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Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-b
superfamily cytokine that plays a central role in metabolism regulation. Produced in
response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as
one of the strongest predictors of disease severity during inflammatory conditions,
cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via
sympathetic and metabolic adaptation in the context of mitochondrial damage, although
the exact mechanisms involved remain uncertain. In this review, we discuss the
emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the
context of COVID-19. We will critically review the role of GDF-15 as an inflammation-
induced mediator of disease tolerance, through metabolic and immune reprogramming.
Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine
storm and its limitations. Altogether, this cytokine seems to be involved in disease
tolerance to viral infections including SARS-CoV-2, paving the way for novel
therapeutic interventions.
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INTRODUCTION

Discovered in 1990, growth differentiation factor 15 (GDF-15) is a stress-induced cytokine and a
distant member of the transforming growth factor b (TGF-b) superfamily (1–5). GDF-15 is the
product of a gene on human chromosome 19p13.11-13.2 that was cloned in 1997 based on
expression induction upon macrophage activation (6, 7). GDF-15 is considered as a major regulator
of appetite (8–10) through its hindbrain receptor glial-derived neurotrophic factor receptor alpha-
like (GFRAL), and its plasma levels were found to be elevated in the context of obesity and diabetes
(11). However, GDF-15 acts more as a regulator than an inducer of obesity, as illustrated in mouse
models where GDF-15 overexpression and administration of recombinant GDF-15 decrease glucose
intolerance and enhance lipid metabolism (12). In addition to a metabolic function, GDF-15
recently emerged as an inflammation-induced mediator of disease tolerance through cellular
org February 2022 | Volume 13 | Article 8203501
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metabolic reprogramming in the context of infections (13).
Indeed, animal models showed that during acute infections,
GDF-15 promotes survival by stimulating hepatic sympathetic
outflow, which further promotes cardioprotective triglyceride
production (13). Altogether, this cytokine seems to play a role in
disease tolerance in bacterial and viral infections to a certain
extent, including in SARS-CoV-2 infection, which opens up a
new avenue for therapeutic intervention (13).
THE CELLULAR PRODUCTION OF GDF-15

GDF-15 was first named macrophage inhibitory cytokine-1
(MIC-1) since it was originally characterized in activated
macrophages. Since, GDF-15 has been shown to be a cell-stress
response cytokine produced in many cell types (7). Under
physiological conditions, GDF-15 is expressed in high levels in
the placenta, prostate, and bladder as well as other organs such as
liver, kidney, lymph nodes, muscles and colon (14, 15). Cell types
reported to express GDF-15 include adipocytes, cardiomyocytes,
skeletal and smooth muscle cells and macrophages (15).
L’homme et al. recently identified saturated fatty acids (SFAs)
as strong inducers of GDF-15 expression in macrophages (11).
Endoplasmic reticulum (ER) stress was identified as a key trigger
of SFAs-induced GDF-15 expression, through the unfolded
protein response (UPR) at the cellular level via PKR-like ER
kinase (PERK) (11). Such findings suggest a link between GDF-
15 and obesity, as SFAs-activated macrophages produce pro-
inflammatory cytokines such as TNF-a and IL-1b (16).
Additionally, GDF-15 was reported to be overexpressed in
cancer cells of various origins, including predominantly
prostatic, renal, urothelial, colorectal cancers and melanoma
(17). Globally, GDF-15 is expressed in many different cell
types from various organs, both in physiological and
pathological conditions.
CONDITIONS INDUCING INCREASED
CIRCULATING LEVELS OF GDF-15

High circulating levels of GDF-15 have been associated with
chronic inflammatory conditions including renal, lung, liver and
cardiovascular diseases (4–11), rheumatoid arthritis, cancers,
anemia (18) and infections such as COVID-19. Under
physiological conditions, elevated plasma levels of GDF-15 are
also reported in older individuals, in late pregnancy and during
strenuous exercise. The use of certain drugs such as metformin
and colchicine has also been independently associated with
increased levels of GDF-15 (12, 19, 20). Furthermore, GDF-15
appears as a marker for all-cause mortality in the elderly and
constitutes a predictor of disease severity during bacterial and
viral infections (21, 22). During inflammatory conditions,
multiple cell types have been shown to release GDF-15,
including endothelial cells, epithelial cells, vascular smooth
Frontiers in Immunology | www.frontiersin.org 2
muscle, macrophages and adipocytes (4, 23, 24). Taken
together, GDF-15 appears to be released by multiple cell types
both during acute and chronic low-grade inflammation.
GDF-15 AS A MITOKINE DURING
MITOCHONDRIAL DYSFUNCTION

