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People with autism spectrum disorders (ASD) may show unusual reactions to unexpected changes that
appear in their environment. Although several studies have highlighted atypical auditory change processing
in ASD, little is known in this disorder about the brain processes involved in visual automatic change detec-
tion. The present fMRI study was designed to localize brain activity elicited by unexpected visual changing
stimuli in adults with ASD compared to controls. Twelve patients with ASD and 17 healthy adults participated
in the experiment in which subjects were presented with a visual oddball sequence while performing a
concurrent target detection task. Combined results across participants highlight the involvement of both
occipital (BA 18/19) and frontal (BA 6/8) regions during visual change detection. However, adults with
ASD display greater activity in the bilateral occipital cortex and in the anterior cingulate cortex (ACC) asso-
ciated with smaller activation in the superior and middle frontal gyri than controls. A psychophysiological
interaction (PPI) analysis was performed with ACC as the seed region and revealed greater functionally
connectivity to sensory regions in ASD than in controls, but less connectivity to prefrontal and orbito-
frontal cortices. Thus, compared to controls, larger sensory activation associated with reduced frontal activa-
tion was seen in ASD during automatic visual change detection. Atypical psychophysiological interactions be-
tween frontal and occipital regions were also found, congruent with the idea of atypical connectivity between
these regions in ASD. The atypical involvement of the ACC in visual change detection can be related to abnor-
malities previously observed in the auditory modality, thus supporting the hypothesis of an altered general
mechanism of change detection in patients with ASD that would underlie their unusual reaction to change.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

First described by Leo Kanner (1943), the autistic syndrome is a
severe and pervasive neurodevelopmental disorder defined broadly
by characteristic difficulties in social interaction, communication
and repetitive and restricted behaviors (RRB) (DSM-IV-R; APA,
2000). RRB cover a wide range of heterogeneous behavioral manifes-
tations such as motor stereotypies, sensory-related behaviors,
circumscribed interests, rituals, echolalia and excessive sensitivity to
change (Cuccaro et al., 2003; Militerni et al., 2002; Szatmari et al.,
2002; Turner, 1999). Although this group of symptoms has to be
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observed in a person to diagnose autism, the resistance to change
has been less often investigated than the social or communication
deficits. However, sensitivity to any change occurring in the environ-
ment is a fundamental feature of ASD that appears to be a durable
treatment-resistant symptom, which prevents the individual from
adapting and thus results in major difficulties in daily life (Gabriels
et al., 2005). Clinical reports of individuals with ASD show that they
have strong reactions to changes in the environment, suggesting
that they may detect changes differently than typically developing
people. Consistent with clinical observation of intense reactions to
environmental changes, several studies have also shown unusual per-
ceptive functions across sensory modalities (Ashwin et al., 2009;
Ben-Sasson et al., 2009; Khalfa et al., 2004; Leekam et al., 2007a,b;
Reynolds and Lane, 2008). Particularly in the visual modality, many
studies have reported unusual perception in ASD, hypo-functioning
(attraction to light, intense look at objects or people, movements of
fingers or objects in front of the eyes, fascination with reflections
and/or brightly colored objects, running hands around the edges of
objects) or hyper-functioning (focus on tiny pieces of dust/particles,
dislike of the dark and bright lights, dislike of sharp flashes of light,
look down most of the time, covering/closing eyes at bright lights)
served.
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(Bogdashina, 2003; Leekam et al., 2007a,b) both being sometimes
observed in the same subject. Taken together, these features suggest
that resistance to change in people with ASD may reflect basic abnor-
malities in the processing of sensory information, and especially in
the automatic processing of changing stimuli.

Behavioral studies of change detection have shown that the ability
to detect targets increased with increasing developmental level for
typical children, but remained constant over the same developmental
range for children with ASD, pointing to an atypical developmental
trajectory for change-detection in ASD (for review see Simmons et
al., 2009). Attentional abnormalities have been proposed to contrib-
ute to atypical reactions to change in autism: increased distractibility
might generate heightened reactivity to seeminglymeaningless stimuli,
while overly focused attention might contribute to the development of
restricted pattern of interests or activities (Allen and Courchesne, 2001;
Goldstein et al., 2001; Keehn et al., 2012; Lovaas et al., 1979; Simons and
Rensink, 2005). Although attentional abnormalities have been shown
to be involved in RBB in ASD, the pre-attentional processing involved
in automatic change detection that initiates the orientation of atten-
tion towards relevant events, has not been determined in the visual
modality.

