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Accelerated Acquisition of High-resolution Diffusion-weighted  
Imaging of the Brain with a Multi-shot Echo-planar Sequence:  

Deep-learning-based Denoising

Motohide Kawamura, Daiki Tamada*, Satoshi Funayama, Marie-Luise Kromrey,  
Shintaro Ichikawa, Hiroshi Onishi, and Utaroh Motosugi

To accelerate high-resolution diffusion-weighted imaging with a multi-shot echo-planar sequence, we propose 
an approach based on reduced averaging and deep learning. Denoising convolutional neural networks can 
reduce amplified noise without requiring extensive averaging, enabling shorter scan times and high image 
quality. The preliminary experimental results demonstrate the superior performance of the proposed 
denoising method over state-of-the-art methods such as the widely used block-matching and 3D filtering.
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TECHNICAL NOTE

for signal averaging, limiting the clinical use of high- 
resolution DWI.

Exploiting prior knowledge about magnetic resonance 
images enables image reconstruction from a reduced amount 
of data without losing essential information, and deep neural 
networks could be used to determine underlying data struc-
tures.8 In fact, deep learning allows to efficiently encode and 
extract useful features from data using network structures, 
being among the most powerful approaches for solving prob-
lems in many fields and providing outstanding performance 
compared to other methods, as confirmed in several data sci-
ence competitions.9,10 Moreover, massive parallel computa-
tion on graphics processing units allows neural networks to 
perform inference faster than other state-of-the-art algo-
rithms, suggesting its suitability for clinical applications. 
Furthermore, plenty of MRI data available from clinical 
practice can be used to train deep neural networks and 
achieve high performance.

This study aimed to accelerate the process of high- 
resolution multi-shot DWI by replacing the time-consuming 
acquisition for signal averaging with denoising based on a 
deep neural network, as illustrated in Fig. 1. During training, 
the network learns the relationship between low-SNR 
images without averaging and high-SNR images obtained 
from averaging. Then, it can infer high-quality images 
resembling the averaging effect from non-averaged images, 
notably reducing the scan times required to obtain aver-
aging data. Preliminary results show that the proposed 
denoising method outperforms conventional algorithms 
such as total variation (TV) denoising and block-matching 
and 3D filtering (BM3D) in both image quality measures 
and subjective visual quality.

Introduction
Diffusion-weighted MRI (DWI) has been widely used in 
clinical practice, especially for the early detection of acute 
stroke.1 DWI is typically combined with single-shot echo-
planar imaging (EPI),2 which is a fast scanning sequence 
adequate for avoiding motion-induced artifacts. Despite 
the short scan times, single-shot EPI can retrieve suscepti-
bility artifacts, image distortion at tissue–air interfaces, 
and T2 * blurring, thus limiting its spatial resolution.3 Var-
ious image acquisition and reconstruction approaches 
address limited spatial resolution. Parallel imaging4,5 is 
widely used to accelerate k-space traversal along the 
phase-encoding direction and suppress image distortion. 
k-Space traversal times have been further reduced by 
using multi-shot techniques including navigator-based 
reacquisition6 and multiplexed sensitivity encoding,7 and 
their combination enable high-resolution DWI with min-
imum distortion. However, these techniques often suffer 
from low intrinsic signal-to-noise ratio (SNR). Moreover, 
multi-shot methods extend acquisition times according to 
the number of shots covering a full k-space. Consequently, 
improved image quality requires long acquisition times 
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Materials and Methods
Data acquisition
This study was approved by the Institutional Review Board. 
Diffusion-weighted images were acquired from 44 patients 
and five healthy volunteers (22 men and 27 women; mean 
age 60.1 years; range 12–87 years) on a 3T MRI scanner 
(SIGNA Premier, GE Healthcare, Chicago, IL, USA) using a 
48-channel head coil in November and December 2018. For 
each subject, 25–27 axial slices of the brain with thickness of 
5 mm were acquired using EPI sequence. Motion probing 
gradient were applied along the X, Y and Z axes. To acquire 
less distorted high-resolution images, two-shot multiplexed 
sensitivity encoding was used along with parallel imaging 
with reduction factor of 2 using TR and TE of 5000 and  
74 ms, respectively. The matrix size was 320 × 320, and the 