Mitochondria are intracellular organelles that constitute cellular
“power stations” in all cell types and tissues. These organelles
play key roles in many biological processes, such as programmed
cell death, oxidative phosphorylation and energy production.
Aging and inflammation have been shown to alter mitochondrial
function (3, 25).

Upon stress, mitochondrial stress-induced cytokines (referred
as mitokines) such as fibroblast growth factor 21 (FGF21) and
GDF-15 are expressed (26). Mitokines act in an endocrine,
paracrine and autocrine fashion depending on the tissue
microenvironment, and have been shown to have both
detrimental and protective effects depending on the stimulus
intensity (11, 21). GDF-15 is involved in a biphasic (hermetic or
U-curve) response via the GDF-15-STAT3 pathway (2, 21, 27).
Such hormetic paradoxical dose-response has been illustrated by
Conte et al. who demonstrated that low plasma levels of GDF-15
were associated with healthy ageing, while higher levels were
detrimental (2, 21). GDF-15 production has been associated with
a low NAD/NADH ratio, highlighting the influence of
mitochondrial dysfunction on GDF-15 production (28),
although ER stress and hypoxia were also shown to induce this
cytokine (2, 29).
CELLULAR MECHANISMS AND
DOWNSTREAM SIGNALING PATHWAYS
OF GDF-15

There are still conflicting reports of the molecular mechanisms of
GDF-15 at the cellular level (2, 30, 31). It is established that GDF-
15 binds to the GDNF receptor family member GFRAL in the
hindbrain, orchestrating its metabolic effects through the
neurotransmitter cholecystokinin (CCK) and further reduces
appetite and body weight through the RET coreceptor (8, 10,
31, 32). However, GFRAL is not expressed outside the brain,
raising the possibility of alternative receptors involved in GDF-
15 ’s immunomodulatory effects , especial ly through
hematopoietic cells (31). As a member of the TGFb family, it
has been speculated that the peripheral effects of GDF-15 could
be mediated through receptors of the TGF-b/Smad signaling
pathway (2, 31, 33, 34). Candidate receptors for GDF-15 are
ALK-5/TGF-bRII, TGF-bRI, TGF-bRII and the epithelial growth
factor receptor ErbB2 (35–37). Recently, a new receptor for
GDF-15, CD48, has been identified on Treg cells in a
genetically-engineered mouse model (38). The GDF-15-CD48
interaction was shown to promote the propagation of Treg cells
and indirectly upregulate forkhead transcription factor (Foxp3),
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enhancing the development of hepatocellular carcinoma (HCC)
(38). This immunosuppressive tumor microenvironment was
further shown to be altered by the introduction of monoclonal
antibodies against GDF-15, which ultimately improved HCC
control (38).

Downstream signaling of GDF-15 has been studied in
different models. In a mouse model, GDF-15 has been shown
to activate the PPARb/d-AMPK-p53 pathway, enhancing the
fatty acid oxidation and glucose uptake and reducing ER stress as
well as inflammation (39). Interestingly, the antidiabetic effect of
PPARb/d was independent of the central GDF-15/GFRAL
receptor in the hindbrain (39). Moreover, GDF-15 was
reported to contribute to the increase in peroxisome
proliferator-activated receptor-gamma coactivator (PGC)-1a
and lipin-1, involved in fatty acid metabolism induced by
PPARb/d activation (39). In the same animal model, the
expression of GDF-15 was induced in the skeletal muscles via
PPARb/d agonist, mitigating inflammation and improving
glucose tolerance (39). In another mouse model, GDF-15
induction through the PPARg pathway plays a key role in
tissue regeneration (40). In summary, hindbrain GFRAL acts
as a receptor for GDF-15 and may explain part of its metabolic
effects, however the mechanisms of its immunomodulatory effect
remain to be determined.
COPING WITH STRESS: GDF-15 IN THE
CONTEXT OF HOST RESISTANCE AND
DISEASE TOLERANCE