A popular means to study the neural correlates of automatic change
detection is the use of an oddball paradigmwhere a sequence of repet-
itive standard stimuli is presented with infrequent unpredictable devi-
ant stimuli. Classically, in the auditory modality, electrophysiological
and fMRI studies report that generators of automatic change detection
are located bilaterally in the supratemporal part of the auditory cortex
with additional generators in the prefrontal cortex (Celsis et al., 1999;
Doeller et al., 2003; Garrido et al., 2009; Gomot et al., 2006; Molholm
et al., 2005; Opitz et al., 2002; Rinne et al., 2005; Schall et al., 2003;
Schonwiesner et al., 2007). Atypical auditory change processing in
ASD has been described, in both electrophysiological and fMRI studies
(Gomot et al., 2002; Gomot et al., 2006) highlighting normal activity
in the auditory cortex but unusual activation in the ACC, a region
known to be involved in attention switching and in the distribution of
attentional resources (Daffner et al., 2003). The ACC is involved in the
detection of non-routine situations and is thought to trigger the lateral
prefrontal cortices to engage further attentional top–down cognitive
processes (Carter, 2000). Gomot et al. (2006) suggested that atypical
activation of the ACC could prevent appropriate allocation of pre-
attentional processes to changing events. The normal activity in the
sensory cortices associated with the abnormal involvement of non-
specific regions such as the ACC in ASD suggested the existence of
atypical change processing that would operate independent of the
sensory modality.

Visual change detection process has been investigated in several
electrophysiological studies in control participants using various devi-
ants such as colors (Czigler et al., 2004), form (Maekawa et al., 2005),
motion (Kremlacek et al., 2006; Urban et al., 2008), spatial frequency
(Kimura et al., 2006; Sulykos and Czigler, 2011) and orientation
(Astikainen et al., 2008; Kimura et al., 2010; Sulykos and Czigler,
2011). Previous fMRI (Yucel et al., 2007) and electrophysiological stud-
ies showed the main contribution of the occipital areas (Kimura et al.,
2010; Urakawa et al., 2010), associated with prefrontal areas (Clery et
al., 2012; Czigler et al., 2004; Heslenfeld, 2003; Urakawa et al., 2010)
in automatic visual change processing. Other electrophysiological stud-
ies have further revealed sources in prefrontal regions. Kimura et al.
(2010, 2011) performed source analysis of responses to visual changes
and showed generators of vMMN in the visual extra-striate region
(BA19) and in the medial, lateral and ventro-lateral prefrontal cortex
(right orbitofrontal region (BA47 and BA11)). Concordant with these
findings, the prefrontal area has been described as one of the multi-
modal cortical areas sensitive to sensory changes in fMRI (Downar
et al., 2000) and MEG (Tanaka et al., 2009) studies.

To date, no study has reported brain correlates of automatic visual
change process in ASD. The present work investigated brain activations
elicited by visual change in adults with ASD to determinewhether there
are abnormalities comparable to those reported in the auditory modal-
ity, and thus whether unusual reactions to change might be underlain
by atypical general change processing independent of sensorymodality.
To localize brain activations elicited by unattended visual change in
healthy adults, we designed an fMRI study using a passive three stim-
ulus oddball paradigm, adapted from Besle et al. (2005). Stimuli
consisted of the dynamic deformation of a circle into an ellipse either
horizontally or vertically, resulting in two different shapes and thus
involving two visual dimensions: object shape and motion direction.
Based on previous electrophysiological, magnetoencephalographical
and functional neuroimaging studies reviewed above, a region of inter-
est (ROI) analysis approach was selected. We expected larger activity
in the following regions in response to deviant and novel stimuli
compared to standard stimuli: BA 17/18/19 (occipital visual region),
BA 39/40 (temporo-parietal junction), BA 6/8 (dorsolateral premotor
cortex), and BA 11 (orbitofrontal cortex). The dynamic stimuli used
are expected to elicit activation along the two visual pathways, thus
ROIs in BA 7 (dorsal stream) and BA 20 (ventral stream)were included.
Finally, the ACC has been repeatedly found to be involved in novelty
processing (Clark et al., 2000; Kiehl et al., 2001), and atypical involve-
ment of this region has been described during change detection in the
auditory modality (Gomot et al., 2006). Therefore, we also examined
the BA 32/24 during automatic detection of novel and deviant stimuli.
To further investigate ACC involvement during automatic change detec-
tion, a psychophysiological interaction analysis was done with ACC as
the seed region.

