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ABSTRACT
We introduce the Hamming ball sampler, a novel Markov chain Monte Carlo algorithm, for efficient infer-
ence in statistical models involving high-dimensional discrete state spaces. The sampling scheme uses an
auxiliary variable construction that adaptively truncates the model space allowing iterative exploration of
the full model space. The approach generalizes conventional Gibbs sampling schemes for discrete spaces
and provides an intuitive means for user-controlled balance between statistical efficiency and computa-
tional tractability. We illustrate the generic utility of our sampling algorithm through application to a range
of statistical models. Supplementary materials for this article are available online.

1. Introduction

Statistical inference of high-dimensional discrete-valued vec-
tors or matrices underpins many problems across a variety of
applications including language modeling, genetics, and image
analysis. Bayesian approaches for such models typically rely on
the use of Markov chain Monte Carlo (MCMC) algorithms to
simulate from the posterior distribution over these objects. The
effective use of such techniques requires the specification of
a suitable proposal distribution that allows the MCMC algo-
rithm to fully explore the discrete state space while maintain-
ing sampling efficiency. While there have been intense efforts
to design optimal proposal distributions for continuous state
spaces, generic approaches for high-dimensional discrete state
models have received relatively less attention but some examples
include the classic Swendsen–Wang algorithm (Swendsen and
Wang 1987) for Ising/Potts models and more recent sequential
Monte Carlo methods (Schäfer and Chopin 2013).

In this article, we consider Bayesian inference using MCMC
for an unobserved latent discrete-valued discrete sequence
or matrix X ∈ X , where each element xi j ∈ {1, . . . , S}, given
observations y = [y1, . . . , yN].Wewill assume that the observa-
tions are conditionally independent given X and model param-
eters θ so that the joint distribution factorizes as p(y,X, θ ) =
[
∏N

i=1 p(yi|X, θ )]p(X, θ ). We further assume that the posterior
distribution p(X, θ |y) has a complex dependence structure so
that standard MCMC schemes, such as a (Metropolis-within)
Gibbs Sampler, using

θ ← p(θ |X, y), (1)

X ← p(X|θ, y), (2)
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or a marginal Metropolis–Hastings sampler over θ based on

θ ← p(θ |y) ∝
∑
X∈X

p(y,X, θ ), (3)

are both intractable because exhaustive summation over the
entire state space of X has exponential complexity.

A popular and tractable alternative is to employ block-
conditional (Metropolis-within) Gibbs sampling in which sub-
sets xi of X are updated conditional on other elements being
fixed using

θ ← p(θ |X, y), (4)
xi ← p(xi|X−i, θ, y),∀i, (5)

where X−i denotes the elements excluding those in xi. Typ-
ical block structures might be rows/columns of X, when it
is a matrix, or sub-blocks when X is a vector. While block-
conditional sampling approaches are often convenient (they
may be of closed form allowing for Gibbs sampling without
resort toMetropolis–Hastings steps), in high dimensions, major
alterations to the configuration ofXmaybe difficult to achieve as
this must be done via a succession of small (possibly low prob-
ability) incremental changes. Conditional sampling may lead to
an inability to escape from local modes in the posterior distribu-
tion particularly if the elements of X exhibit strong correlations
with each other and together with θ .

To address these problems, we propose a novel and generic
MCMC sampling procedure for high-dimensional discrete-state
models, named the “Hamming ball sampler.” This sampling
algorithm employs auxiliary variables that allow iterative sam-
pling from slices of the model space. Marginalization within
these model slices is computationally feasible and, by using
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sufficiently large slices, it is also possible to make significant
changes to the configuration ofX. The proposed sampling algo-
rithm spans a spectrumof procedures that contains themarginal
and block-conditional Gibbs sampling strategies as extremes. At
the same time, it allows the user to express many more novel
schemes so that to select the one that best balances statistical
efficiency and computational tractability.

We demonstrate the utility of the sampling procedure with
three different statistical models where exhaustive enumeration
is impossible for realistic datasets and illustrate the considerable
benefits over standard sampling approaches.

2. Theory

In this section, we describe the theoretical foundations of the
proposed sampling algorithm (Sections 2.1– 2.4) and we discuss
computational complexity and sampling efficiency (Section 2.5).

2.1 Construction

The Hamming ball sampler considers an augmented joint
probability model that can be factorized as p(y,X, θ,U) =
p(y,X, θ )p(U|X), where the extra factor p(U|X) is a condi-
tional distribution over an auxiliary variable U, which lives in
the same space and has the same dimensions as X. The condi-
tional distribution p(U|X) is chosen to be a uniformdistribution
over a neighborhood setHm(X) centered at X,

p(U|X) = 1
Zm

I(U ∈ Hm(X)), (6)

where I(·) denotes the indicator function and the normalizing
constant Zm is the cardinality ofHm(X).

The neighborhood set Hm(X) will be referred to as a Ham-
ming ball since it is defined throughHamming distances so that

Hm(X) = {U : d(ui, xi) ≤ m, i = 1, . . . ,P}. (7)

Here, d(xi,ui) denotes the Hamming distance
∑

j I(ui j �= xi j)
and the pairs (ui, xi) denote nonoverlapping subsets of corre-
sponding entries in (U,X) such that ∪Pi=1ui = U and ∪Pi=1xi =
X. Also, the parameterm denotes themaximal distance or radius
of each individual Hamming ball set. For instance, these pairs
can correspond to different matrix columns so that xi will be the
ith column of X and ui the corresponding column of U. Hence,
the Hamming ball Hm(X) would consist of all matrices whose
columns are at most m elements different to X.