Studies on GDF-15 levels during sepsis illustrate the hormetic
role of GDF-15 during infection, with low levels being protective
while high levels being associated with disease severity. Host
survival during infection requires a delicate balance between host
resistance, which is essential for detecting and eliminating
pathogens, and disease tolerance, which is critical in
minimizing collateral tissue damage (41). During infection,
mortality is mainly determined by an exaggerated immune
response rather than pathogen invasion, reflecting this
dysregulation of the balance between defense and tolerance
(42). Disease tolerance can be then perceived as “the beauty of
compromise” as Mahatma Gandhi stated in his autobiography
written by Louis Fisher in 1950, illustrated by T-cell exhaustion
and metabolism reprogramming (Warburg effect) in cancer and
chronic infections. GDF-15, which has emerged as an
inflammation-induced mediator of disease tolerance through
metabolic reprogramming, might then serve as a disease
tolerance cytokine. The balance between disease tolerance and
host-defense response is particularly relevant for COVID-19, due
to the negative impact of a hyperinflammatory state in COVID-
19. This phenomenon is best illustrated in bats, which are well-
documented viral reservoirs and harbor many zoonotic
coronaviruses. Despite high viral loads of highly pathogenic
viruses in humans (as Ebola virus or SARS-CoV), infected bats
exhibit no signs of disease (43, 44).Through unique immune
characteristics, bats have an excellent balance between host
Frontiers in Immunology | www.frontiersin.org 3
defense and disease tolerance, allowing them to tamp excessive
immune responses to pathogens (45) Effector molecules with
known immunomodulatory effects such as GDF-15 might then
be of great interest to restore a balanced response.

ASSOCIATION BETWEEN HIGHER GDF-15
PLASMA LEVELS AND RESPIRATORY
TRACT DISEASES

Pulmonary epithelial cells constitute a major source of GDF-15
production (46, 47), especially during hypoxia (48) or upon
exposure to various allergens, cigarette smoke (49) and air
pollutants (50). In chronic obstructive pulmonary disease
(COPD), which is associated with cigarette smoking, a positive
association has been found between elevated levels of GDF-15
and exacerbation frequency as well as impairment of pulmonary
function (7, 51–53). During pulmonary hypertension, GDF-15
has been associated with disease progression and mortality.
Higher levels of GDF-15 have been linked with increased atrial
pressure and pulmonary capillary wedge pressure, via induction
by hypoxia and shear stress from the pulmonary vascular
endothelial cells (46, 54). In addition, higher GDF-15 plasma
levels were also found in alveolar epithelial cells in pulmonary
fibrosis (47, 55). Tissue damage due to hyperoxia is also a strong
inducer of GDF-15 secretion by pulmonary epithelial and
endothelial cells and is linked with bronchopulmonary
dysplasia (56). Conversely, GDF-15 demonstrated a protective
role in ventilator-associated acute lung injury induced by
platelets-neutrophils aggregates (48).

THE SIGNIFICANCE OF GDF-15 IN VIRAL
AND BACTERIAL INFECTIONS OUTSIDE
COVID-19

GDF-15 levels are significantly increased in patients with various
infections and sepsis. Regarding hepatic viral infections, GDF-15
is associated with disease progression and enhanced viral
replication (57–60). Hepatitis B virus (HBV)-linked HCC (57,
59–61) and liver fibrosis linked with hepatitis C virus (HCV)
were both associated with GDF-15 elevation (58, 60, 62). GDF-15
was reported to be overexpressed in genetically engineered mice
with acute exacerbations of COPD due to human rhinovirus
(RV), the most frequently detected virus in this context (63, 64).
Moreover, in human airway epithelial cells as well as in a mouse
model, GDF-15 was shown to promote RV replication and to
increase viral-induced inflammation (64). This increased
inflammation, which is known to be related to symptoms,
could be partly explained through the impairment of
interferon-g1 (IFN-g1) production by GDF-15 (64).