2. Materials and methods

2.1. Participants

Twelve adults with high functioning autism or Asperger syn-
drome aged (mean age (years)±SD: 28±7; 11 males and 1 female)
participated in the experiment. Diagnosis was made according to
DSM-IV-R criteria (APA, 2000) and by using the Autism Diagnostic
Observation Schedule-Generic (ADOS-G, fourth module) (Lord et al.,
2000) (social interaction+communication scores mean±SD: 10±4;
threshold for ASD=7). Diagnosis was complemented by the Autism
Spectrum Quotient (AQ) (Baron-Cohen et al., 2001) (mean±SD:
38±7; threshold for ASD=32). Intellectual quotients (IQ) were
assessed by the Wechsler Adult Intelligence Scale (WAIS-III)
(Wechsler, 1997), which provided overall intellectual (mean±SD)
(IQ: 114±21), verbal (vIQ: 119±18) and performance (nvIQ:
101±22) quotients. Adults with ASD were age matched with seven-
teen healthy volunteer adults (mean age (years)±SD: 27±6; 15
males and 2 females), none of whom had a previous history of
neurological or psychiatric problems. All participants had normal
or corrected-to-normal vision and none were receiving psychotropic
medication. The Ethics Committee of the University Hospital of Tours
approved the protocol. Written informed consent from all partici-
pants was obtained.

2.2. Stimuli and experimental design

Change detection process was studied through an oddball para-
digm with three different types of stimuli, using an event-related
fMRI paradigm. The stimuli consisted of the deformation of a circle
into an ellipse either horizontally (Standard) or vertically (Deviant)
or into another, always novel, non-meaningful shape (Novel), adapted
from Besle et al. (2005) (Fig. 1). The amount of deformation in either
direction relative to the diameter was 33% and lasted 140 ms. Between
each deformation, the circle remained present on the screen. Each stim-
ulus was constituted of seven successive images presented in 140 ms
(i.e. 20 ms per image) which resulted in apparent motions in the stim-
uli. Sequences included ‘Standard’, ‘Deviant’ (probability of occurrence



Fig. 1. Experimental design. Dynamic stimuli consisted on the deformation of a circle into
an ellipse either horizontally (standard deformation) or vertically (deviant deformation)
or into a new shape (novel deformation).
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P=0.03) and ‘Novel’ (probability of occurrence P=0.03) stimuli. The
total number of stimuli was 1395. To control for effects related to
the stimulus features, 2 runs were performed in which Standards and
Deviants were counterbalanced. In order to present the visual stimuli
outside the focus of attention, a primary task was required. Subjects
were asked to fixate at a central cross and to respond to its disappear-
ance (target stimuli: 7% of the trials) by pressing a button with the
right thumb as quickly as possible. This disappearance had a duration
of 120 ms and occurred unpredictably within a standard trial, was
desynchronized relative to the standard onset and could not occur dur-
ing a standard preceding a deviant trial. Visual stimuli were presented
with a constant interstimulus interval of 650 ms. Three resting periods
of 15 s each (involving a black screen watching) were presented at the
beginning, at the middle and at the end of the sequence.

2.3. Behavioral responses

For each subject, the reaction times (in ms) and response accuracy
were measured by taking into account the rates of hits, false alarms
to non-target stimuli and missed targets, according to the formula:
(targets−missed targets)∗100/(targets+false alarms).

2.4. fMRI procedure

2.4.1. Data acquisition
Magnetic resonance data were acquired on a 1.5-T Siemens

Magnetom scanner (Siemens AG, Erlangen, Germany). Structural
image were a 3-D anatomical T1-weighted sequence (repetition time:
1970 ms; echo time: 3.93 ms; inversion time=1100 ms; FOV: 256;
matrix size: 256 voxel size: 1×1×1 mm3). Data were acquired in the
sagittal plane. Functional images were collected using a T2*-weighted
gradient-echo EPI sequence with TR=2.5 s, TE=50 ms, and flip
angle=90°. The acquisition volume consisted of 29 interleaved axial
(AC/PC) slices with slice thickness=4 mm and interslice gap=0 mm.
The matrix was 64×64 with a 220 cm field of view, yielding in an
in-plane resolution of 3.4×3.4 mm.

2.4.2. Image pre-processing
Image preprocessing was performed using statistical parametric

mapping software (SPM5, Wellcome Department of Cognitive
Neurology, London, http://www.fil.ion.ucl.ac.uk/spm). Functional
volumes were first time corrected, motion corrected by spatial re-
alignment to the first volume and then normalized to the MNI
reference brain (courtesy of the Montreal Neurological Institute).
The normalized functional images were finally spatially smoothed with
an 8 mm FWHM (full-width half-maximum) Gaussian kernel. The six
estimated movement parameters were included as covariates in the
design matrix.

2.4.3. Statistical analyses
The statistical analysis of the variations of the BOLD signal was

based on the application of the general linear model to time series
of the task-related functional activations (Friston et al., 1995). Trials
for all events (Target, Standard, Deviant, Novel, Rest) were modeled
separately by a canonical hemodynamic response function and its
first-order temporal derivative. The three standard stimuli following
a resting period as well as the standard stimulus following a rare
stimulus (deviant stimulus, novel stimulus or target) were modeled
as separate events. Contrast images (Standard–Rest, Deviant–Standard
and Novel–Standard) consisting of statistical parametric maps (SPMs)
of t statistics at each voxel were then produced for each individual.