Furthermore, the auxiliary factor p(U|X) factorizes across
the P blocks {ui, xi}Pp=1 as follows:

p(U|X) =
P∏
i=1

p(ui|xi) =
P∏
i=1

1
Zi,m

I(d(ui, xi) ≤ m), (8)

where Zi,m is the volume of the individual Hamming ball set
Hm(xi) = {ui : d(ui, xi) ≤ m}, which, in case each block xi con-
sists of K elements, is equal to Zi,m = M =∑m

j=0(S− 1) j
(K
j

)
.

Importantly, the Zi,m is independent of the exact values of ui and
xi (i.e., the volume of the Hamming ball does not depend on
where we are in the model space). This is critical for the appli-
cation of Gibbs sampling later on.

Notice that the above factorization is just a consequence
of the product factorization of the indicator function I(U ∈

Hm(X)) across the blocks. More precisely, this indicator
function satisfies the following factorization and symmetry
properties:

I(U ∈ Hm(X)) =
P∏
i=1

I(d(ui, xi) ≤ m), (9)

I(U ∈ Hm(X)) = I(X ∈ Hm(U)), ∀X,U ∈ X , (10)

where the second one is direct consequence of the symmetry of
the Hamming distance d(ui, xi).

2.2 Gibbs Sampling

Theprinciple behind theHamming ball sampler is that the use of
Gibbs sampling for the augmented joint probability distribution
p(y,X, θ,U) admits the target posterior distribution p(X, θ |y)
as a by-product (sincemarginalization overU recovers the target
distribution). Specifically, the Hamming ball sampler alternates
between the steps:

U← p(U|X), (11)

(θ,X)← p(θ,X|y,U). (12)

The update of (θ,X) can be implemented as two conditional
(Gibbs) updates:

θ ← p(θ |X, y), (13)

X← p(X|θ,U, y). (14)

Or, alternatively, as a joint update via a Metropolis–Hastings
accept–reject step that draws a new (θ ′,X′) from the proposal
distributionQ(θ ′,X′|θ,X) = p(X′|θ ′,U, y)q(θ ′|θ ) and accepts
it with probability

min
(
1,

p(y,X′, θ ′,U)

p(y,X, θ,U)

p(X|θ,U, y)q(θ |θ ′)
p(X′|θ ′,U, y)q(θ ′|θ )

)

= min
(
1,

p(θ ′,U, y)
p(θ,U, y)

q(θ |θ ′)
q(θ ′|θ )

)
, (15)

where q(θ ′|θ ) is a proposal distribution over the model param-
eters.

2.3 Restricted State Space

Crucially, the restricted state space defined by the Hamming
ball, which has been injected into the model via the auxil-
iary factor p(U|X), means that the conditional distribution
p(X|θ,U, y) can be tractably computed as

p(X|θ,U, y) = p(y,X, θ )p(U|X)

p(θ,U, y)
= p(y,X, θ )I(X ∈ Hm(U))

p̃(θ,U, y)
,

(16)
where we used Equation (10), p(θ,U, y) = p̃(θ,U,y)

Zm
and

p̃(θ,U, y) =∑X′∈Hm(U) p(y,X
′, θ ) is the normalizing con-

stant found by exhaustive summation over all admissible
matrices inside the Hamming ball Hm(U). Through careful
selection of m, the cardinality of Hm(U) will be considerably
less than the cardinality of X so that exhaustive enumeration of
all elements inside the Hamming ball would be computationally
feasible.
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Figure . Hamming ball sampler illustration. Panel (a) illustrates a Hamming ball update (m = 1) for a 2× 3 binarymatrixX(t ) toX(t+1) viaU(t+1) where the subsets (x,u)

correspond to columns of the matrix. Panel (b) illustrates a block strategy for the application of Hamming ball sampling when X is a D× 1 vector split into random blocks
of size K .

Overall, the proposed construction uses the auxiliary variable
U to define a slice of the model given by Hm(U). Sampling of
(θ,X) is performed within this sliced part of the model through
p(θ,X|y,U). At each iteration, thismodel slice randomlymoves
via the resampling of U in step (11), which simply sets U to a
random element from Hm(X). This resampling step allows for
random exploration that is necessary to ensure that the overall
sampling scheme is ergodic. The amount of exploration depends
on the radiusm so thatU can differ from the current state of the
chain, say X(t ), at most in mP elements, that is, the maximum
Hamming distance betweenU andX(t ) ismP. Similarly, the sub-
sequent step of drawing the new state, say X(t+1), is such that at
maximum X(t+1) can differ from U in mP elements and over-
all it can differ from the previous X(t ) at most in 2mP elements.
Figure 1(a) graphically illustrates the workings of the Hamming
ball sampler.