Fig. 1 Schematic of proposed deep-learning-
based acceleration for diffusion-weighted imag-
ing (DWI). The conventional approach averages 
several signals to improve the low signal-to-
noise ratio of high-resolution diffusion-weighted 
images. We replace this time-consuming process 
with denoising based on deep neural network to 
notably reduce acquisition time.

Fig. 2 Architecture of proposed deep convolutional neural network.

final resolution was 512 × 512 by upscaling during recon-
struction. For b = 1000 s/mm2, the number of excitations 
(NEX) was 10. For b = 0 s/mm2, no averaging was per-
formed (i.e., NEX 1). To evaluate the process acceleration, 
we measured the acquisition time using NEX 1 for both b of 
1000 and 0 s/mm2. This evaluation corresponds to a clinical 
situation where deep learning is applied instead of signal 
averaging. No image from this scan was used for training, 
validation or test of the neural network.

Neural network architecture
We adopt the deep convolutional neural network (CNN) pro-
posed by Zhang et al.11 for denoising diffusion-weighted 
images. The network consists of three types of layers as shown 
in Fig. 2. The input layer contains 64 filters with 3 × 3 win-
dows for convolution followed by rectified linear units to 
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handle nonlinearity, resulting in 64 feature maps. For each 
intermediate layer, the feature maps are convoluted by 64 fil-
ters with 3 × 3 × 64 windows, followed by batch normalization 
and rectified linear units. Finally, the output layer has a filter 
with 3 × 3 × 64 windows that retrieve the denoised image. 
Throughout the layers, zero padding for convolution preserves 
the image size. Besides the CNN, we use a residual learning 
strategy10 for extracting the noise from a pre-denoising image 
rather than to directly learn the mapping from the pre-denoising 
image to a latent clean image. The CNN was only applied to 
magnitude images, and no complex image was used at any 
stage. The proposed two-dimensional image denoising applied 
every process on each slice but not on the whole slices.

Network training and evaluation
Data from the 49 subjects were acquired using NEX 10 and  
b = 1000 s/mm2 and divided into three groups comprising 
training, validation, and test sets. Specifically, data from 24 
subjects were used for training, from other six for validation, 
and from the remaining 19 for test. The images with NEX 9, 
corresponding to a ninefold signal averaging, were regarded as 
ground truth and images with NEX 1 as pre-denoising images. 
The target residual image was defined from these two images. 
We used 624 input-target pairs of images with size 512 × 512 
for training. Bicubic interpolation with enlargement factors of 
0.9, 0.8 and 0.7 was applied to the images for data augmenta-
tion. Using these original and reduced images, we randomly 
cropped 384,000 patches with size 50 × 50 at the beginning of 
every epoch and considered the patches as training input. We 
used the averaged mean squared errors between target and 
inferred residual images as loss function and performed Adam 
optimization12 during training. The mini-batch size was 128. 
The network depth was set to 20, corresponding to receptive 
field size of 41 × 41. The learning rate was set to 1.0 × 10−4 for 
the first 20 epochs and then it was dropped to 1.0 × 10−5 for the 
rest of the training. Training was terminated based on an early 
stopping condition to avoid overfitting problem. Early stop-
ping patience is set to 10 epochs. Test data were used to assess 
the improvement in image quality after denoising. We evalu-
ated the image quality of the diffusion-weighted images  
(b = 1000 s/mm2), before and after denoising.

