing 
and bacterial cross-talk within microbial communities or with 
host immune cells (Foysal et al., 2020). The (N-acyl) homoserine 
lactone is used as a signal molecule in gram-negative bacteria, 
whereas peptides, including several bacteriocins, are frequently 
used as signaling molecules in gram-positive bacteria (Drider 

FIGURE 1 | Immunomodulatory properties of probiotics for enhancing phagocytosis against the virus.
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et al., 2016). In general, peptide-based quorum sensing in gram-
positive bacteria mediates a two-component regulatory signal 
transduction system, comprising a membrane-bound histidine 
protein kinase (HPK) and an intracellular response regulator 
(RR) (Drider et  al., 2016; Foysal et  al., 2020). Thus, it has been 
postulated that few bacteriocins act as inhibitors at high 
concentrations and signaling molecules at low concentrations 
(Alvarez-Sieiro et al., 2016; Drider et al., 2016; Foysal et al., 2020).

HPK phosphorylates RR, which causes a response at the 
transcriptional level. The autoinducing peptide primarily serves 
as a signaling molecule; however, some autoinducing peptides 
also act as antimicrobials (Prazdnova et al., 2022). Bacteriocin 
nisin is the predominant example of this dual functioning. 
Nisin acts as a killer and signaling molecule and stimulates 
its production in a density-dependent manner (Belguesmia 
et al., 2020). Thus, probiotic consumption is the only nutritional 
practice capable of lowering the risk of viral infection and 
enhancing human immune responses (Belguesmia et al., 2020; 
Chen et  al., 2020; Prazdnova et  al., 2022). Following these 
considerations and experimental reports, it is crucial to 
discover new strategies for preventing or reducing viral 

infections to minimize virus-related mortality, morbidity, and 
economic losses.

BACTERIOCIN STABILITY AND MODE 
OF ACTION

Bacteriocins are multifunctional proteinaceous compounds 
synthesized from ribosomal RNA with antimicrobial potential 
against pathogens at definite concentrations (Belguesmia et  al., 
2020), demonstrating their biotechnological capability (Chikindas 
et al., 2018). Bacteriocins are classified into three groups according 
to their physicochemical and structural features: classes I, II, 
and III (Chikindas et  al., 2018). Moreover, during the early 
stages of development, bacteriocins are only active against closely 
related bacteria. However, the mode of action of bacteriocins 
against viruses is not yet fully understood. According to the 
available reports, bacteriocins exhibit two mechanisms for 
combating viral infection (Wachsman et  al., 2003).

The first mechanism involves preventing viral particle 
aggregation and blocking the sites of host cell receptors 

FIGURE 2 | Probiotics and innate and adaptive immune interaction against viral infections.
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(Wachsman et  al., 2003). Additionally, certain bacteriocins 
possess an antiviral activity that inhibits viral penetration into 
human cells. For instance, it was shown that duramycin, a 
class I  bacteriocin, blocks the Zika virus coreceptor TIM1 and 
subsequently inhibits its entry (Tabata et  al., 2016). In the 
second mechanism, several bacteriocins induce cytopathic effect 
and reduce viral release without interfering with viral entry 
(Tabata et  al., 2016). The mechanisms of bacteriocins against 
viral infection are related to their interaction with the late 
steps of the viral cycle, which strongly influence the main 
reactions of the viral multiplication step (Tabata et  al., 2016). 
Additionally, within these bacteriocins, those recognized as 
antiviral molecules can bind to the lipid membranes of enveloped 
viruses as they are hydrophobic. Thus, probiotics exhibit their 
inhibitory action by interfering with cellular and viral membrane 
fusion (Cavicchioli et  al., 2018). Given these considerations, 
the inactivity of several bacteriocins against nonenveloped 
viruses is attributed to the structural differences compared with 
active bacteriocins, particularly to the lack of hydrophobicity 
(Badani et  al., 2014; Cavicchioli et  al., 2018).