Analyses were completed using different methods. A whole brain
analysis was used for the standard minus rest contrast. Individual
SPM(t) were entered into a second level group analysis permitting in-
ferences about condition effects across subjects that generalize to the
population (i.e., random effects analysis). SPM(t) statistics were com-
puted for this contrast to examine areas of activation for the group as
a whole (Control+Autism), with a threshold of Pb0.01 false discov-
ery rate (FDR) corrected for multiple comparisons (Genovese et al.,
2002).

For the Deviant–Standard and Novel–Standard contrasts analyses
were performed by investigating a priori regions of interest (ROIs)
using the WFU PickAtlas toolbox (version 2.4, Maldjian et al., 2003)
within SPM5. We based our regions of interests (ROIs) on findings
from previous studies that localized generators of visual automatic
change detection process. BA 17-18-19 (occipital cortex), BA 39–40
(posterior parietal cortex), BA 6–8 (anterior premotor cortex), BA 11
(orbitofrontal cortex), BA 20 (ventral stream) and BA 7 (dorsal stream)
and the ACC were examined (BA 32/24). These ROIs were defined in
MNI space. The locations of significant activations were expressed
in Talairach coordinates (Talairach and Tournoux, 1988), using a
non-linear transformation, as implemented in the WFU PickAtlas
and based on the method developed by Matthew Brett (http://
www.imaging.mrc-cbu.cam.ac.uk/imaging/Mni2Talairach). The dif-
ferences between the two groups were evaluated by computing for
each contras the SPM(t) using a two sample Student's t. Statistical
threshold was set at Pb0.05 with small volume correction (Worsley
et al., 1996).

2.4.4. Psychophysiological interaction analysis
The PPI analysis is a seed-region-based measure that establishes

predictive linkages of neural activity in one cortical area based on
the activity in the chosen seed region within the experimental or psy-
chological context (Friston et al., 1997). PPI can reveal the interactive
effect between the experimental condition and the predictive activity
from the seed region. Although PPI analysis cannot provide detailed
information about mutual modulatory facilitations among multiple
cortical regions, it nevertheless provides data on how the activities
in one region influence those in other brain regions, which served
to test the specific hypothesis of the present study. We conducted a
PPI analysis to estimate dynamic coupling between ACC and the
other ROIs previously defined during visual deviance detection. For
each participant, the ACC time-series was derived by extracting the
first eigenvariate time series (“volumes of interest” within SPM5)
from a sphere of 8 mm radius centered in the seed coordinates
obtained in the ROI analysis for the deviant minus standard contrast.
These time series were mean-corrected and high-pass filtered to
remove low-frequency signal drifts. PPI analyses were then carried
out for each subject by creating a design matrix with the interac-
tion term, the psychological factor, and the physiological factor as

http://www.fil.ion.ucl.ac.uk/spm
http://www.imaging.mrc-cbu.cam.ac.uk/imaging/Mni2Talairach)
http://www.imaging.mrc-cbu.cam.ac.uk/imaging/Mni2Talairach)
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regressors. For each subject, voxel-wise PPI effects were estimated,
and statistical parametric maps (SPMs) were produced for the PPI
term. The resulting contrast images were used in a second-level PPI
group analysis, comparing the PPI contrast images between adults
with ASD and controls in a two-sample t-test. Statistical threshold
was set at Pb0.05 with small volume correction (Worsley and Friston,
1995). The locations of significant activations were expressed in
Talairach coordinates (Talairach and Tournoux, 1988), using a non-
linear transformation, as implemented in the WFU PickAtlas.

3. Results

3.1. Behavioral results

Both groups performed the distraction task well, indicating that
they looked at the screen and perceived the visual stimuli; no signif-
icant between groups difference was found, neither in response
accuracy (Ctrl: 98.4%±1.2; ASD: 96.2%±6.4; n.s) nor in reaction
times (Ctrl: 453 ms±78; ASD: 459 ms±62; n.s).

3.2. fMRI results

3.2.1. Activations common to both groups

3.2.1.1. Standard stimuli. Combining data from all control and ASD
participants, the whole brain analysis of the contrast between stan-
dard and rest conditions produced significant activation of posterior
brain regions (Pb0.01, FDR corrected). Left and right middle occipital
gyri (BA 18, left: x=−28, y=−99, z=3 and right: x=26, y=−93,
z=0) were more activated in the standard condition than during
rest.

3.2.1.2. Deviance detection. Main findings from the ROI analysis of
brain activation elicited by deviant stimuli compared to standard
stimuli in both groups combined (Controls+ASD) are listed in
Table 1 (with P levels after small volume corrections) and illustrated
in Fig. 2. Generically activated regions mainly included the left ante-
rior premotor cortex (BA 6/8). Left-lateralized activation was also
seen in the orbital cortex (BA 11) and the left posterior parietal
cortex (BA 7). Finally, activations of the left posterior parietal cortex
(BA 7) were elicited by visual deviant stimuli.