Although less studied, bacterial infections have also been
associated with increased GDF-15 levels, both for Gram-
positive or Gram-negative bacteria (13, 65) Similarly, GDF-15
was found to be elevated in patients with septic shock and
its plasma levels were correlated with increased mortality (66).
On the other hand, GDF-15 knockout mice were shown to be
February 2022 | Volume 13 | Article 820350
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protected against severe septic infection, with prolonged survival,
and demonstrated better control over local infections (61, 66).
GDF-15 AS A BIOMARKER COMING OF
AGE IN THE COVID-19 PANDEMIC

Several proteins have been identified as prognostic biomarkers in
COVID-19 such as IL-6, IL-8, C-reactive protein (CRP),
Frontiers in Immunology | www.frontiersin.org 4
procalcitonin, ferritin, D-dimer, calprotectin, IFN-g-induced
protein 10 (IP-10), IFN-g, TNF-a, granulocyte monocyte-
colony stimulating factor (GM-CSF), and macrophage
inflammatory protein (MIP) 1a and 1b (66–71). However, only
a handful of these cytokines were coined as prognostic markers
associated with disease severity and progression in COVID-19
patients (reviewed in Table 1) (74). In addition, due to their very
short half-lives, accurate cytokine measurements in the plasma
remain difficult and need to be carefully interpreted.
TABLE 1 | Studies reporting an association between GDF-15 and COVID-19 severity.

Study design
and country

Demographics Comorbidities of studied
patients

Sample size (n) Patients
with

severe
Sx/MR

Plasma GDF-15
correlation with
patient status

Other
markers
correlated

withn GDF-15

Authors

Observational
study

Hospitalized patients DM, HTN, CVD, CKD, non-
asthma respiratory disease,
immunosuppression

66 8/12.1% Severity of the
disease

Calprotectin de
Gaudiana
et al. (68)Spain > 60 years Mortality

Mostly males

Prospective
observational
study

ICU-hospitalized patients DM, HTN, CVD, CKD,
COPD, obesity

123 35/28% Severity of the
disease at
baseline, day 3,
day 9

Ferritin Myhre et
al. (70)

Norway >18 years ICU admission
Mortality

Single-center
retrospective
study

Presence of ARDS None 39 15/38.8% ICU admission IL-6, IL-10 and
CRP

Notz et al.
(71)

Germany Median age 58 years
77% males

Case-control
study

Hospitalized patients
(moderate-severe
symptoms) Median age 52
-58 years

None 80 (patients with varying
disease severity and
Control)

20/10% Hospitalization
rate

C3a, galectin-9 Giron et
al. (69)

USA 50% females Mortality

Cohort study Median age 71 years CVD, DM, HTN, stroke,
prior MI, current smoker,
obese

3999 and 1088 (2 different
international cohorts-
ARISTOTLE and RE-LY
studies)

ND Mortality risk NT-proBNP Wallentin
et al. (72)Sweden, USA 73% males

Cohort study
and
subcohort
study

Median age 72.2 years in
ESKD and COVID-19 +
group

Subcohort A - - 55 COVID-
19 positive ESKD patients

41/46,
89%

Disease severity IL18BP, CTSD
and KRT19

Gisby et
al. (73)

London, UK Median age 70.1 years in
ESKD and COVID-19 -
group

- 51 COVID-19 negative
ESKD patients

Mortality risk

Subcohort B
- 52 COVID-19 positive
ESKD patients
- 11 COVID-19 negative
ESKD patients

Retrospective
study

Median age 38-62 years HTN, DM, anemia, liver
cysts, respiratory diseases,
stroke, CVD, hyperlipidemia

440 Males= 10
(56%)

Severity and
progression of
disease

IL-6, IL-8 and
CRP

Teng et
al. (6)

Foshan,
China

(biomarkers analyzed in 111
patients)