Bacteria produce bacteriocins as a defense or contact signal 
(Chikindas et  al., 2018). A previous report indicated that the 
leading interface site among the host immune system, 
microorganisms in the GIT, and GM bacterial colonization 
influences the development of the adaptive immune system 
(Round and Mazmanian, 2009). Bacteriocins also elicit an 
immune response, causing changes in the GIT population. 
Another study investigated the potential of bacteriocins in 
penetrating the gut–blood barrier (i.e., Caco-2), which is further 
dependent on the physicochemical and biochemical 
characteristics of the membrane (Dreyer et  al., 2019).

Numerous bacteriocins have been demonstrated to be effective 
against viral infections (Dobson et  al., 2012). However, the 
route of the bacteriocin administration impacts the proteolytic 
enzyme activity. For instance, bacteriocins, such as nisin F, 
were active against pathogens when injected into the peritoneal 
cavity of mice. However, nisin F acts as a growth stabilizer 
for GM (Van Staden et  al., 2011). It also plays a role in GIT 
colonization, promoting bacteriocin-producing strains 
(Kommineni et al., 2015). Thus, inducing bacteriocin-producing 
strains in the GIT is a viable alternative for monitoring viral 
infections, drug resistance, enteric invasion, and pathogen 
dissemination in the GIT (Hegarty et  al., 2016).

Additionally, several factors influence the bacteriocin sensitivity 
of the target bacterium, including the presence of membrane-
disrupting neutralizing molecules and physicochemical properties 
of the environment (ionic strength, pH). However, using 
bacteriocin is not similar to regular antibodies (Weeks and 
Chikindas, 2019); the microbial immunity against bacteriocin 
is extremely rare compared with that against antibodies (De 
Freire Bastos et  al., 2015). Furthermore, microbial strains that 
induce resistance possess different mechanisms of antibody 
resistance (Chatterjee et  al., 2005). For instance, microbial 
species undergo major structural modifications, such as changing 
the phospholipid and fatty acid composition of the cell membrane, 
increasing the galactose and D-alanyl ester content of the cell 
wall, or forming a thicker cell wall to avert bacteriocin docking 

with lipid II, thus developing bacteriocin resistance (Crandall 
and Montville, 1998; Chatterjee et al., 2005). Additionally, other 
microbial species possess some structural modifications that 
involve forming a requirement for Mn2+, Mg2+, Ca2+, and Ba2+ 
in the cell wall or membrane (Crandall and Montville, 1998; 
Chatterjee et  al., 2005).

Besides these structural changes, nonstructural modifications 
are also involved, which are capable of inducing bacteriocin 
resistance, trigger and induce mutation in the bacteriocin 
susceptibility-associated sensor (Collins et  al., 2012), trigger the 
inactivation of the gene encoding bacterial RNA polymerase, 
produce nonproteolytic bacteriocins capable of inactivating 
enzyme-induced dehydroalanine-level reduction (Jarvis and Farr, 
1971), and produce pH-related resistance alterations (Hasper 
et al., 2006). However, the molecular size, hydrophobicity, migration 
intensity, charge used to cross the epithelial cell membrane, and 
capacity to re-enter the tissue cells are the properties of bacteriocins 
that need further investigation. In this regard, several recently 
published studies on the immunomodulatory properties of 
bacteriocins have been noted (Jenab et  al., 2020).

BACTERIOCIN AS A POTENTIAL 
IMMUNOBIOTIC AGENT FOR VIRAL 
INFECTIONS

Reactions to immunomodulatory therapies are an emerging 
strategy against viral infection. Researchers studied that enhancing 
the body’s immune system by employing probiotic-based 
bacteriocin helps in fighting against viral diseases (Table  1; 
Yan et  al., 2020, 2022; Wang et  al., 2021a; Liu et  al., 2022; 
Zhang et  al., 2022). Jayawardena and coworkers also reported 
that bacteriocin modulates the immune system and prevents 
viral infections, such as COVID-19 (Jayawardena et  al., 2020).