Furthermore, it is worth noting that when the restric-
tion in the state space is relaxed, that is, when the radius m
becomes large enough, the Hamming ball samplers reduce to
the (Metropolis-within) Gibbs and marginal schemes outlined
in (1)–(2) and (3). More precisely, if the size of each block xi isK
andwe assume aHamming radius equal to the block size, that is,
m = K, then the Hamming ball set Hm(U) is completely unre-
stricted and becomes equal toX . In such case the restricted con-
ditional p(X|θ,U, y) becomes equal to the exact (unrestricted)
conditional p(X|θ, y) since I(X ∈ Hm(U)) = 1 for any X,U ∈
X . Similarly, the restricted p̃(θ,U, y) normalizing constant of
p(X|θ,U, y) reduces to the exactmarginal p(θ, y) and therefore
the Hamming ball sampler schemes reduce to the algorithms
described by (1)–(2) and (3), respectively.

2.4 Selection of Blocks

The application of the Hamming ball sampler requires the selec-
tion of the subsets or blocks {x1, . . . , xP}. This selection will
depend on the conditional dependencies specified by the statis-
tical model underlying the problem to be addressed. For some
problems, such as the tumor deconvolutionmixture model con-
sidered later, there may exist a natural choice for these subsets
(e.g., columns of a matrix) that can lead to efficient implemen-
tations. For instance, under a suitable selection of blocks the
posterior conditional p(X|θ,U, y) could be fully factorized, that
is, p(X|θ,U, y) =∏P

i=1 p(xi|θ,ui, y), or have a simple Markov
dependence structure so that exact simulation of X would be
feasible. In contrast, for unstructured models, where X is just
a large pool of fully dependent discrete variables (stored as a

D-dimensional vector), we can divide the variables into ran-
domly chosen blocks xi, i = 1, . . . ,P, so that they have equal
length K = length(xi). (If D/P is not an integer, then the final
block xP will have size smaller than K.) In such cases, exact sim-
ulation from p(X|θ,U, y) may not be feasible and instead we
can use theHamming ball operation to sequentially sample each
block. More precisely, this variant of the algorithm can be based
on the iteration (11), (13)–(14) with the only difference that the
steps (11) and (14) are now split into P sequential conditional
steps,

ui← p(ui|xi), xi← p(xi|X−i, θ,ui, y),∀i, (17)

where the posterior conditional p(xi|X−i, θ,ui, y) simplifies to

p(xi|X−i, θ,ui, y) ∝ p(y, xi,X−i, θ )I(d(ui, xi) ≤ m), (18)

where wemade use of the factorization of the auxiliary distribu-
tion p(U|X) from (8). The above scheme can be thought of as a
block Hamming ball sampler, which incorporates standard block
Gibbs sampling (see iterations (4)–(5)) as a special case obtained
when the radiusm is equal to the block size K. In a purely block
Hamming ball scheme we will have m < K and in general the
parameters (m,K) can be used to jointly control algorithmic
performance ( illustrative examples are given in Section 3.1 and
in the supplementary information at Section S1). This scheme
is illustrated in Figure 1(b) and used later in the sparse linear
regression application.

2.5 Computational Time Complexity and Sampling
Efficiency

We now discuss the relative computational time complexity of
the Hamming ball sampler compared to the block Gibbs sam-
pler. For simplicity, we assume that the conditional posterior
distribution p(X|θ,U, y) factorizes across P blocks of size K.
The computational time complexity of the Hamming ball sam-
pler scales with the Hamming radius m, block size K, and the
number of blocks P according toO(MP)whereM =∑m

j=0(S−
1) j
(K
j

)
. The standard block Gibbs sampler is a special case of the

Hamming ball sampler where the Hamming distance is always
the same as the block size (m = K) and therefore has com-
putational time complexity of O(SKP) (where SK =∑K

j=0(S−
1) j
(K
j

)
). The block Gibbs sampler is therefore only practical for

small values of block sizeK since wemust enumerate all possible
values for that block in each Gibbs sampling sweep. The Ham-
ming ball sampler provides flexibility in that we can choose to
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use larger block sizes K and simultaneously use a smaller Ham-
ming distancem to limit the possible values to maintain a man-
ageable computational time cost. However, to understand if this
flexibility can prove useful, we must also consider the relative
sampling efficiencies of the two approaches.

Sampling efficiency characterizes the sampler in terms of its
ability to fully explore the probability distribution and traverse
between different modes. It depends on both the algorithm as
well as the landscape of the probability distribution under explo-
ration. Therefore, an ideal sampling algorithm needs to strike a
balance between computational time complexity and sampling
efficiency to realize the largest number of (effective) indepen-
dent posterior samples in each unit of computational time. We
use the following measure to quantify overall efficiency:

Overall efficiency ∝ #Effective sample size in n iterations
time to perform n iterations

= sn
Tn

,

which expresses a balance between how effective the algorithm
is in producing independent samples andhow fast it runs.Notice
that for real inference problems it is ordinarily very difficult to
compute the above measure (in particular, when the posterior
distribution has an unknown number of modes, the computa-
tion of the effective sample size is very challenging and standard
autocorrelation measures can be misleading) to rank the dif-
ferent sampling schemes. For benchmarking purposes, we can
develop simulated scenarios where the properties of the poste-
rior landscape can be determined in advanced. Using an illus-
trative example, similar to that given in Section 3.1, in which
the true posterior distribution was bimodal, we applied a range
of Hamming ball sampling schemes with different combinations
of parameters (m,K) to explore the posterior. This included
schemes wherem = K that correspond to blockGibbs samplers.
We approximated sn by counting the number of times each sam-
pling scheme was able to switch from one mode to the other.