Females=
21 (64%)
February 2022 |
 Volume 13 | Arti
GDF-15, growth differentiation factor 15; HIV, human immunodeficiency virus; HBV, hepatitis B virus; HRV, human rhinovirus; IL, interleukin; CRP, C-reactive protein; GM-CSF,
granulocyte-macrophage colony-stimulating factor; TNF, tumor necrosis factor; IFN, interferon; DM, diabetes mellitus; CKD, chronic kidney disease; HTN, hypertension; MI, myocardial
infarction; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; O2, oxygen; CLD, chronic liver disease; C3a, complement 3a; HCC, hepatocellular carcinoma;
HBV, hepatitis B virus; CLD, chronic liver disease; CHB, chronic hepatitis B; ESKD, end-stage kidney disease; ARDS, adult respiratory distress syndrome; MR, mortality rate; (+), high
plasma levels; hs-cTnT, high sensitive cardiac troponin T; NT-proBNP, N-terminal proB-type natriuretic peptide; n, sample size; UK, United Kingdom; CTSD, cathepsin D; KRT19, keratin
19; ICU, intensive care unit; O2, oxygen; Sx, symptoms; MR, mortality rate; ND, not described.
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Through the correlation of tissue damage, hypoxia and aging,
GDF-15 emerged as a significant indicator of disease severity in
individuals infected with SARS-CoV-2 (Table 1) (6, 71, 73, 75),
specifically in patients with underlying lung pathologies such as
COPD in older individuals (42, 46). An inverse correlation has
been reported between GDF-15 plasma concentration and
oxygen saturation, leading to stratification of disease severity in
critically-ill patients with COVID 19 (70). Notz et al.
demonstrated that both IL-6 and CRP were correlated with
GDF-15 levels throughout the COVID-19 course, suggesting
the significance of GDF-15 in inflammation (71). Among
many inflammatory markers, increased levels of GDF-15 and
ferritin were associated with poor outcomes in the intensive care
unit (ICU) and hospitalized patients with COVID-19 (70).
Similarly, de Guadiana et al. demonstrated a positive
correlation between GDF-15 and ferritin, CRP, calprotectin,
and D-dimer in hospitalized COVID-19 patients (68). GDF-15
and calprotectin were found to be the best prognostic markers in
assessing the outcome in hospitalized patients infected with
SARS-CoV-2 (68, 70). Taken together, higher plasma levels of
GDF-15, cardiac biomarkers and higher levels of soluble
angiotensin-converting enzyme 2 (sACE2) have been proposed
for risk stratification in patients with COVID-19 (67, 72). In
patients with end-stage kidney disease (ESKD) infected with
SARS-CoV-2, Gisby et al. found more than 200 proteins
differentially expressed compared to non-infected controls, 67
of which were linked to an increased risk of mortality (73).
Among various proteins known as contributors of inflammation
and organ damage, GDF-15 was one of the top 12 cytokines/
chemokines on the list (73).

In another study, out of 440 potential biomarkers tested by
antibody array profile and confirmed by enzyme-linked
immunosorbent assay (ELISA), GDF-15 was found to be
consistently and statistically correlated with the severity and
the progression of COVID-19 (6). Dynamic changes of GDF-15
levels reflected disease progression, with high levels linked to
symptom deterioration, followed by a dramatic decline in plasma
GDF-15 levels at the time of clinical and radiological
improvement and discharge (6). This study indicates that
GDF-15 could be used as a predictor of the progression of the
disease (Table 1) (6).
IMMUNOMODULATORY FUNCTION OF
GDF-15 DURING COVID-19