To evaluate the image quality, we compared the pro-
posed method with other denoising algorithms including 
Gaussian filter, TV denoising,13 and BM3D.14 The standard 
deviation of the Gaussian filter was 1.21. For TV denoising, 
the split Bregman method15 was applied to solve the fol-
lowing optimization problem:

  minTV
x

x y x( ) + -
l
2 2
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where x is the reconstructed image, y is the pre-denoising 
image, TV(x) denotes the TV penalty, and l is the regulariza-
tion parameter, which we set to 9.5. For BM3D, the standard 
deviation of the noise was estimated as 0.0824. We adjusted the 
standard deviation of the Gaussian filter, the regularization  

parameter for TV minimization, and the estimated noise level of 
BM3D by optimizing the peak SNR on the validation images. 
In all schemes, images were normalized prior to denoising.

The peak SNR was used as objective image quality 
measure, and is defined as
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where Iground truth(i, j) and Idenoised(i, j) denote the intensities of 
ground truth and denoised image with size M × N, respectively. 
The test set consisted of the data obtained from the 19 subjects. 
For evaluation, a single slice was selected from each subject 
following the criteria that the slice includes the horns of both 
lateral ventricles. Peak SNR was calculated for the original 
images and also for the images denoised by the proposed, and 
the conventional denoising methods. Paired t-test was per-
formed to test the null hypotheses that there was no significant 
difference between a pair of two approaches. The test was sepa-
rately performed for each comparison. The comparisons were 
made between all possible pairs of all methods. Bonferroni cor-
rection was used to adjust for multiple comparisons.

We also conducted a visual assessment on the diffusion-
weighted images with the assistance of two radiologists, who 
compared our proposed method to TV denoising, BM3D, and 
the ground-truth images. The assessment was based on prefer-
ence of diagnostic radiologists. They were asked which image 
is preferred when they make imaging-based diagnosis. Spe-
cifically, we selected the same 19 slices as for the peak SNR 
evaluation. Every pair of corresponding images were com-
pared side-by-side. Therefore, the radiologists compared 114 
pairs of images without knowledge of their denoising type. 
The comparison of images h and i in each pair was based on a 
five-point ordinal scale (1: h is much worse than i, 2: h is worse 
than i, 3: comparable quality, 4: h is better than i, 5: h is much 
better than i). The two radiologists separately rated the images. 
The data were analyzed using the cumulative logit model:16,17
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where Yhi denotes the ordinal-scale random variable, aj are 
intercept parameters satisfying a1 < a2 < a3 = –a2 < a4 =  
–a1, and mh and mi represent the quality of images h and i, 
respectively, with the constraint Σk mk = 0. Note that larger mh 
and mi values indicate better performance of the method 
applied on images h and i, respectively. This analysis 
retrieved estimated values and standard errors of four perfor-
mance indicators corresponding to the image quality of the 
proposed method, TV denoising, BM3D, and ground truth. 
We used package ordBTL18 implemented in R to fit the 
model. We performed Wald tests with Bonferroni correction 
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Fig. 3 Pre-denoising, denoised, and ground truth diffusion-weighted images. (A) Pre-denoising image. Images denoised using (B) Gaussian 
filter, (C) total variation (TV) denoising, (D) block-matching and 3D filtering (BM3D), and (E) the proposed method. (F) Ground truth 
images. (G–I) Magnified images of the solid boxes in (A–F), respectively.

to test the null hypotheses that there was no significant differ-
ence between mh and mi. Inter-rater agreement was assessed 
with kappa statistics based on squared disagreement weights.

Results
Acquisition and computation time
The acquisition time using NEX 9 with b = 1000 s/mm2 and 
NEX 1 with b = 0 s/mm2 was approximately 5 min 20 s, whereas 
that using NEX 1 for both b values of 1000 and 0 s/mm2, cor-
responding to the case when using the proposed CNN-based 
method, was 50 s. We performed the calculations on a PC with 
Intel Core-i7 8700K CPU and a Nvidia Geforce GTX 1080 Ti 
graphics processing unit. The proposed method was the post-
processing after reconstruction. The resulting computation time 
per slice for our post-processing was 1.9 ms, being negligible 
compared to the computation time for reconstruction.