The enterocins CRL35 and ST4V have also shown bacteriocin 
activities against herpes simplex virus 1 (HSV-1) and HSV-2 by 
influencing intracellular viral proliferation and interacting with 
the late steps of viral replication (Wachsman et al., 2003; Todorov 
et  al., 2005). Additionally, subtilisin A and the pediocin-like 
bacteriocin ST5Ha showed anti-HSV activity with a selectivity 
index (CC50/EC50) of 173 (Quintana et  al., 2014; Soltani et  al., 
2021). Further, Cavicchioli et al. (2018) reported that the bacteriocins 
from Enterococcus durans, Geo9, Ge12, and He17 inhibited the 
poliovirus (PV-1; Férir et  al., 2013), revealing the dual antiviral 
action against HIV and HSV. They further revealed the transmission 
of antibiotic-derived prototype peptide containing the post-
translationally transformed–special carbocyclic abionin residue. 
The same authors also identified labyrinthopeptin A1 (LabyA1) 
as a bacteriocin, emphasizing its ability to inhibit the viral cell-
to-cell transfer between HIV-infected T cells and uninfected CD4 
(+) T cells; moreover, it inhibits HIV capture by DC-SIGN+-cells, 
thereby inhibiting the transmission of the captured virus to 
uninfected CD4 (+) T cells (Férir et  al., 2013; Table  2).

In contrast, Lange-Starke et al. (2014) reported the ineffective 
action of the bacteriocins produced by Lactococcus lactis subsp. 
lactis, such as nisin, against influenza A (H1N1), HSV-1, murine 
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norovirus, feline herpesvirus KS285, and Newcastle disease 
virus Montana. Semipurified bacteriocins obtained from two 
LAB strains isolated from goat milk (i.e., GLc03 and GLc05 
from L. lactis, and GEn09, GEn12, GEn14, and GEn17 from 
E. durans) were screened in terms of cytotoxicity in Vero cells 
(CC50) and based on their antiviral activities against PV-1 
and HVS1 (Villena et  al., 2020).

A previous study showed that bacteriocins elicit an innate 
immune response during viral infection and induce pathogen death 
via inflammasomes (Weeks and Chikindas, 2019). The inflammasome 
is a multiprotein complex formed inside the cell by the nucleotide-
binding oligomerization domain-like receptors (NOD-like receptors), 
also known as nucleotide-binding leucine-rich repeat receptors 
(NLRs) and DNA sensors. These inflammasomes trigger a sequence 
of dangerous signals elicited by pathogens and cellular stress (McNab 
et  al., 2015). Further, another study revealed that the anti-
inflammatory cytokines are inhibited via inflammatory signaling 
pathways by bacteriocin through their interaction with mitogen-
activated protein kinase and nuclear factor-kappa B (Yoon and 
Sun, 2011). Consequently, bacteriocins regulate inflammasome 
activation in organisms that previously experienced inflammation 
due to viral infections (Dicks et  al., 2018; Abdolalipour et  al., 
2020; Alvarez-Vieites et  al., 2020; Antushevich, 2020).

Furthermore, paracrine signaling occurs as a cell interacts 
with another nearby compartment or cell (unattached with gap 
junctions), resulting in the diffusion of the produced signaling 

molecule to a neighboring cell over a short distance. In contrast, 
autocrine signaling occurs when a cell communicates with the 
receptors on its own surface (Figure  3). During viral infection, 
IFN or IFN receptor (IFNR) (IFNAR) association occurs via 
autocrine or paracrine signaling (Silginer et al., 2017). For example, 
Lactobacillus spp. produces bacteriocins involved in IL-12-inducing 
potentially similar type I  IFN production (Alvarez-Vieites et  al., 
2020; Antushevich, 2020), further demonstrating the 
immunostimulatory activity of bacteriocins and innate immune 
antagonistic activity against viral infections. Figure  4 presents 
the innate immune response to viruses induced by bacteriocins.

The immune system recognizes pathogens in several ways, 
where inflammasomes induce the production of type I  IFNs, 
IL-1, and IL-18 as the first line of defense against viruses (Dreyer 
et al., 2019; Antushevich, 2020). Type I IFNs stimulate an antiviral 
state in the infected host, and cytokines, such as IL, result in 
inflammation and modulate immune responses, exhibiting antiviral 
effects (Antushevich, 2020). Furthermore, these bacteriocins elicit 
an anti-inflammatory response in the innate immune system 
through dendritic cell signaling, resulting in the release of anti-
inflammatory cytokines (i.e., IL-10) (Jenab et al., 2020). Bacteriocins 
from various studies were shown to increase the CD4 (+) levels 
and lymphocyte counts and monitor the TNF, IL-6, IL-8, and 
IL-10 expression levels (Chikindas et al., 2018; Dicks et al., 2018; 
Ou et al., 2019; Antushevich, 2020; Foysal et al., 2020; Jayawardena 
et  al., 2020; Jenab et  al., 2020).

