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With the increasing spread of methicillin-resistant Staphylococcus aureus worldwide,
fosfomycin has begun to be used more often, either alone or in combination with
other antibiotics, for treating methicillin-resistant S. aureus infections, resulting in
the emergence of fosfomycin-resistant strains. Fosfomycin resistance is reported to
be mediated by fosfomycin-modifying enzymes (FosA, FosB, FosC, and FosX) and
mutations of the target enzyme MurA or the membrane transporter proteins UhpT
and GlpT. Our previous studies indicated that the fos genes might not the major
fosfomycin resistance mechanism in S. aureus, whereas mutations of glpT and uhpT
seemed to be more related to fosfomycin resistance. However, the precise role of
these two genes in S. aureus fosfomycin resistance remains unclear. The aim of the
present study was to investigate the role of glpT and uhpT in S. aureus fosfomycin
resistance. Homologous recombination was used to knockout the uhpT and glpT genes
in S. aureus Newman. Gene complementation was generated by the plasmid pRB473
carrying these two genes. The fosfomycin minimal inhibitory concentration (MIC) of
the strains was measured by the E-test to observe the influence of gene deletion
on antibiotic susceptibility. In addition, growth curves were constructed to determine
whether the mutations have a significant influence on bacterial growth. Deletion of
uhpT, glpT, and both of them led to increased fosfomycin MIC 0.5 µg/ml to 32 µg/ml,
4 µg/ml, and >1024 µg/ml, respectively. By complementing uhpT and glpT into the
deletion mutants, the fosfomycin MIC decreased from 32 to 0.5 µg/ml and from 4 to
0.25 µg/ml, respectively. Moreover, the transporter gene-deleted strains showed no
obvious difference in growth curves compared to the parental strain. In summary, our
study strongly suggests that mutations of uhpT and glpT lead to fosfomycin resistance
in S. aureus, and that uhpT mutation may play a more important role. The high
resistance and low biological fitness cost resulting from uhpT and glpT deletion suggest
that these strains might have an evolutionary advantage in a fosfomycin-rich clinical
situation, which should be closely monitored.
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INTRODUCTION

Staphylococcus aureus is one of the most common bacterial
pathogens worldwide in both community and hospital settings.
Methicillin-resistant Staphylococcus aureus (MRSA) is an
important multi-resistant pathogen. To date, vancomycin
has remained the cornerstone drug in the management of
invasive MRSA infections. However, the continuous rise in the
vancomycin minimum inhibitory concentration (MIC), known
as the “vancomycin MIC creep” phenomenon, poses a significant
challenge to MRSA therapy; therefore, fosfomycin has recently
been used alone or in combination with other antibiotics in
treating MRSA infections (del Rio et al., 2016; VanEperen and
Segreti, 2016). Nevertheless, this situation has inevitably led
to the emergence of fosfomycin-resistant MRSA strains. In
a recent review, the susceptibility of S. aureus to fosfomycin
ranged between 33.2 and 100% in the nine available studies
(frequency = 91.7%, 95% confidence interval 88.7–94.9%); in
seven of the studies susceptibility rate was >90% (Vardakas et al.,
2016). According to the CHINET surveillance program in China
in 2010, 29.5% of the MRSA clinical isolates were resistant to
fosfomycin (Guo et al., 2013). And Yu et al. (2010) reported a
fosfomycin susceptible rate of 33.2%.