Supplementary Figure S1 shows the performance for each of
the sampling schemes and we note that the overall best per-
forming sampler was for (m,K) = (1, 13) and none of the
block Gibbs samplers were among the most effective sampling
schemes. We concluded that while block Gibbs samplers, for a
given block size, had the best sampling efficiency, the need to
consider all enumerations of the latent variablesmeans they also
have the worse computational time complexity. We shall discuss
in further detail in the forthcoming examples but, by limiting
the number of computations with the Hamming distance crite-
rion, the Hamming ball samplers can achieve a better balance
between the computational complexity and sampling efficiency.

3. Examples

We now illustrate the utility of our Hamming ball sampling
scheme through its application to two statistical models: in
mixture modeling for tumor deconvolution (Section 3.3) and
Bayesian variable selection in linear regression (Section 3.2).We
also give an example based on factorial hidden Markov models
in the supplementary information. Simulated examples also are
used to characterize the properties of the Markov chain Monte
Carlo sampling approaches tested. Our emphasis is on evaluat-
ing the performance of Hamming ball-based sampling versus
conventional block Gibbs sampling approaches rather than the

quality of the model specifications. However, we first illustrate
the use of the Hamming ball sampler through a simulated toy
example.

3.1 An Illustrative Toy Example

Here, we give a simple example that illustrates the differences
between the Hamming ball sampler and a standard Gibbs
sampler.

We consider a simple observation model that generates a
scalar output yi given a vector of covariates zi according to

yi =
N∑

d=1
xdzi,d + ηi, ηi ∼ N (0, σ 2), (19)

where X = (x1, . . . , xD) is a latent binary vector that follows
a prior distribution such that Pr(xd = 1) = 0.5, d = 1, . . . ,D.
This is a simplified version of a variable selection problem in lin-
ear regression where, for instance, the regression coefficients are
assumed to have known values that are fixed to unity. Given a set
of examples {yi, zi}ni=1, our goal is to estimate the posterior distri-
bution overX while the parameter σ 2 is also taken as known. In
the next section, we will consider a much more realistic variable
selection problem, but the current toy model suffices to clearly
illustrate the differences between theHamming ball sampler and
the standard Gibbs sampler.

For this illustration, we simulated datasets where n = 200,
D = 20 and the covariates for the ith example where such that
zi,d ∼ U (0, 1) with d = 1, . . . , 10 while the remaining covari-
ates where exact replicas, that is, zi,10+d = zd , d = 1, . . . , 10.
Then, each response was generated according to yi = zi,6 +
ηi, η ∼ N (0, σ 2). The overall simulation creates two com-
pletely symmetric modes in the posterior distribution overX so
that the 6th and the 16th covariates could provide equally good
explanation of the observed responses. More precisely, the first
mode is such that (x6 = 1, x16 = 0) and the second one is such
that (x6 = 0, x16 = 1), while for both modes the remaining xd ’s
are zero.

We simulated three different datasets by varying the level of
the noise variance according to σ 2 = 0.5, 2, 5. In the first case
(σ 2 = 0.5), we have a very informative likelihood function that
induces a posterior distribution overXwhere the twomodes are
very sharply picked and there is little probability in the regions
between these modes. In the second case (σ 2 = 2), we have a
more diffuse posterior distributionwhere the twomodes are less
sharply picked, while in the third case (σ 2 = 5) the posterior
becomes even more diffuse and closer to the uniform prior.

To estimate the posterior over X, we consider the simplest
possible Hamming ball sampler that jointly samples X using a
Hamming ball of radius m = 1, and also the simplest possible
Gibbs sampler that in each iteration sequentially samples an xd
conditional on the remaining elements ofX. Both samplers have
the same computational complexity O(D) and the actual run-
ning times are roughly the same. They essentially differ on how
they allocate their computational resources. Figure 2 shows the
evolution of the state vector X for both algorithms and all three
cases when performing 1000 sampling iterations (collected after
100 burn-in samples). Clearly, the Hamming ball sampler is able
to mix well between the modes in all three cases, since it is able
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Figure . Illustrative toy example simulation. The evolution of a -dimensional binary state vector (see Section .), where zero values are shown in black and ones in
white, for  sampling iterations obtained by the (top row) Hamming ball sampling and (bottom row) Gibbs sampling. Variables  or  are relevant to the regression
and the sampler should switch between the inclusion of one or the two. The corresponding two plots in each column (from left to right) correspond to the three different
values of the noise variance: σ 2 = 0.5, 2, 5.

to simultaneously make at most 2m = 2 changes in X during
each sweep, and provides a correct estimation of the posterior
distribution.