It has been established that the pathogenesis of severe COVID-19
involves the hyperactivation of the immune response leading to a
life-threatening ‘cytokine storm’ (76). This clinical syndrome can
be induced by both infectious and non-infectious causes, and is
characterized by an imbalance between cytokine production and
ac t i va t ion of the immune response l ead ing to a
hyperinflammatory state and multiorgan failure. Extensive
cytokine surges, such as IL-1, IL-6, IL-18, TNFa and IFN-g
(76) triggered by various pathogens (77–79), induce a cytokine
release syndrome (CRS) leading to widespread inflammation and
Frontiers in Immunology | www.frontiersin.org 5
considerable tissue damage (76, 80). This further leads to
endothelial cell dysfunction, multiorgan failure, disseminated
intravascular coagulation (DIC), acute respiratory distress
syndrome and alteration in iron homeostasis (74, 76, 81).
COVID-19 mortality is directly correlated with the elevation of
cytokines (82), in which monocyte/macrophages, neutrophils,
and natural killer (NK) cells seem to play a role (74, 76). Innate
and adaptive immune responses have also been shown to be
uncontrolled, specifically in virus-infected cells (76). In the case
of COVID-19, a small proportion of patients affected by severe
disease were shown to present with underlying dysregulated host
innate response, inducing a hyperinflammatory syndrome (83).
In addition, a cytokine storm is observed more frequently in
elderly patients and correlates with rapid deterioration during
COVID-19 (75, 84). Severe outcomes have been particularly
observed in patients with coexisting chronic inflammatory
conditions, such as hypertension, diabetes, and obesity, which
are in turn linked with elevated plasma GDF-15 levels (76).
Cytokine storm-induced GDF-15 elevation was shown to protect
against cardiovascular alterations in a mouse model, however, it
remains unknown whether this effect is present in COVID-19
patients (13).

Endothelial dysfunction is also a hallmark of COVID-19 and
has been linked with oxidative stress (74, 85). The hyperactivity
of the angiotensin-converting enzyme (ACE)-Angiotensin (Ang)
II- Angiotensin type 1 receptor (AT1) axis of the classical renin–
Ang system was shown to contribute to the coagulopathy
observed in patients with COVID-19 (74). In addition,
endothelial cells constitute a direct target of SARS-CoV-2,
which further contributes to endothelial dysfunction. The
SARS-CoV-2 cellular receptor ACE2 is heavily expressed in
vital organs such as the lung, liver, kidneys, heart, and blood
vessels, especially in type II pneumocytes in the lungs (74). Upon
binding, the virus is internalized through the endogenous ACE2
receptor through the S1 domain of the spike glycoprotein (S)
(74). S2 domains expressed on the SARS-CoV-2-infected cells
then cause a fusion between ACE2-positive neighboring cells and
triggers the formation of multinucleated syncytial pneumocytes
(74, 86). AT1 receptor plays a pivotal role in oxidative stress
through numerous intracellular signaling pathways. The
endothelial cell damage causes recruitment of inflammatory
cells and overproduction of cytokines and endothelialitis
resulting in microcirculatory vascular changes in the various
tissues (74).. Due to its high expression in endothelial cells and its
induction upon hypoxia, GDF-15 might play a role in COVID-
19 endothelialitis (46, 54, 70). GDF-15 is secreted from the
epithelial and endothelial cells as a result of inflammation and
oxidative stress in COVID-19. GDF-15 may exert its effect
directly on immune cells as well as via the central GDF-15/
GFRAL receptor in the hindbrain (74). The high amount of IL-6
secreted by activated macrophages trigger production of IL-17,
which results in excessive immune activation and intense
widespread inflammation (50) (Figure 1). Despite its
involvement in immune tolerance, GDF-15 elevation seems to
be overwhelmed by uncontrolled inflammation in certain
patients with COVID-19, leading to vascular pathologies in
vital organs (74, 87, 88).
February 2022 | Volume 13 | Article 820350
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GDF-15, IRON METABOLISM AND
COVID 19