The mechanisms of action and resistance of fosfomycin
have been studied for decades. Fosfomycin was first discovered
in 1969 as an effective bactericidal agent against Gram-
positive and Gram-negative organisms. The mechanism of
action of fosfomycin differs from that of most commonly
used antimicrobials. In general, fosfomycin is transported
across the bacterial wall primarily with the help of the
glycerol-3-phosphate (G-3-P) transport (GlpT) system. In
the presence of glucose-6-phosphate (G-6-P), the hexose
phosphate uptake transport (UhpT) system is induced, and
provides an alternative route to the GlpT system. UhpT are
important membrane transporter proteins for small molecules,
including fosfomycin (Castaneda-Garcia et al., 2009). When
transported into the cytosol of a bacterium, fosfomycin
deactivates the target protein UDP-N-acetylglucosamine-3-
enolpyruvyltransferase (MurA, encoded by the murA gene),
thereby preventing the formation of N-acetylmuramic acid from
N-acetylglucosamine and phosphoenolpyruvate, which is the
initial step in peptidoglycan chain formation of the bacterial
wall (Kahan et al., 1974). The key resistance mechanisms
to fosfomycin include the loss or reduced production of
transporters, reduced affinity to MurA, and production of
fosfomycin-modifying enzymes (Sastry and Doi, 2016).

However, to date, the mechanisms contributing to fosfomycin
resistance have been mostly studied in Gram-negative bacteria,
with few related studies on Gram-positive bacteria. We have
conducted several studies to investigate the fosfomycin resistance
mechanisms in Gram-positive cocci, including Enterococcus
faecium and S. aureus (Xu et al., 2013; Chen et al., 2014; Fu
et al., 2016a,b). These previous studies indicated that the fos
gene was not the major mechanism of fosfomycin resistance in
MRSA isolates from our hospital, whereas mutations of glpT
and uhpT seemed to be more closely related to fosfomycin
resistance. However, the exact roles of these two genes in S. aureus

fosfomycin resistance remain unclear. Thus, we designed the
present study to investigate the roles of glpT and uhpT in
S. aureus fosfomycin resistance.

MATERIALS AND METHODS

Bacterial Strains and Plasmids
The strains and plasmids used in this study are presented in
Table 1. The clinical fosfomycin-resistant MRSA strains SA2,
SA94, and SA30 were collected from the blood or cerebral spinal
fluid of patients at Huashan Hospital and were characterized
previously (Fu et al., 2016b). And the strain names are in
accordance with that in the Supplementary Table S1 of the
previous article (Fu et al., 2016b). Each of the clinical MRSA
strains was with a different type of transporter gene mutation
(Table 1). The S. aureus strains Newman and RN4220, and the
plasmid pKOR1 were used in the homologous recombination
assay (Bae and Schneewind, 2005; Wang et al., 2015). In addition,
S. aureusATCC29213 (American Type Tissue Culture Collection,
Manassas, VA, United States) was used for the quality control of
susceptibility testing. These strains and plasmids were laboratory
collection.

Allelic Gene Deletion by Homologous
Recombination
Knockout of the transporter genes glpT and uhpT was conducted
as previously described (Bae and Schneewind, 2005; Wang et al.,
2015). The plasmids and primers used are listed in Tables 1, 2,
respectively. Proper gene deletion was verified by analytical
polymerase chain reaction (PCR) and sequencing of the genomic
DNA at the borders of the PCR-derived regions. Sequencing
was then performed to confirm the nucleotides. The amplified
fragments were used to construct the homologous recombinant
pKOR1-1uhpT/glpT with Gateway R© BP ClonaseTM II Enzyme
mix (Thermo Fisher Scientific, Waltham, MA, United States).

pKOR1-1uhpT and pKOR1-1glpT were introduced into
S. aureus RN4220 by electroporation for modification. The
plasmid extracted from strain RN4220 was then introduced into
S. aureus Newman. The desired uhpT and glpT deletion mutants
were selected as described previously (Bae and Schneewind,
2005).

The successful generation of the Newman-1uhpT and
Newman-1glpT strains was further confirmed by PCR and
sequencing. PCRs were performed using the primers attB1-uhpT-
up-F/attB2-uhpT-CF and attB1-glpT-up-F/attB2-glpT-CF in the
strains S. aureus Newman, Newman-1uhpT, and Newman-
1glpT, respectively.