Diffusion-weighted image quality
The average peak SNR results obtained from applying the 
evaluated methods on the images and that of pre-denoising 
images in the test set are listed in Table 1. Paired t-tests with 

Table 1 Peak SNRs of diffusion-weighted images compared with 
the ground truth. The peak SNRs of pre-denoising images are also 
listed

Method Peak SNR (dB)

Pre-denoising 31.33 (1.63)

Gaussian 34.23 (1.48)

TV 34.59 (1.50)

BM3D 34.95 (1.54)

Proposed 36.06 (1.54)

Standard deviations are enclosed in parentheses. SNR, signal-to-noise 
ratio; TV, total variation; BM3D, block-matching and 3D filtering.

Bonferroni correction show that the proposed method signifi-
cantly (P < 0.001) achieves higher peak SNRs than the other 
algorithms. Figure 3 shows an image from the test set and its 
processing results. The magnified image in Fig. 3h shows 
that the Gaussian filter does not suitably remove noise, and 
that in Fig. 3i shows that TV denoising achieves better per-
formance but produces a patchy appearance by its piecewise 
constant assumption. In contrast, the magnified images 
obtained from BM3D (Fig. 3j) and the proposed method 
(Fig. 3k) exhibit the expected appearance. A closer inspec-
tion shows that the proposed CNN denoising is superior to 
BM3D in terms of reconstructing fine structures such as the 
sulci observed in the ground-truth image (Fig. 3l).

Reader study
The results of the visual assessment performed by the two 
radiologists are summarized in Table 2. The weighted kappa 
statistics is 0.767, indicating excellent inter-rater agreement. 
The performance indicators of image quality (m) are shown 
in Fig. 4. In both results, the ground truth retrieves the highest 
m, followed by the proposed method. Our approach signifi-
cantly outperforms the other denoising algorithms, TV and 
BM3D. The ranks of the performance indicators are con-
sistent with the peak SNR values.

Discussion
We perform denoising using a deep neural network and 
multi-shot EPI sequence to obtain high-resolution diffusion-
weighted images of the brain in < 1 min. The acquisition time 
is short enough to allow high-resolution DWI to be used in 
daily clinical practice. The CNN processing also requires 
low computational cost, being suitable to be implemented on 
commercial scanners. The proposed fast and high-resolution 
DWI retrieved the highest quality in both quantitative and 



Deep Learning for Accelerating DWI

103Vol. 20, No. 1

Fig. 4 Estimates of variable m for 
cumulative logit model fitted to 
paired comparison. m represents 
image quality of the corresponding 
method or ground truth. Larger m 
indicates better quality. Estimated 
asymptotic standard errors are 
denoted by error bars. TV, total 
variation; BM3D, block-matching 
and 3D filtering. The significance 
stars mean: *P < 0.05; **P < 0.01; 
***P < 0.001.

qualitative evaluations among the evaluated denoising 
methods. This illustrates that our approach can minimize 
deterioration of image quality and diagnostic accuracy 
arising from fast acquisition without signal averaging. 
Despite its superiority over the conventional methods, the 
quality of the images denoised by the proposed method was 
judged worse than that of ground truth by one reader. He 
pointed out that the proposed method slightly obscured the 

anatomical structure of the basal ganglia and the border 
between white and gray matter. This subtle change cannot be 
captured well by the peak SNR, which mainly depends on 
noise level. More improvement in preserving fine structures 
is the subject of our future research. It is also noted that 
multi-shot EPI combined with parallel imaging is prone to 
aliasing by an unfolding algorithm with inappropriate recon-
struction parameters. Mild aliasing artifacts may appear even 

Table 2 Comparison among image pairs from reader study

Pair (h, i)