In contrast, the Gibbs sampler becomes stuck in local poste-
rior modes in the first two instances as it cannot simultaneously
flip two bits in X and jump between modes. The Gibbs sam-
pler is only able to mix well in the presence of large observation
noise variance σ 2 = 5 when the posterior distribution is diffuse
and there is sufficient probability mass for the Gibbs sampler
to traverse between the two posterior modes. In this case, the
posterior distribution is near-independent in the latent variables
and the Gibbs sampler becomes very efficient since it performs
exhaustive local exploration by giving a chance to allD bits to get
flipped in a full sweep. The Hamming ball sampler can flip less
than D bits in a single sweep, and therefore for very diffuse pos-
terior distributions it will be less effective than Gibbs sampling.
In contrast, for correlated posterior distributions Hamming ball
sampling can be more effective than Gibbs sampling since it has
the ability to perform joint updates and jump between modes.

The above simple illustrative example demonstrates the
potential advantages of theHamming ball sampler over standard
Gibbs approaches. In practice, amixture of Gibbs andHamming
ball sampling moves could be used to balance global and local
exploration of the posterior distribution.

3.2 Sparse Linear Regression

We now consider variable selection problems with sparse lin-
ear regression models. Applications of such models can arise in
problems such as expression quantitative trait loci (eQTL) anal-
ysis that is concerned with the association of genotypemeasure-
ments, typically single nucleotide polymorphisms (SNPs), with
phenotype observations (see, e.g., O’Hara et al. 2009; Bottolo
and Richardson 2010; Peltola, Marttinen, and Vehtari 2012, and

references therein). The interest lies in the posterior distribu-
tion over some binary vector X that encodes the selection over
the covariates and can inform us as to which covariates are most
important for defining the observed response variable. Typically
X is assumed to be sparse so that only a few covariates contribute
to the explanation of the observations.

.. Setup
We consider a dataset {yi, zi}Ni=1 where yi ∈ R is the observed
response and zi ∈ R

D is the vector of the corresponding covari-
ates. We can collectively store all responses in anN × 1 vector y
(assumed to be normalized to have zero mean) and the covari-
ates in an N × D design matrix Z. We further assume that from
the totalD covariates there exists a small unknown subset of rel-
evant covariates that generates the response. This is represented
by a D-dimensional unobserved binary vector X that indicates
the relevant covariates and follows an independent Bernoulli
prior distribution,

xd ∼ Bernoulli(xd, π0), d = 1, . . . ,D,

where π0 is assigned a conjugate Beta prior, Beta(π0|απ0 , bπ0 ),
and (απ0 , bπ0 ) are hyperparameters. Given X, a Gaussian linear
regression model takes the form

y = ZXβX + η, η ∼ N (0, σ 2IN ),

where ZX is the N × DX design matrix, with DX =
∑D

d=1 xd ,
having columns corresponding to xd = 1 and βX is the respec-
tive DX × 1 vector of regression coefficients. The regression
coefficients βX and the noise variance σ 2 are assigned a conju-
gate normal-inverse-gamma prior

p
(
βX, σ 2|X) = N (βX|0, g

(
ZT
XZX

)−1)InvGa(σ 2|ασ , bσ

)
,
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where (g, ασ , bσ ) are hyperparameters. Notice that the partic-
ular choice g(ZT

XZX)−1 for the covariance matrix, where is g
is scalar hyperparameter, corresponds to the so-called g-prior
(Zellner 1986).

.. Posterior Inference
Based on the above form of the prior distributions we can ana-
lytically marginalize out the parameters θ = (π0,βx, σ

2) and
obtain the marginalized joint density (Bottolo and Richardson
2010):

p(y,X|·) ∝ C (2bσ + S(X))
−(2ασ+N−1)/2 ,

where

C = (1+ g)−DX/2�(DX + απ0 )�(D− DX + bπ0 ),

S(X) = yTy − g
1+ g

yTZX
(
ZT
XZX

)−1ZT
Xy,

and �(·) denotes the Gamma function. The hyperparameters of
the prior were set to fixed values as follows. The hyperparam-
eters of InvGa(σ 2|ασ , bσ ) were set to ασ = 0.1 and bσ = 0.1,
which leads to a vague prior. The scalar hyperparameter for
the g-prior were chosen to g = N as also used by Bottolo and
Richardson (2010). Finally, the hyperparameters for the Beta
prior, Beta(π0|απ0 , bπ0 ), were set to the values απ0 = 0.001 and
bπ0 = 1, which favors sparse configurations for the vector X.

The sampling algorithmweuse is a blockHamming ball sam-
pler, which consists of a combination of a block Gibbs sam-
pler with Hamming ball moves. More precisely, at each iteration
where the current value of X is X(t ), we randomly divide the D
covariates into blocks of size K so that we have P = D/K sepa-
rate blocks. Then, we iteratively visit each block xi and sample a
new value for its elements based on a Hamming ball move. The
whole scheme follows the iteration given below:

1. Randomly initialize X(0) and set t = 0.
2. At iteration t + 1 = 1, . . . ,T randomly divide the ele-

ments in X into P = D/K random blocks so that xi
denotes the elements of the ith block.

3. for i = 1, . . . ,P
(a) Sample auxiliary variables u(t+1)

i :

u(t+1)
i ∼ p

(
u(t+1)
i |x(t )

i

)
= 1∑

u(t+1)
i ∈Hm(x(t )

i )
1
,∀u(t+1)

i ∈ Hm

(
x(t )
i

)
. (20)

(b) Sample x(t+1)
i :

x(t+1)
i ∼

p(y, x(t+1)
1 , . . . , x(t+1)

i , x(t )
i+1, . . . , x

(t )
P |g, ασ , bσ , bπ0 , απ0 )∑

x(t+1)
i ∈Hm(u(t+1)

i )
p(y, x(t+1)

1 , . . . , x(t+1)
i , x(t )

i+1, . . . , x
(t )
P |g, ασ , bσ , bπ0 , απ0 ).