Construction of the Complemented
Strain
Fragments were PCR-amplified from S. aureus Newman using
the primers C-uhpT-F/R and C-glpT-F/R. The PCR products
and vector pRB473 were double-digested with the designed
restriction enzymes BamHI and EcoRI (for uhpT), or BamHI
and KpnI (for glpT), and ligation was performed with T4
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ligase. The resulting plasmids were transferred into S. aureus
RN4220, and then introduced into the deletion and clinical
strains with defects on uhpT and/or glpT, SA2, SA94, and
SA30.

Antimicrobial Susceptibility Testing
Fosfomycin susceptibility of the knockout and clinical strains
with defects on uhpT and/or glpT, and their complemented
strains were tested with the E-test (BioMerieux SA, La Balme
Les Grotts, France), according to the manufacturer’s guidance.
Results were interpreted according to European committee on
antimicrobial susceptibility testing criteria (European Committee

on Antimicrobial Susceptibility Testing [EUCAST], 2017)
(susceptible, ≤32 mg/L; resistant, ≥64 mg/L).

Measurement of Growth Curves
To evaluate the influence of deletion of the transporter
genes on bacterial growth, we measured the in vitro growth
curves of S. aureus Newman, Newman-1uhpT, Newman-1glpT,
Newman-1uhpT&glpT, and the clinical strains. The strains were
cultivated in tryptic soy broth overnight at 37◦C. The bacterial
solution was diluted to an optical density at 600 nm (OD600) of
0.1 and cultivated again. The OD600 was then measured at 0, 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h for each strain, by

TABLE 1 | Strains and plasmids used to make the deletion mutations.

Strain, plasmid, or primer Description Source

S. aureus strains

SA2 MRSA carrying mutation on glpT and uhpT, fosfomycin MIC > 1024 µg/ml Clinical strain 2 (Fu et al., 2016b)

SA94 MRSA carrying mutation on uhpT, fosfomycin MIC = 256 µg/ml Clinical strain 94 (Fu et al., 2016b)

SA30 MRSA carrying mutation on glpT, fosfomycin MIC = 128 µg/ml Clinical strain 30 (Fu et al., 2016b)

Newman A fosfomycin-sensitive S. aureus strain, fosfomycin MIC = 0.5 µg/ml Bae and Schneewind, 2005

RN4220 A non-a-hemolytic, non-restricting strain of S. aureus Bae and Schneewind, 2005

Newman-1uhpT S. aureus Newman with deletion of uhpT This study

Newman-1glpT S. aureus Newman with deletion of glpT This study

Newman-1uhpT&glpT S. aureus Newman with deletion of both uhpT and glpT This study

Newman-1uhpT+pRB473-uhpT Newman-1uhpT complemented with uhpT by plasmid pRB473 This study

Newman-1glpT+pRB473-glpT Newman-1glpT complemented with glpT by plasmid pRB473 This study

SA2+pRB473-uhpT SA2 complemented with uhpT by plasmid pRB473 This study

SA2+pRB473-glpT SA2 complemented with glpT by plasmid pRB473 This study

SA94+pRB473-uhpT SA94 complemented with uhpT by plasmid pRB473 This study

SA94+pRB473-glpT SA94 complemented with glpT by plasmid pRB473

SA30+pRB473-uhpT SA30 complemented with uhpT by plasmid pRB473

SA30+pRB473-glpT SA30 complemented with glpT by plasmid pRB473 This study

Plasmids

pKOR1 E. coli – S. aureus shuttle vector; Ampr in E. coli; Cmr in S. aureus Bae and Schneewind, 2005

pKOR1-1uhpT pKOR1 with deletion mutation of uhpT This study

pKOR1-1glpT pKOR1 with deletion mutation of glpT This study

pRB473 E. coli – S. aureus shuttle vector; Cmr in S. aureus Wang et al., 2015

pRB473-uhpT pRB473 ligated with uhpT This study

pRB473-glpT pRB473 ligated with glpT This study

TABLE 2 | Primers for PCR and sequencing.