One of the proposed mechanisms of oxidative stress and
hyperinflammatory state in COVID-19 is dysregulation of iron
metabolism (74). Plasma GDF-15 levels have been found to be
high in iron deficiency anemia, anemia of chronic disease and
iron overloading anemia such as b-thalassemia (89–91). GDF-15
is inversely associated with hepcidin, a key regulator in systemic
iron homeostasis in mammals (74, 90, 92), expediting intestinal
iron absorption leading to iron overload (93, 94). Inflammation,
which is also a hallmark of chronic anemia, increases the
expression of GDF-15 in several pathologies such as ESKD,
cancers, diabetes and cardiovascular diseases (73, 91, 94, 95)
(Table 1). GDF-15 has emerged as an immune modulator in
older patients with anemia in COVID-19 and its role is critical in
ferroptosis and dysregulated hematopoiesis in the erythroid cell
lineage (74, 96).
Frontiers in Immunology | www.frontiersin.org 6
Iron deficiency anemia is very common in patients with
ESKD (97). In one cross-sectional study in South Africa, GDF-
15 was found to be a predictor of iron deficiency anemia in early
renal disease (91). GDF-15 is also associated with a decline in
renal function in chronic renal diseases (98). The iron overload
associated with overexpression of GDF-15 in inflammatory states
could lead to increase ferritin, another crucial biomarker in
stratifying disease severity in COVID-19 (Table 1). Altogether,
this could partly explain the relationship between the elevated
plasma GDF-15 levels, underlying anemia, and severity of
COVID-19 in chronic inflammatory conditions especially
ESKD (73, 74).

Recently, high-dose iron chelation has been approved by FDA
as adjuvant therapy in critically-ill patients infected with SARS-
COV-2 (18). In addition to lowering iron levels, iron chelating
therapy demonstrated antiviral and antifibrotic activity while
improving endothelialitis and innate immunity (99). There is
some evidence supporting treatment of COVID-19-associated-
FIGURE 1 | Contribution of a GDF-15 signaling pathway in COVID-19 pathogenesis. Lungs infected with SARS-CoV-2 lead to tissue damage, hypoxia, and endothelialitis.
Tobacco smoke, ultrafine particles, and air pollutants act as a co-stimulant in the direct release of GDF15 in the lung epithelial cells. The virus enters the host cell via ACE2
on type II pneumocytes causing the recruitment of leucocytes, hence, elevated innate immune response. SARS-COV-2 also causes direct endothelialitis after the
destruction of the alveolar epithelia. The transmigration of leucocytes causes a massive release of proinflammatory cytokines IL-6, IL-8, TNF alpha, IP-10, IL-1beta, IFN
gamma, GM-CSF, and Notch pathway. The hippo pathway favors IL-17 differentiation and the Wnt pathway inhibits Treg suppressor function mediated by GDF15 resulting
in overwhelming immune system activation. Together with the formation of the syncytium, hyperactivation of immune response commenced leading to cytokine storm,
hypercoagulation and elevated neutrophils-lymphocytes ratio critical in severe outcomes in patients affected with SARS-COV-2 especially with comorbidities. GDF, growth
differentiation factor; IL, interleukin; ARDS, acute respiratory distress syndrome; ACE, angiotensin-converting enzyme; UFP, ultrafine particles; HF, heart failure; COPD,
chronic obstructive pulmonary disease; CVD, cardiovascular diseases; CD, cluster differentiation; GM-CSF, granulocyte monocyte-colony stimulating factor; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; ESKD, end-stage kidney disease; IDA, iron-deficiency anemia; T reg, regulatory T cells; ICU, intensive care unit; NK cells,
natural killer cells.
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mucormycosis with iron chelators (100), although more studies
are needed to fully understand the beneficial effects of this
adjuvant therapy.

GDF-15 could therefore potentially be used as a critical
biomarker to predict the early use of iron-chelating therapy in
patients with COVID-19 with co-existing subclinical
inflammation and complications.
CONCLUSION

Altogether, high levels of GDF-15, a stress-related cytokine, have
been associated with the progression and severity of various
conditions including COVID-19. Based on our literature review,
GDF-15 represents a clinically relevant marker for risk
stratification or screening for severe COVID-19 (41). The use
of GDF-15 as a biomarker could also enable the identification
and optimal timing of the most appropriate therapies in patients
with COVID-19 (87). The role of GDF-15 in viral pathogenesis,
notably COVID-19, seems to be context-dependent, spanning
from a promotor of disease tolerance in the early phase of
infection to a detrimental actor in certain patients with
cytokine storm. Furthermore, the potential outcome of treating
early COVID-19 patients with recombinant GDF-15 could be
explored in further studies.
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