TABLE 1 | Antiviral/antimicrobial activity of different bacteriocin as potential immunomodulatory agent and their action mode against viral disease.

Compound Role Mode of action Findings References

Bacteriocin Shows immunomodulatory 
properties

GIT integrity, immune function is 
critical for preventing and controlling 
viruses

Belguesmia et al., 2020

Cationic antimicrobial 
peptides

Shows immunomodulatory 
properties

Hydrophobicity, positive charge, and 
small size immune system

Interferes and stimulates immune 
system

Sahl et al., 2005

Bacteriocin Shows immunomodulatory 
properties

Changes in DCs, improves activities 
of T and B lymphocytes, 
monocytes, and macrophages, the 
IFN, and interleukin development

Enhances viral phagocytosis Soltani et al., 2021

Bacteriocin Stimulates non-specific 
immunity releases pro-
inflammatory cytokines

TNF-α and IL-6 Increases the rotavirus-specific IgM 
and secretes cell and IgA responses 
to toxins

Soltani et al., 2021

Bacteriocin Enhances immune responses Reduces the PRR stimulation Promotes the tumor necrosis factor-
alpha (TNF) and the B-cell nuclear 
factor kappa-light-chain-enhancer

O’Callaghan et al., 2012

Bifidobacterium bifidum Enhances immune responses Mouse-adapted influenza A (H1N1) 
infection BALB/c model

Improves humoral and cellular 
immunity and reduces IL-6 activity in 
the lungs

Mahooti et al., 2019

Lactobacillus delbrueckii 
subsp. bulgaricus

Enhances immune responses Inhibits influenza A/chicken/
Germany replication of the 
Weybridge (H7N7) and Rostock 
(H7N1) strains

Shows effectiveness against influenza 
tested strains in mice model

Serkedjieva et al., 2000

Nisin-bateriocin Enhances immune responses Nisin-fed mice in the virus-infected 
model

Nisin has more significant 
immunomodulatory properties than 
the tested human cationic (LL-37) 
peptides

Kindrachuk et al., 2013

Nisin-bateriocin Enhances immune responses Shows antigenic response of nisin in 
vivo against viruses

Increases IL-6 and IL-10 Brand et al., 2010

Bacteriocin Enhances immune responses Shows anti-influenza efficacy in 
mouse model

Shows effectiveness against anti-
influenza virus

Ermolenko et al., 2019

DCs, dendritic cells; IFN, interferons; TNF-α, Tumour necrosis factor α; IL-6, interleukin-6; PRRs; pattern recognition receptors IgM; IgA; IL-10, interleukin-10.
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TABLE 2 | Antiviral/antimicrobial activity of different probiotic based bacteriocin and their producer strains along with mode of actions.

Bacteriocin Probiotic strains Antiviral/antimicrobial activity Mode of action Reference

Lactobacillus gasseri SBT2055 L. gasseri A/H1N1 and B influenza viruses Vaccine-specific antibody production Nishihira et al., 2018
Lactobacillus acidophilus IgG 
and HI NDV

L. acidophilus A new castle virus disease IgG and HI NDV Gharajalar et al., 2020

Lactobacillus plantarum DR7 L. plantarum Upper respiratory tract viral 
infections

Suppresses plasma proinflammatory 
cytokines (IFN-γ, TNF-α)

Chong et al., 2019

Enterocin CRL35 Enterococcus faecium HSV-1 HSV-2 Inhibits the late-stage replication Wachsman et al., 1999
Lactobacillus helveticus LZ-R-5 L. helveticus Associated with the immune 

system
Immunostimulatory activity You et al., 2020

L. plantarum C70 L. plantarum Have possible bioactivities in 
food industries, including 
anticancer, antidiabetic, and 
antioxidant activities