(21)

The above block Hamming ball sampler was applied to all
examples assuming a fixed block size K = 10 and different
values for the Hamming radius, m = 1− 3 (named HB1-3).
We also applied various block Gibbs samplers, which sample
between 1 and 3 elements (named BG1-3) of X at a time and
are obtained as special cases of the block Hamming ball sam-
pling algorithm by setting K = m. For all MCMC algorithms,

we used a burn-in phase of 100 iterations and then we collected
100,000 samples during the main sampling phase.

.. Results
We simulated a regression dataset with N = 100 responses and
D = 1200 covariates in which there were two relevant covariates
that fully explain the datawhile the remainderwere noisy redun-
dant inputs. As a consequence this sets up a challenging model
exploration problem as only two out of 21200 possible models
represent the possible truth.

We did this by first generating a 100× 600 design matrix Z
such that [Z]i j is sampled uniformly from {0, 1, 2}. We set the
binary latent vectorX to be everywhere zero apart from x11 = 1,
which was the only relevant covariate. The regression coeffi-
cients β were set to the vector of ones and the responses were
generated according to

y = ZXβX + η, η ∼ N (0, 0.12IN ), (22)

or

yi = zi,11 + η, ηi ∼ N (0, 0.12), i = 1, . . . ,N. (23)

Subsequently, to create a completely symmetric mode in the
posterior distribution over X, we replicated the covariates so
that to finally obtain a new design matrix Z = [Z,Z], which
had size 100× 1200. In this way the 11th and the 611th covari-
ates could provide equally good explanations of the observed
responses y and therefore an efficient MCMC algorithm should
identify both covariates and switch them frequently during
sampling.

We applied ourMCMCsampling schemes to sample from the
posterior distribution over this massive space of possible mod-
els. Figure 3 compares the relative performance of the various
sampling schemes . The trace plots show the running marginal
posterior inclusion probabilities of the two relevant variables
x11 and x611, which converge to the expected values of 0.5 with
the Hamming ball samplers but not with the block Gibbs sam-
plers. This indicates that the Hamming ball schemes were mix-
ing well, able to identify the two relevant variables and fre-
quently switched between their inclusions. In contrast, the block
Gibbs samplers exhibited strong correlation effects (stickiness)
that impaired their efficiency.

For such a high-dimensional problem, the performance of
the simplest Hamming ball sampler (HB1) was particularly out-
standing as it used the least CPU time and achieved a lower
integrated autocorrelation time than BG1 and BG2. The perfor-
mance can be explained by the fact that the Hamming ball sam-
pling schemes can handle a large block of variables at a time but
do not require exhaustive enumeration of all possible latent vari-
able combinations within each block. This provides an impor-
tant computational saving for sparse problemswheremost com-
binations will have low probability and the reason why the HB1
sampler was particularly effective for this example.

.. eQTL Analysis
We tackled a real expression quantitative trait (eQTL) data
analysis problem by considering a subset of the eQTL
dataset from Myers et al. (2007) that consists of DNA
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Figure . Comparisonof blockGibbs andHammingball sampling schemes for the simulation regression example. Topandmiddle rowsgive traceplots showing the running
marginal posterior inclusion probabilities for x11 (solid) and x611 (dashed). Bottom row shows CPU times, integrated autocorrelation times (IAT), and effective sample size
(ESS) estimates for each method.

and gene expression measurements of neuropathologi-
cally human brain samples. The full dataset corresponds
to a whole-genome genotyping and expression analysis on
a series of 193 neuropathologically normal human brain
samples using the Affymetrix GeneChip Human Mapping
500K Array Set and Illumina HumanRefseq-8 Expression
BeadChip platforms; see Myers et al. (2007) for complete
details. (This dataset is freely available from http://www.bios.
unc.edu/research/genomic_software/seeQTL/data_source, which
provides a unified data depository and summary page for
several genome-wide eQTL datasets.)

We specifically consider the task of discovering cis-
associations for a certain gene, called KIF1B, on chromosome
1 so that the expression of KIF1B across samples was treated
as the response in the Bayesian regression model. Local cis-
associations had already been identified for KIF1B by Myers
et al. (2007) but we sought uncover additional nonlocal asso-
ciations that were still on the same chromosome. We used
a subset of the dataset in Myers et al. (2007) consisting of
10,000 SNPs from chromosome 1 that we considered to be
the set of covariates. These covariates were used to explain
the gene expression of the gene KIF1B that exists on the same

chromosome. The gene expression values of KIF1B across all
samples were treated as the responses in the linear regression
model. These responses were centered to have zero mean and
scaled to have unit variance.

The set of 10,000 covariates was obtained from the initial
large pool of 23,979 SNPs in chromosome 1 by identifying 9998
SNPs with no significant correlation with the gene expression
of KIF1B (based on the empirical pairwise Pearson correlation
coefficient less than 0.3). We then randomly chose two SNPs
with Pearson correlation coefficient greater than 0.3 to complete
the set. The goal is to identify if the samplers are able to identify
one or both of these SNPs. Each covariate value for a certain SNP
and sample was encoded based on three integer values in the
range {0, 1, 2} so that 0 corresponds to genotype AA, 1 to geno-
type AB, and 2 to genotype BB. This encoding was already the
data format in the data repository and it is standard for encoding
SNPs in eQTL analysis.