3.2.1.3. Novelty detection. Table 1 also shows the main findings from
the ROI analysis of brain activations elicited by novel stimuli com-
pared to standard stimuli in both groups combined. Significant bilat-
eral activations were revealed in the occipital cortex (BA 19) and in
orbitofrontal cortex (BA 11). Left-lateralized activations were found
Table 1
Main results from the ROI analysis of brain activations elicited in both groups by deviant stimuli
R=right; L=left.

Functional comparison Region BA Structures

Dev>Sta Anterior premotor cortex 8 L middle frontal
6 L medial frontal

Orbitofrontal cortex 11 L medial frontal
Occipital cortex 19 R middle occipit

19 L middle occipit
Posterior parietal cortex 7 L precuneus

Nov>Sta Occipital cortex 19 R middle occipit
19 L middle occipit

Anterior premotor cortex 8 L middle frontal
6 L medial frontal

Orbitofrontal cortex 11 L orbital gyrus
11 R orbital gyrus

Posterior parietal cortex 7 L superior parie
in the middle frontal gyrus (BA 6/8). Finally, only the visual dorsal
stream displayed significant activation (BA 7) (Fig. 2).

3.2.1.4. Salience effect. Although brain activity elicited by visual deviant
and novel stimuli appeared very comparable, a degree-of-deviance
effect was observed (Fig. 2); compared to deviant stimuli, novel stimuli
elicited greater activity in bilateral occipital regions (BA 19) and in
orbitofrontal cortex (BA 11).

3.2.2. Activation differences between groups

3.2.2.1. Standard stimuli. ROI analysis was performed using the WFU
PickAtlas toolbox (version 2.4, Maldjian et al., 2003) within SPM5.
Two spheres were drawn centered around the peaks of activation
common to both groups but no significant between groups differ-
ences were found for the standard vs. rest contrast.

3.2.2.2. Deviant and novel stimuli. The same between group differences
were observed in response to deviant and novel stimuli (Table 2,
Fig. 3). Compared to adults with ASD, controls revealed greater activ-
ity in bilateral anterior premotor cortex (BA 6/8) and in the right
orbitofrontal cortex (BA11). The bilateral temporal cortex was more
activated in controls than in ASD during visual change perception.
Conversely, adults with ASD showed stronger BOLD signal in bilateral
visual areas (BA 18/19) and the ACC (BA 32/24).

3.2.3. PPI analysis
Using PPI analyses, we found significant between group differ-

ences in the connectivity maps of the seed region (Table 3, Fig. 4).
While the ACC displayed functional connectivity during deviancy de-
tection with the orbitofrontal cortex (BA 11), the anterior premotor
cortex (BA 6), the posterior parietal cortex (BA 7) and the inferior
temporal cortex (BA 7) in the control group, this seed region only
showed functional connectivity with occipital regions (BA 18/19)
and posterior parietal cortex (BA 7) in ASD.

4. Discussion

The present study is the first to demonstrate brain activations as-
sociated with automatic visual change detection in adults with ASD.
An oddball paradigm with standard, deviant and novel stimuli was
used to localize brain correlates of passive visual change processing,
according to the salience of the change.

Combined results across participants highlight the involvement of
both occipital (Kimura et al., 2010; Urakawa et al., 2010; Yucel et al.,
2007) and frontal (Czigler et al., 2004; Kimura et al., 2011) regions
in visual change detection. Both deviant and novel stimuli elicited
activations in occipital (BA 19), posterior parietal (BA 7), anterior
compared to standard stimuli (N=29; control+autism; Pb0.05, small volume correction).

Talairach coordinates Voxels t P

x y z

gyrus −44 10 21 159 3.29 0.001
gyrus −6 42 33 119 2.75 0.005
gyrus −2 34 −12 107 2.93 0.003
al gyrus 38 −84 21 73 2.66 0.006
al gyrus −40 −74 42 47 2.45 0.010

−38 −72 46
al gyrus 38 −85 21 287 3.49 0.001
al gyrus −30 −83 19 270 2.92 0.003
gyrus −50 14 42 151 3.15 0.002
gyrus −4 48 34 109 3.02 0.003

−2 42 −19 93 2.98 0.003
2 42 −19 65 2.85 0.004

tal lobule −18 −30 38 9 2.30 0.014



Fig. 2. Activation maps showing common pattern of activations in both groups (N=29). Main findings from the ROI analysis of brain activation elicited by deviant stimuli compared
to standard stimuli are shown in pink and by novel stimuli compared to standard stimuli are shown in blue. Common activations are shown in purple. Voxels with activation
significant at Pb0.05 after small volume correction.
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premotor (BA 6/8) and orbitofrontal (BA 11) cortices. A salience effect
was observed, as novel stimuli elicited greater activity in the sensory
occipital regions (BA 19) than deviant stimuli, suggesting that novelty
detection involves an additional activation of sensory areas to process
unexpected change in shape and in motion.