Bioactivities Ayyash et al., 2020

L. plantarum SP8 L. plantarum Excellent biosorption ability 
toward methylene blue (MB)

Biosynthesis of selenium 
nanoparticles (SeNPs)

Li et al., 2021

L. plantarum SP8 L. plantarum Shows specific antioxidant activity Bioactivities Zhang et al., 2020
EPS103 L. plantarum JLAU103 Shows scavenging abilities 

against hydroxyl, ABTS, and 
DPPH radicals

Bioactivities Min et al., 2019

Bacteriocin Lactobacillus delbrueckii sub 
sp. bulgaricus

Shows anti-Virus activity. A/
chicken/Germany, Weybridge 
(H7N7), Rostock (H7N1)

Inhibits replication, glycoproteins 
neuraminidase

Serkedjieva et al., 2000

Enterocin ST4V E. faecium ST4V HSV-1 HSV-2 Inhibits the late-stage replication Todorov et al., 2005
Labyrinthopeptin A1 (LabyA1) Actinomadura namibiensis Shows Anti-HIV-1 activity Suppresses intercellular transmission 

between HIV-infected T cells and 
uninfected CD4 (+) T cells

Férir et al., 2013

LabyA1 + raltegravir A. namibiensis + antiretroviral 
agents

Shows anti-HIV-1 activity anti-
HSV-2 activity

Inhibits the transmission of HIV from 
DC-SIGN+ cells to uninfected CD4 
(+) T cells

Al Kassaa et al., 2014

LabyA1 + LabyA2 A. namibiensis DSM6313 Associated with carcinoma-
derived lung cells

Inhibits human respiratory syncytial 
virus (HRSV)

Haid et al., 2017

Cell-free supernatants (CFS) Lactobacillus curvatus 1 Associated with murine norovirus 
(MNV)

Inhibits intracellular virus replication Lange-Starke et al., 2014

Bacteriocin B1 L. delbrueckii Anti-Virus Inhibits intracellular virus replication Serkedjieva et al., 2000
Bacteriocin Lactobacillus spp. Anti-HIV-1 and Anti-HSV-2 Lactic acid and hydrogen peroxide 

protein denaturing reactions
Conti et al., 2009

Non-protein cell wall component Lactobacillus brevis Anti-HSV-2 Reduces HSV-2 replication Mastromarino et al., 2011
Lactobacillus paracasei sub sp. 
rhamnosus

L. paracasei sub sp. 
rhamnosus

Vesicular stomatitis viruses Adheres to the particles Botić et al., 2007

L. plantarum L. plantarum Vesicular stomatitis viruses Adheres to the particles Botić et al., 2007
Lactobacillus reuteri L. reuteri Vesicular stomatitis viruses Adheres to the particles Botić et al., 2007
Enterococcus faecium NCIMB 
10415

Enterococcus faecium 
NCIMB 10415

Influenza virus H1N1 Adheres to the particles Wang et al., 2013

L. gasseri CMUL57 L. gasseri CMUL57 HSV-2 Adheres to the particles Al Kassaa et al., 2014
L. plantarum L-137 L. plantarum L-137 Influenza virus H1N1 Elicits a pro-inflammatory response Maeda et al., 2009
Lactobacillus fermentum 
CECT5716

L. fermentum CECT5716 Influenza virus H1N1 Improves the formation of antibodies 
against H1N1

Olivares et al., 2007

Lactobacillus casei DN114-001 L. casei DN114-001 Influenza virus H1N1 Improves the formation of antibodies 
against H1N1

Boge et al., 2009

L. gasseri PA 16/8, 
Bifidobacterium longum SP07/3, 
and Bifidobacterium bifidum MF 
20/5

L. gasseri PA 16/8, B. 
longum SP07/3, and B. 
bifidum MF 20/5

Common cold virus Inhibits intracellular virus replication De Vrese et al., 2006

Lactobacillus rhamnosus GG L. rhamnosus GG Respiratory virus infections Inhibits intracellular virus replication Rautava et al., 2008
L. acidophilus NCFM L. acidophilus NCFM Influenza-like symptoms Inhibits intracellular virus replication Leyer et al., 2009
Enterocin AAR-71 Enterococcus faecalis Qureshi et al., 2006
Enterocin AAR-74 E. faecalis Proliferation of coliphage HSA Inhibits intracellular virus replication Qureshi et al., 2006
Enterocin ST5Ha E. faecium Todorov et al., 2010
Enterocin ST4V Enterococcus mundtii Herpes viruses HSV-1 and HSV-