Based on the results of the simulated data study, we tried
two sampling schemes: (i) a block Gibbs sampler (BG2) and
(ii) a Hamming ball sampler (HB1). These were chosen because
they were sufficiently computationally inexpensive to oper-
ate on this problem involving 10,000 covariates. For both

http://www.bios.unc.edu/research/genomic_software/seeQTL/data_source
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Figure . (a) Distribution of the sample log-likelihoods for the block Gibbs sampler (BG—red) and the Hamming ball sampler (HB—blue), respectively. (b) Estimated
posterior probabilities versus genomic coordinate (top) and correlation coefficient (bottom) for the block Gibbs sampler (BG—red) and the Hamming ball sampler (HB—
blue), respectively.

algorithms, we used a burn-in phase of 1000 iterations and then
we collected 10,000 samples during the main sampling phase.
Figure 4(a) shows the distribution of the log-likelihoods for
both samplers. The distributions are remarkably similar demon-
strating that both methods were exploring similar regions of
the posterior space. However, while the block Gibbs sampler

took over 26 hr to complete, the Hamming ball sampler took
just 7 hr. Figure 4(b) verifies that both methods produce near-
identical output in terms of the posterior probabilities estimated.
Both sampling approaches identified the SNP rs12120191 (one
of the two artificially included SNPs) as being a putative eQTL
for KIF1B. This was also found by Myers et al. (2007) and is
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unsurprising since the SNP actually lies in the KIF1B coding
region!

3.3 Tumor Deconvolution ThroughMixtureModeling

We now turn to a real world application in cancer genome
sequence analysis. Tumor samples are genetically heterogenous
and typically contain an unknown number of distinct cell sub-
populations. Current DNA sequencing technologies ordinarily
produce data that come from an aggregation of these subpopu-
lations thus, to gain insight into the latent genetic architecture,
statistical modeling must be applied to deconvolve and identify
the constituent cell populations and their mutation profiles.

.. Setup
We assume that the data y = {ri, di}Ni=1 consist ofN pairs of read
counts where ri corresponds to the number of sequence reads
corresponding to the variant allele at the ith locus and di is the
total number of sequence reads covering the mutation site. The
distribution of the variant allele reads given the total read count
follows a Binomial distribution

ri ∼ Binomial(di, φi), i = 1, . . . ,N,

where the variant allele frequency is given by φi = (1−
e)pi + e(1− pi) and e is a sequence read error rate and pi =
1
2
∑K

k=1 θkXki.

The parameter θ is a K × 1 vector denoting the proportion
of the observed data sample attributed to each of the K tumor
subpopulations whose genotypes are given by a K × N binary
matrix X. We specify the prior probabilities over θ as

θk = γk∑K
j=1 γ j

, k = 1, . . . ,K,

and

γk ∼ Gamma(α/K, 1), k = 1, . . . ,K.

This hierarchical representation is equivalent to amarginal prior
distribution

θ |α ∼ Dirichlet(α/K, . . . , α/K),

which induces a sparsity forcing values of θ to be close to zero
when α ≤ 1 allowing us to do automatic model selection for the
number of tumor subpopulations. The use of the auxiliary vari-
ables γ is for computational convenience and only the normal-
ized parameters θ have a physical interpretation.

We further specify the prior probabilities over X as

xki| fi ∼ Bernoulli(xki, fi), i = 1, . . . ,N, k = 1, . . . ,K,

and

fi| fα, fβ ∼ Beta( fα, fβ ), i = 1, . . . ,N.

This framework is similar to that recently adopted by Zare et al.
(2014) and Xu et al. (2015).

.. Posterior Inference
We used a Metropolis within Gibbs sampling approach incor-
porating our Hamming ball auxiliary variable construction to

sample from the posterior p(θ,X, f |y). First, we define, vk =
log(γk), k = 1, . . . ,K, then to update the weight parameters
θ (in the implementation we actually work with v) we used a
mixture proposal of an independent proposal drawn from the
prior distribution (in this case, the Log-Gamma distribution as
vk = log(γk)) and a random walk proposal drawn from a Nor-
mal distribution centered on the current value of θ :

v ′k|v (t )
k , σ 2

v ∼
{
Normal

(
v (t )
k , σ 2

v

)
, with prob. 1− ε,

Log-Gamma(α/K, 1), with prob. ε,

The parameter ε is set to a small value to allow occasional
proposals from the prior and potentially facilitate larger joint
changes to (θ,X).

We accept the joint proposal using a Metropolis–Hastings
step as follows:

v (t+1)|y,U(t )

=
⎧⎨⎩v ′, if min

(
1,

p̃(v ′,U(t ), y)q(v (t )|v ′)
p̃(v (t ),U(t ), y)q(v ′|v (t ))

)
< r,

v (t ), otherwise,
(24)

where the superscript t indicates the iteration number, r ∼
Uniform(0, 1) and the acceptance probability is computed
according to

p(v,U, y) =
∑

X∈Hm(U)

(
p(y|X, v )

[ K∏
k=1

g
(
vk| αK , 1

)])
and g(vk|α/K, 1) is the probability density function of the log-
gamma distribution with parameters (α/K, 1).