Primers Sequence (5′–3′) Application

attB1-uhpT-up-F ggggacaagtttgtacaaaaaagcaggctAAATGCCTCTACACCAG Allelic replacement

uhpT-NR-EcoRI CCGgaattcTTGTTCGGAATCTTATGG

attB2-uhpT-CF ggggaccactttgtacaagaaagctgggtAATTGCAGACAAAGTAGG

uhpT-CR-EcoRI CCGgaattcTCTATGTTGCATTATTCCTA

attB1-glpT-up-F ggggacaagtttgtacaaaaaagcaggctATCGGCGTTATCTTTGTTG

glpT-NR-EcoRI CCGgaattcGGATGGGATGTCGGTTT

attB2-glpT-CF ggggaccactttgtacaagaaagctgggtAACCTTGTGGTGCTAATGTC

glpT-CR-EcoRI CCGgaattcCAGCGTAACCGATGAAAAT

C-uhpT-F CGCggatccGATTATTGTAAGCAAGCAA Construction of complemented strain

C-uhpT-R CCGgaattcTAACGCCATATTCAACTG

C-glpT-F CGCggatccTTAATGATGAACAGTTTCTT

C-glpT-R CGGggtaccTATTCATACTATCCCTCCT
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spectrophotometer (UNICO, Shanghai, China). The procedure
was repeated three times for each strain, and the mean OD600
values were used to draw the growth curves.

Phenotype Microarray (PM) Analysis
Phenotype Microarray analysis was performed using BIOLOG
Phenotype MicroarrayTM (BIOLOG, Hayward, CA, United
States) according to the manufacturer’s recommendations. The
deletion mutants, namely Newman-1uhpT, Newman-1glpT,
Newman-1uhpT&glpT, and the parental strain Newman, were
tested with the 96-wells plates PM1 and PM2, containing 190
carbon substrates, including G-6-P (PM1 plate, well C1). To
assess the altered phenotypes in carbon metabolism of the
deletion mutants, the growth was compared to the parent
S. aureus Newman.

RESULTS

The deletion mutants showed considerably increased MIC
values to fosfomycin compared to that of the parental
strain. The Newman-1uhpT&glpT strain, in which both
transporter genes were knocked out, showed high-level resistance
(MIC > 1024 µg/ml) to fosfomycin, as determined by the E-test
(Table 3). When uhpT or glpT was knocked out from S. aureus
Newman, the fosfomycin MICs increased from 0.5 to 32 µg/ml
or 4 µg/ml, respectively.

Complementing uhpT and glpT led to a reduced fosfomycin
MIC in the deletion mutants and the clinical fosfomycin-
resistant S. aureus strains with defects at both sites. By
complementing plasmid pRB473-uhpT into Newman-1uhpT,
the strain’s fosfomycin MIC decreased from 32 to 0.5 µg/ml.
Similarly, by complementing glpT into Newman-1glpT, strain’s
fosfomycin MIC decreased from 4 to 0.25 µg/ml. S. aureus
SA2, SA94, and SA30 were clinical fosfomycin-resistant strains,
with mutations of both uhpT and glpT, uhpT only, and glpT
only, respectively. When complemented with the functional

TABLE 3 | Fosfomycin MIC (µg/ml) of S. aureus mutant strains and
complemented strains.

S. aureus strains Fosfomycin MIC

Newman-1glpT 4

Newman-1glpT+pRB473-glpT 0.25

Newman-1uhpT 32

Newman-1uhpT+pRB473-uhpT 0.5

Newman-1uhpT&glpT >1024

SA2 >1024

SA2+pRB473-glpT >1024

SA2+pRB473-uhpT 16

SA94 256

SA94+pRB473-glpT 256

SA94+pRB473-uhpT 16

SA30 128

SA30+pRB473-glpT 32

SA30+pRB473-uhpT 64

transporter genes, the fosfomycin MICs decreased considerably,
as shown in Table 3.