2
Enterocins CRL35 and ST4V were 
used on the multiplication of virus 
particles

Todorov et al., 2005

Enterocin CRL35 E. mundtii Inactive against herpes viruses A derivative of enterocin CRL35, 
lacking two cysteine residues

Wachsman et al., 2003

Bacteriocin L. delbrueckii subsp. 
bulgaricus 1,043

Influenza viruses Inhibits intracellular virus replication Serkedjieva et al., 2000
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Similarly, Fukuyama et  al. (2020) investigated the 
immunomodulatory properties of bacteriocins and their ability 
to induce in vitro TLR-triggered inflammatory responses. The 
findings revealed that bacteriocins regulated inflammation and 
reduced the expression of IL-1α, IL-1β, monocyte chemotactic 
protein-1, IL-8, and chemokine ligand 3 (CXCL3). It further 
upregulated the expression of three negative TLR regulators, 
i.e., the Toll-interacting protein (Tollip), ubiquitin-editing enzyme 
A20 (TNF-α-induced protein 3, TNFAIP3), and single 
immunoglobulin IL-1 receptor-related protein (SIGIRR; Mages 
et  al., 2008; Saleh and Trinchieri, 2011; Laiño et  al., 2016; 
Fukuyama et  al., 2020).

The potent antiviral activity was mediated by several encoded 
factors, including IL-2, IL-12, IFN-gamma, TNF-α, CD40 ligand 
(CD40L), membrane immunoglobulin (mIg), and (cytokine 
responsive gene 2) Crg-2 (Ramshaw et  al., 1997), revealing 

the mechanism of bacteriocin in combating infection-induced 
inflammation induced by pathogens. Furthermore, another study 
reported the bacteriocin inhibitory effect on pathogen-adhesion 
and invasion of Caco-2 cells and the antiproliferative effects 
via apoptosis induction (Dicks et  al., 2018). The authors also 
showed the reduced levels of TNF-α factor, IL-1β, IL-6, and 
IL-12 combined with increased levels of IL-10 in serum, further 
demonstrating the bacteriocin immunomodulatory potential 
(Jenab et  al., 2020).

Another study showed an eight-fold increase in the number 
of immune cells of probiotic-treated mice, exhibiting significant 
alterations in the onsite expression of proinflammatory 
mediators compared with the control group (Chondrou et al., 
2020). Similarly, Lactobacillus shelveticus produced LZ-R-5 
bacteriocin with immunostimulatory activity against viral 
infection (Ayyash et  al., 2020; You et  al., 2020). To date, 

FIGURE 3 | Bacteriocin innate immune antagonism against viral infections.
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there have been no reported studies on probiotics-derived 
bacteriocins in preventing and treating COVID-19. However, 
the phase II experimental research has been used to estimate 
the effect of an immunomodulatory drug (i.e., the anti-asthma 
live cell formulation MRx4DP0004) in hospitalized patients 
with COVID-19. Although the appropriate formulation was 
not tested, the patients were administered two doses of live 
cells (4 × 109–4 × 1010) for 2 weeks, and the preliminary results 
were positive. Thus, various probiotics can help control 
COVID-19 infection and assist as adjuvants for prophylaxis 
(Dobson et  al., 2012; Alvarez-Sieiro et  al., 2016).

Additionally, several viruses, such as norovirus (Shinde et al., 
2020), rotavirus (RV), or calicivirus (CV), picornaviridae, 
orthomyxoviridae, paramyxoviridae, reoviridae, and coronaviridae, 
affect humans (Kamaluddin et al., 2020; Lopez-Santamarina et al., 
2021). They are characterized by uncoated RNA, making them 
exceedingly infectious and fecal transmissible even when the 
associated infections are easily moderated to last for a short 
period (Karst, 2016). Regarding the widespread RV vaccination 
development, norovirus (NV) is the principal cause of severe 

diarrhea among children and foodborne diseases in developing 
countries. Approximately 200 million cases were observed among 
children under the age of 5 years, leading to an estimated 50,000 
child deaths per year predominantly in developing countries 
(Center for Disease Control and Prevention, 2022). Moreover, 
astroviruses are responsible for 2–9% of all cases of pediatric 
gastroenteritis globally (Fadhil et  al., 2020).