Reader 1 Reader 2

h is 
much 
better

h is 
better

No 
preference

i is 
better

i is 
much 
better

h is 
much 
better

h is 
better

No 
preference

i is 
better

i is 
much 
better

TV, BM3D 0 0 1 18 0 0 0 0 0 19

TV, proposed 0 0 0 15 4 0 0 0 0 19

TV, ground truth 0 0 0 0 19 0 0 0 0 19

BM3D, proposed 0 1 5 11 2 0 1 7 9 2

BM3D, ground truth 0 1 4 9 5 0 4 3 12 0

Proposed, ground truth 0 3 5 10 1 0 6 3 10 0

TV, total variation; BM3D, block-matching and 3D filtering.
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in the ground truth images under our setting where two-shot 
multiplexed sensitivity encoding is used along with parallel 
imaging with reduction factor of 2. Our current approach has 
difficulty in solving the problem because the CNN learns to 
imitate ground truth data. However, aliasing can be reduced 
by more sophisticated reconstructions such as an algorithm 
based on low-rank Hankel matrix completion.19 Although the 
algorithm is time-consuming, its high computational cost can 
be mitigated using CNNs.20 The incorporation of it into our 
approach could enable the removal of both noise and aliasing.

Diffusion-weighted imaging currently conforms a rou-
tine protocol for brain MRI given its high contrast resolu-
tion. Although combining EPI and DWI has drawbacks 
including limited spatial resolution and image distortion, 
they are overcome by the high contrast resolution that is 
valuable for clinical evaluation, especially for acute brain 
ischemia. During the past decade, DWI has been adopted in 
body MR protocols for screening and diagnosis of the 
malignant lesions21 and quantitative assessments.22,23 To 
prevent image distortion caused by high image resolution in 
EPI-based sequences, various methods for acquisition of 
high-resolution DWI have been developed and tested.6,7,24–26 
These techniques, however, exhibit a limited SNR in a 
small voxel, thus demanding multiple averaging that conse-
quently increases the acquisition time.

To achieve high-resolution DWI in a shorter acquisition 
time, imaging with noise suppression or effective signal acqui-
sition can be used. Noise reduction using deep neural networks 
has been developed for general image processing27 and can be 
applied for accelerated MRI acquisition. Some studies have 
addressed the acceleration of MRI by incorporating deep 
neural networks into reconstruction.28–30 These works focused 
on various k-space under-sampling schemes to remove arti-
facts related to under-sampling by using learning-based 
methods. Image acquisition can be accelerated by reducing the 
sampling rate in, for example, fast spin-echo imaging. How-
ever, DWI is usually combined with EPI to collect all the 
points on a k-space with a single-pulse excitation, essentially 
receiving no benefit from the k-space under-sampling. In con-
trast, the proposed method prevents averaging to improve the 
SNR, being adequate for accelerating high-resolution DWI. 
More recent studies applied deep learning-based denoising to 
DWI.31,32 But these works were limited to single-shot EPI, 
being susceptible to image distortion resulting from phase 
error in high-resolution. Note that multi-shot EPI is crucial to 
achieving both high-resolution and low distortion simultane-
ously. To the best of our knowledge, this study is the first 
attempt to combine a deep neural network-based denoising 
with multi-shot EPI to obtain high-resolution DWI.

Despite the promising preliminary results, the proposed 
method has several limitations. First, although the peak SNR 
is often used to evaluate the image quality, the relation 
between the peak SNR and diagnostic quality has not been 
thoroughly investigated in medical imaging. In this work, we 
conducted the reader study to complement the evaluation. In 

future work, we plan to make a more extensive visual assess-
ment including image sharpness. Second, our experiments 
relied on data from a very limited number of subjects. Fur-
ther evaluation on more test data is necessary, and a more 
extensive evaluation of image quality should be performed 
considering both anatomy and pathology.

Conclusion
We propose a denoising method using deep neural networks to 
acquire high-resolution diffusion weighted images based on 
multi-shot EPI with shorter scan times than other methods. We 
experimentally verified the superior quality of the proposed 
method compared with conventional techniques, including the 
state-of-the-art TV denoising and BM3D, in both quantitative 
and qualitative assessments. The results indicate the potential 
of deep learning to dramatically reduce the acquisition time 
and improve the quality of high-resolution DWI.
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