The main result of the group comparison during visual change
detection was that adults with ASD showed stronger activity in the bi-
lateral occipital cortices (BA 18/19) than controls. Several neuroimaging
studies have revealed stronger task-related activity in visual cortex in
autism, shown as higher levels of activity associated with visual infor-
mation processing (Belmonte and Yurgelun-Todd, 2003; Brown et al.,
2005). Atypical perceptual processing, often manifested as enhanced
perceptual performance (Dakin and Frith, 2005), is now included as
an associated feature of the autistic phenotype (Belmonte et al., 2004).
Autistic visual strengths are consistently reported for the Block Design
Table 2
Group comparisons of the main findings from the ROI analysis of brain activations elicited by
stimuli (Pb0.05, small volume correction). R=right; L=left.

Functional comparison Region BA Structures

Controls>ASD
Dev>Sta Anterior premotor cortex 6 R medial frontal

6 L medial frontal
8 L middle frontal

Orbitofrontal cortex 11 R middle frontal
Inferior temporal cortex 20 R inferior tempo

20 L inferior tempor
Nov>Sta Anterior premotor cortex 6 L medial frontal

6 R medial frontal
8 L middle frontal

Orbitofrontal cortex 11 R middle frontal
Inferior temporal cortex 20 L inferior tempor

20 R inferior tempo

ASD>controls

Dev>Sta Occipital cortex 18 R cuneus
18 L cuneus
19 L superior occipi

Posterior parietal cortex 7 L superior pariet
Anterior Cingulate cortex 32 R anterior cingul

Nov>Sta Occipital cortex 18 R cuneus
19 R middle occipita
18 L cuneus
19 L superior occipi

Posterior parietal cortex 7 L superior pariet
7 R superior pariet
subtest of the Wechsler Intelligence Scales (Caron et al., 2006; Shah
and Frith, 1993), the Embedded Figures Task (Jolliffe and Baron-Cohen,
1997), visual search tasks (Joseph et al., 2009; Kemner et al., 2008;
O'Riordan, 2004; O'Riordan et al., 2001), and visual discrimination
tasks (Bertone et al., 2005; Plaisted et al., 1998). In addition, an increas-
ing number of studies have demonstrated early sensory processing ad-
vantages or atypicalities in stimulus dimension extraction in ASD, with
examples including crowding (Baldassi et al., 2009; Keita et al., 2010),
contour and texture processing (Pei et al., 2009; Vandenbroucke et al.,
2008) and spatial frequency processing (Jemel et al., 2010; Milne et al.,
2009). Higher activity in the occipital cortex in ASD was also reported
in an fMRI study in relation to increased search efficiency during a visual
search task (Keehn and Joseph, 2008). These results suggest that ASD
behavioral advantages might arise from stronger and more perva-
sive engagement of sensory processing mechanisms. These behavioral
deviant stimuli compared to standard stimuli and by novel stimuli compared to standard

Talairach coordinates Voxels t p

x y z

gyrus 6 −22 56 751 4.03 b0.001
gyrus −2 −23 55
gyrus −38 12 47 222 2.49 0.010
gyrus 39 37 −7 152 2.83 0.004
ral gyrus 53 −20 −19 35 3.50 0.001
al gyrus −59 −18 −20 30 2.89 0.004
gyrus −2 −23 55 560 3.85 b0.001
gyrus 4 −26 60
gyrus 42 24 43 101 2.97 0.003
gyrus 38 38 −6 281 3.43 0.001
al gyrus −61 −18 −18 43 3.70 b0.001
ral gyrus 53 −20 −19 33 2.89 0.004

20 −68 7 492 3.82 b0.001
−10 −70 7 369 2.95 0.003

tal gyrus −40 −84 24
al lobule −14 −59 62 86 3.14 0.002
ate gyrus 4 18 18 75 2.16 0.020

20 −68 7 1024 3.85 b0.001
l gyrus 38 −74 2

−12 −68 7 609 3.41 0.001
tal gyrus −32 −90 23
al lobule −16 −59 62 206 3.68 0.001
al lobule 12 −56 64 178 3.23 0.002

image of Fig.�2


Fig. 3. Group comparisons of the main findings from the ROI analysis of brain activation elicited by deviant stimuli compared to standard stimuli. Regions more activated in the
control group than in ASD are shown in yellow and conversely, regions more activated in ASD than in controls are shown in blue. Voxels with activation significant at Pb0.05
after small volume correction.
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characteristics, along with other aspects of the autistic perceptual phe-
notype, have been summarized in the Enhanced Perceptual Functioning
Model (EPF) (Mottron et al., 2006). Assuming generally stronger physi-
ological engagement of the visual system in autism, this model predicts
superior perceptual performance and a wider role for perceptual pro-
cesses in autistic cognition.