These findings indicated that bacteriocins prevent virus 
replication more efficiently than viral adsorption; thus, 
bacteriocins act as novel antiviral agents for viral suppression 
(Cavicchioli et  al., 2018). A large number of studies on the 
association between specific bacteriocins and antiviral activity 
showed that probiotics have biological benefits and antiviral 
properties that regulate and halt the pathogenic virus duplication. 
Additionally, they are only ascribed to their well-known 
antibacterial and immune modulation properties. The genesis 
of microorganisms is also proficient in conducting these activities; 
it stabilizes the indigenous protective reaction of the ecosystem 
to a possible territorial invasion, independent of the attack 
type (viral, bacterial, or fungal) (Cavicchioli et  al., 2018).

FIGURE 4 | Bacteriocin-induced innate immune response against the virus.
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Based on the available reports, bacteriocins exhibits two 
mechanisms against viral infection: (i) exhibits antiviral 
activity before the viral penetration into human cells; (ii) 
inhibits the viral entry and reduces the cytopathic impact 
and viral release yield by interacting with the late steps 
of the viral cycle. The first mechanism of the bacteriocin 
antiviral activity includes direct contact with viral cells (Al 
Kassaa et  al., 2014), interaction with the epithelial cell 
surface to influence the electrolyte potential (OlayaGalán 
et  al., 2016), and intracellular inhibition (Serkedjieva et  al., 
2000). Alternatively, the second mode of action includes 
the inhibition of the late-stage viral replication (Todorov 
et  al., 2005), blockages on the host cell receptor, repressed 
intercellular transmission, and modulation of virus immune 
systems (Drider et  al., 2016).

Małaczewska et  al. (2019) detected immune modulation by 
stimulating IL, CD4 (+), and CD8 (+) T cells. Further, Yitbarek 
et  al. (2018) reported that the immune system modulation 
protects the virus-infected cells. However, the molecular size, 
hydrophobicity, migration intensity, charge used to cross the 
epithelial cell membrane, and re-entry ability of tissue cells 
are the properties of bacteriocins that warrant further exploration 
(Małaczewska et  al., 2019).

Probiotics may be  inappropriate for patients unless the 
pathogenicity and influence of a particular coronavirus on GM 
has been identified. Besides, the foodborne transmission of 
COVID-19 is rather uncertain (Li et al., 2021). Therefore, further 
research should prove that food is a nonprobable agent of viral 
transmission. It is known that COVID-19 is more susceptible 
to a weakened immune system. Thus, probiotics as adjuvants or 
prophylactic and therapeutic agents for COVID-19 treatment 
should be  carefully considered as researchers have reported that 
probiotics cause numerous septicemias associated with weakened 
immune systems in those individuals (Koyama et  al., 2019).

CONCLUSIONS AND PROSPECTS

Probiotics are beneficial microorganisms administered to 
individuals to improve their healing. In particular, bifidobacteria 
and LAB probiotics exhibit sustainable therapeutic effects in 

treating vaginal and GIT viral infections. Moreover, probiotics 
effectively use cellular components, including peptidoglycans 
and DNA, and improve the efficacy of the bacterium by 
producing autoinducing peptides. These emerging probiotics 
with microbiota-modulation and anti-infection applications are 
classified into two categories: (i) a first treatment type 
(prophylaxis) where a low-dose drug is administered daily to 
maintain the presence of probiotics in the human microbiota; 
and (ii) a second treatment type where a relatively large dose 
of medication is administered to the infected individuals, 
coupled with immunologically sensitive host tissues to treat 
microbiota dysbiosis. However, the exact mechanism related 
to the ability of the probiotics to inhibit viral replication 
remains unknown. Therefore, it is crucial for the scientific 
and medical communities to focus on beneficial bacteria 
(probiotics) to combat viral infections.
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