In vitro bacterial growth curves of the wild-type strain
S. aureus Newman and the deletion mutants were compared to
evaluate the potential fitness cost of these resistant-conferring
mutations. As shown in Figure 1, no significant depression in
growth was observed in Newman-1uhpT and Newman-1glpT
compared to the wild-type strain. However, the strain Newman-
1uhpT&glpT presented slight growth inhibition compared to the
wild-type.

Phenotype Microarray analysis was performed using carbon
utilization panels, PM1 and PM2, in 190 carbon substrates. The
changes in carbon metabolism were listed in Figure 2. S. aureus
Newman showed metabolic advantage over Newman-1uhpT
and Newman-1uhpT&glpT in wells containing G-6-P (Figure 2,
PM1, well C1). G-3-P was not included in the substrate list, and
there was no obvious change found in Newman-1glpT.

DISCUSSION

Intravenous fosfomycin is broadly used in the treatment of
multidrug-resistant pathogens in Europe and Asia owing to
its unique antibiotic mechanism, high permeability, and high
susceptibility rate (Falagas et al., 2009). Falagas et al. (2010)
performed fosfomycin susceptibility testing in non-urinary
MRSA isolates, among which 99.2% (129/130) were found to
be susceptible. The same group reviewed the susceptibility data
of Gram-positive cocci, and reported a cumulative susceptibility
rate of 87.9% (4240/4892) in S. aureus (Falagas et al.,
2009).

Fosfomycin-resistance mechanism has been well described
for Gram-negative bacteria such as E. coli (Kim et al., 1996;
Horii et al., 1999; Huang et al., 2003; Takahata et al., 2010). In
E. coli, GlpT and UhpT are responsible for fosfomycin uptake.
Mutations or insertional inactivation in the glpT and/or uhpT
genes or their regulatory genes lead to the loss of function
of the transporters and fosfomycin resistance. The inactivation
of either uhpT or glpT conferred a moderate fosfomycin
resistance, (MICs increased from 2 to 8 µg/ml and 32 µg/ml,
respectively, compared to the wild type) (Takahata et al., 2010).
In P. aeruginosa, the inactivation of glpT produced significant
decrease in fosfomycin MIC, from 8 to 1024 µg/ml (Castaneda-
Garcia et al., 2009; Takahata et al., 2010). Modification or
overexpression of murA, production of fosfomycin-modifying
enzymes, are also associated with fosfomycin resistance (Garcia
et al., 1995; Kim et al., 1996; Bernat et al., 1997; Horii et al., 1999;
Fillgrove et al., 2003; Roberts et al., 2013).

There is less known of fosfomycin resistance mechanism in
Gram-positive cocci. In previous works, we collected MRSA
clinical strains, and found that only the minority of the
fosfomycin-resistant MRSA strains carried the fos gene or murA
mutation, while glpT and uhpT mutations were common (82.1%,
55/67, vs. 77.6%, 52/67, respectively) (Fu et al., 2016a,b). This
fact indicated that, fosB or murA mutation is not the major
contributor to fosfomycin resistance in MRSA, while mutations
within the glpT and/or uhpT genes might play an important
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FIGURE 1 | The in vitro growth curves of S. aureus strains. The strains were cultivated in tryptic soy broth overnight at 37◦C. The bacterial solution was diluted
to an optical density at 600 nm (OD600) of 0.1 and cultivated again. The OD600 was then measured at 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h to draw the
curves. (A) Newman (u), Newman-1uhpT (�), Newman-1glpT (N), and Newman-1uhpT&glpT (×). (B) Newman (u) and the clinical uhpT/glpT mutants: SA2 (N),
with mutations of both glpT and uhpT; SA94 (�), with mutation of uhpT; SA30 (×), with mutation of glpT.