Associated with this greater occipital activation, adults with ASD
showed less activity than controls in anterior premotor (BA 6) and
orbitofrontal cortices (BA 11). It is well established that damage to
orbitofrontal cortex (OFC) and adjacent medial prefrontal cortex can
result in impairments to flexibly modulate action selection in the face
of changing contingencies (Fellows and Farah, 2005; Hornak et al.,
2004). The FEF (BA 6/8) regions have been shown to play a major role
in the voluntary shift of visual attention and to beparticularly important
for top-down regulated attentional processes (Donner et al., 2000;
Goebel et al., 1998; Schall, 2002; Wojciulik and Kanwisher, 1999). This
literature suggests that the brain activations observed in orbitofrontal
regions and anterior premotor cortex are related to the inhibition of
motor responses to task-irrelevant stimulus deviations. Reduced frontal
activity in association with larger occipital activity in ASD has also been
reported for tasks incorporating a broad range of cognitive and percep-
tual components, including embedded figure detection (Ring et al.,
1999), attention shifting (Belmonte and Yurgelun-Todd, 2003), sac-
cades to visual targets (Luna et al., 2002), working memory (Koshino
et al., 2005), visuomotor learning (Muller et al., 2003) or face processing
(Hubl et al., 2003). Based on neuroimaging evidence of anatomical and
functional connectivity disruptions in autism, a connectivity bias theory
Table 3
Group comparisons of the main findings from the PPI analysis using the ACC as seed durin

Functional comparison Region BA Structures

Controls>ASD
Dev>Sta Orbitofrontal cortex 11 R medial frontal

11 L medial frontal
Anterior premotor cortex 6 L middle frontal
Posterior parietal cortex 7 L superior pariet
Inferior temporal cortex 20 R inferior tempo

20 L inferior tempo

ASD>controls

Dev>Sta Occipital cortex 18 L middle occipita
19 R superior occipi
19 R fusiform gyrus
18 L cuneus

Posterior parietal cortex 7 L superior pariet
has been proposed in ASD (Just et al., 2004; Thai et al., 2009; Wicker
et al., 2008). This theory suggests that the behavioral markers of autism
are directly or indirectly caused by limitations in communication
between frontal and posterior brain regions, and predicts that these
limitations will impact those tasks that require extensive coordinated
functioning of frontal and posterior processing centers. The theory
accounts for restricted repetitive and stereotyped patterns of behavior
in terms of the inability of the frontal executive system to exert control
over posterior processing centers. Thus the theory posits a biological
mechanism, frontal–posterior connectivity disruption, which may
be able to explain diverse impairments that characterize ASD (Schipul
et al., 2011).

The third main group differences in brain structures involved in
visual change perception were the greater activity observed in the
ACC in ASD than in controls. The ACC is a complex structure which
has been functionally and anatomically dissociated into 3 subdivisions:
affective, cognitive and motor. The abnormal activity we found in ASD
was located in the cognitive part of the ACC. This cognitive subdivision
is part of a distributed attentional network and has been assigned with
various functions, including modulation of attention or executive func-
tions by influencing sensory or response selection (or both); monitor-
ing competition, complex motor control, novelty and error detection;
and anticipation of cognitively demanding tasks (Carter et al., 1999;
Posner and Rothbart, 1998) (Cabeza et al., 1997; Devinsky et al., 1995;
Elliott and Dolan, 1998; Garavan et al., 2002; Menon et al., 2001;
Posner and Petersen, 1990; Reischies et al., 2005; Taylor et al., 2007).
In view of the processes engaged during the paradigm we used,
g deviance detection (Pb0.05, small volume correction). R=right; L=left.

Talairach coordinates Voxels t p

x y z

gyrus 8 40 −15 310 4.15 b0.001
gyrus −2 32 −17 134 3.50 0.001
gyrus −42 9 55 113 3.79 0.001
al lobule −34 −73 46 79 3.42 0.002
ral gyrus 63 −18 −18 54 3.09 0.003
ral gyrus −64 −18 −22 51 3.02 0.004