FIGURE 2 | PM analysis for carbon metabolism. The strains were grown in a 96-well plate under 37◦C over two nights. Carbon utilization kinetics was measured
with OmniLog instrument. Data were superimposed using OmniLog software. The kinetic results show consensus data comparing S. aureus Newman and its
transporter gene deletion mutants. A metabolic advantage by S. aureus Newman is indicated by red, while a metabolic advantage by the deletion mutants is shown
by green. The yellow part indicates that both strains have equal metabolism in the well. The white box around PM1 plate, well C1, highlights the G-6-P metabolism.
Detailed substrate information of PM1 and PM2 were shown in the Supplementary Table S1.

role in S. aureus fosfomycin resistance. In the present study,
we established uhpT and/or glpT deletion mutants. Knocking
out both genes resulted in high-level fosfomycin resistance
(MIC > 1024 µg/ml). Complementing either of the two genes
into the deletion mutants and clinical mutated strains resulted
in a decreased fosfomycin MIC. Direct comparison of uhpT and
glpT according to the level of increase of the MIC suggested
that uhpT has a greater effect on the strain’s MIC to fosfomycin
than glpT.

To evaluate the possible, the in vitro fitness cost of the
transporter gene mutation, we compared growth curves between
the fosfomycin-sensitive wild-type strain, laboratory deletion
mutant strain, and clinical strains with defects on uhpT and/or
glpT. Previous reports have shown that mutations of uhpT and
glpT can compromise the growth of strains of E. coli, Klebsiella
pneumoniae, and Proteus mirabilis (Li Pira et al., 1987; Marchese
et al., 2003). A probable mechanism might be that mutations
of the glpT and/or uhpT transporting systems prevent carbon

Frontiers in Microbiology | www.frontiersin.org 5 May 2017 | Volume 8 | Article 914

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00914 May 24, 2017 Time: 14:54 # 6

Xu et al. Transporter Deletion Confers S. aureus Fosfomycin-Resistance

source getting into the cytoplasm, and therefore disturb cell
metabolism (Venkateswaran and Wu, 1972; Nilsson et al., 2003).
But in P. aeruginosa, the glpT mutation was found to lead to
fosfomycin resistance with no obvious fitness cost (Castaneda-
Garcia et al., 2009). In the present study, there was only a
slight reduction of growth observed in the strain Newman-
1uhpT&glpT compared to the wild type, and no significant
growth suppression was observed either in the laboratory
deletion mutant strains or in clinical strains with defects on
uhpT and/or glpT, which is similar as observed in P. aeruginosa.
So S. aureus might also compensate the disadvantage in energy
obtainment caused by uhpT and/or glpT mutation through
other transporting systems. But further study is still in need for
verification.

We observed that G-6-P utilization was defected in both
Newman-1uhpT and Newman-1uhpT&glpT. UhpT is the
membrane transporter of this substrate, deletion mutants of uhpT
showed defects in G-6-P metabolism is as expected. The G-3-P
metabolism in S. aureus seems to be more complicated. G-3-
P seems to be an intermediate product in carbon/phosphorus
metabolism pathway. As another low G+C Gram-positive
bacteria, B. subtilis shares similar carbon metabolism pattern as
S. aureus. In B. subtilis, G-3-P is produced from glycerol with
glycerol kinase. And G-3-P dehydrogenase can oxidize G-3-P
to dihydroxyacetone phosphate, an intermediated in glycolysis
(Holmberg et al., 1990). We have not observed significant change
in metabolism. This may be because that G-3-P utilization defect
is easily compensated by other pathways.

In summary, the results of our study strongly suggest that
mutations of uhpT and glpT lead to fosfomycin resistance in S.
aureus, and that the uhpT mutation may play a more important
role. The high resistance and low fitness cost resulting from uhpT
and glpT mutations suggest that these mutated strains might have
an evolutionary advantage in a fosfomycin-rich clinical situation.

The widely observed uhpT or glpT mutation in S. aureusmight be
a threat in hospital settings. Further studies are needed to evaluate
the frequency of S. aureus fosfomycin mutants, and virulence of
these mutants.
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