l gyrus −32 −80 11 381 3.22 0.002
tal gyrus 32 −78 26 296 3.40 0.002

32 −76 −9 222 4.37 b0.001
−6 −94 26 34 2.65 0.008

al lobule −32 −48 59 28 3.00 0.004

image of Fig.�3


Fig. 4. Group comparisons of the main findings from the PPI analysis using the ACC as seed during deviance detection. Regions more activated in the control group than in ASD
are shown in yellow and conversely, regions more activated in ASD than in controls are shown in blue. Voxels with activation significant at Pb0.05 after small volume correction.
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abnormal activity in the ACC is an interesting finding as this area is
thought to play a crucial role in stimulus evaluation (Bush, et al.,
2000). Anterior cingulate cortex is theorized to belong to a recency
system that abandons older, stored information in order to capture
new potentially relevant information (Ebmeier et al., 1995). Greater
activation of the ACC in passive visual change detection may be re-
lated to an atypical attention switch towards the changing stimuli
in ASD, in the sense that this structure would be involved in the cap-
ture of any new event whether it is relevant or not. The ability to at-
tend selectively to meaningful sources of information while ignoring
irrelevant sources is essential for competent and adaptive function-
ing. This may explain why individuals with ASD appear to ignore
salient stimuli in the environment in favor of relatively discrete
and apparently meaningless stimuli (Allen and Courchesne, 2001;
Keehn et al., 2012), but may also contribute to the exceptional per-
ceptual abilities observed in some individuals with ASD. This might
be a maladjustment in so far as it leads to distress at small changes
in the environment (Happe and Frith, 2006).

There is growing evidence of both functional and structural abnor-
malities of the ACC in ASD. Abnormal ACC activation has been ob-
served during a range of cognitive tasks (Bogte et al., 2007; Gomot
et al., 2006; Haznedar et al., 1997; Henderson et al., 2006; Russell
and Jarrold, 1998; Sokhadze et al., 2010; Sokhadze et al., 2012;
Vlamings et al., 2008). Among these studies Thakkar et al. (2008)
suggested that ACC abnormalities compromise response monitoring
and thereby lead to behaviors that are rigid and repetitive rather
than flexible and responsive to contingencies. There is also evidence
of reduced volume of the ACC (Haznedar et al., 1997; Haznedar et al.,
2000) and of reduced fractional anisotropy in thewhitematter adjacent
to the anterior cingulate gyri, suggesting a disruption of neural connec-
tions between this region and other brain structures (Barnea-Goraly
et al., 2004). Aberrant connectivity is also suggested by findings of de-
creased functional connectivity with other brain regions (Kana et al.,
2007). In order to investigate the role and the functional connectivity
of this structure with other brain areas in our paradigm, we conducted
PPI analyses, with the ACC as the seed region. Results showed that in
ASD, the ACC was more functionally connected to sensory regions
than to prefrontal and orbitofrontal cortices as seen in controls. Ana-
tomically, recent studies of axonal connectivity of area 32 of ACC and
prefrontal areas revealed an exuberance of thin axons that course over
short or medium distances in the ASD brain, which may lead to
occupation of sites normally available to the considerably sparser
long-distance pathways (Zikopoulos and Barbas, 2010). Reduction
in the strength of long-distance pathways in ASD may thus be
secondary to the excessive short-range connections of ACC. Again,
this connectivity bias may help in explaining why individuals with
ASD do not adequately shift attention when necessary, and engage
in repetitive and inflexible behavior (Gomot and Wicker, 2012).
The atypical involvement of the ACC in visual change detection can
be related to previous results of Gomot et al. (2006) investigating
the change detection in ASD in the auditory modality. However, the
authors reported atypical inhibitory mechanisms in this region that
could prevent appropriate allocation of pre-attentional processes to
changing events. Our results thus cannot be interpreted as highlight-
ing the same atypical involvement of the ACC in automatic change
detection, regardless of the sensory modality. However, it could
be hypothesized that inappropriate allocation of pre-attentional
resources interferes with change detection and may contribute to
intolerance of change observed in ASD.

In the same vein, several reports suggested that individuals with
ASD focus their attention on less contextually relevant aspects of a
visual scene and notice details which are often ignored by typical
observers. The ability to detect changes in a visual scene has therefore
been investigated in ASD using the change blindness paradigm that
makes it possible to assess unnoticed change effects (Beck et al.,
2001; Rensink et al., 1997). However, analysis of the few studies in
this domain reveals inconsistent findings showing either superior
levels of task performance (Smith and Milne, 2009), similar error
detection rate (Fletcher-Watson et al., 2008) or decreased levels of
performance in ASD (Kikuchi et al., 2009) the latter being mainly re-
lated to a default in context facilitation effect (Fletcher-Watson et al.,
2006; Loth et al., 2008). These findings suggest a weaker influence of
schematic expectations on spontaneous attention to change in indi-
viduals with ASD, but highlight the fact that the brain processes
engaged during both noticed and unnoticed changes need further
study in this population.

In conclusion we found atypical brain correlates of automatic visual
change detection in adults with ASD. Stronger sensory activation has
been highlighted in association with reduced frontal activity in ASD,
congruent with the idea of atypical connectivity between these regions
described in the literature.
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