The above sampling move consists of a marginal Hamming
ball sampler operation, as defined in Section 2.2, where together
with the parameters v we jointly sample the full mutationmatrix
X from its restricted posterior conditional distribution, which
factorizes across the columns. More precisely, the columns of X
are considered as the blocks in the Hamming ball construction
so that a new value for each column xi is proposed according to
the following (and accepted or rejected jointly with v):

p
(
x′i|yi,u(t )

i , θ (t+1), f (t )
i

)
= p(yi|x′i, θ (t+1))p(x′i| f (t )

i )∑
xi∈Hm(u(t )

i )
p(yi|xi, θ (t+1))p(xi| f (t )

i )
, (25)

where the normalizing constant on the denominator is trun-
cated by the Hamming ball constraint potentially substantially
reducing the computations required. For example, for (m,K) =
(1, 10), the number of summation terms is 11 but for (m,K) =
(3, 10) this increases to 176.

The subclonal mutation frequencies f are updated in a sepa-
rate Gibbs step according to

f (t+1)
i |x(t+1)

i , fα, fβ ∼ Beta

(
fα +

K∑
k=1

I
(
x(t+1)
ki = 1

)
,

fβ +
(
K−

K∑
k=1

I
(
x(t+1)
ki = 1

)))
, (26)

where I(·) denote the indicator function. Finally, the Hamming
ball auxiliary variablesU are updated column-wise by sampling
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uniformly from the Hamming ball centered on each column of
the mutation matrix xi according to the distribution in (8).

In all simulations, we use a setting of ε = 0.01 for themixture
proposal. We used a burn-in phase of 10,000 iterations (includ-
ing an initial 1000 iteration tuning phase) and took 100,000 sam-
ples during themain sampling run.We calibrated the variance of
the proposal distribution σ 2

v during the tuning phase to achieve
an acceptance rate of between 10% and 40% but disallowed the
variance from falling below 0.01 or going above 10.

We compared three posterior sampling approaches: (i)
our Hamming ball-based sampling scheme as defined above,
(ii) a conventional block Gibbs sampling strategy that proceeds
by conditionally updating one column xi at a time with the
remaining columns X−i and the weights θ fixed, and (iii) a
fully marginalized sampling strategy where X was marginal-
ized through exhaustive summation over all column configura-
tions (note, this corresponds to the Hamming ball sampler with
m = K).

.. Results
For the simulation study, we considered a simulated data exam-
ple, illustrated in Figure 5(a), where the observed sequence data
are generated so that it can be equally explained by two different
latent genetic architectures. This is an interesting example as one
configuration corresponds to a linear phylogenetic relationship
between cell types and the other to a branched phylogeny and
represent fundamentally different evolutionary pathways. For
this example, we would expect an efficient sampler to identify
both configurations and to be able to move freely between the
two during the simulation revealing the possibility of the exis-
tence of dual physical explanations for the observed data.

We simulated data by forward simulation from this assumed
system. Specifically, we assumed the sequencing read depth d =
800, which represents a high coverage typical of a target rese-
quencing experiment (note that our objective here is to explore
the properties of the inference algorithm as supposed to the
accuracy of the generative model or the experimental designs.
Therefore, we have not exhaustively explored the interactions
between these factors, which will be the subject of future inves-
tigation) and the following parameters:

θ0 =

⎛⎜⎝ 0.3
0.3
0.4

⎞⎟⎠, X′0 =

⎛⎜⎝ 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0

⎞⎟⎠,

where X′0 is a version of X0 shown in Figure 5(a) with
replicated columns, ri ∼ Binomial(d, p0i), i = 1, . . . , 9, where
p0 = θT

0 X′0 to give values of

r = [405, 397, 393, 239, 245, 247, 123, 121, 123]′.

We chose hyperparameter values of α = 1, f0 = 0.5, ( fα, fβ ) =
(0.5, 0.5), and e = 10−2.

Figure 5(b) and 5(c) displays trace plots of the largest com-
ponent weight, max (θ ), and the relative computational times
for the three sampling schemes. We use max (θ ) as meaningful
visualization of themultidimensionalmutationmatrixX is chal-
lenging. All Hamming ball samplers were effective at identifying
bothmodes but the efficiency of themode switching depends on

Figure . Tumor deconvolution. (a) Twodistinct clonal architectures that lead to the
same mutant allele frequency vector φ = [0.5, 0.3, 0.15]′ . (b) Trace plots showing
the sampled values ofmax(θ ). (c) Relative computational times for the Hamming
ball sampler for variousm (times relative to the block Gibbs sampler).

the Hamming ball sizem. This effectiveness can be attributed to
the fact that the Hamming ball schemes can jointly propose to
change up to 2mN bits across all N columns of the current X.
Furthermore, conditional updates of θ can bemade bymarginal-
izing over a range of mutation matrices. In fact, for m ≥ K/2,
each iteration of the Hamming ball sampler allows any element
of X to be changed but, unlike the fully marginalized sampling
procedure (m = K = 8), it is more computationally tractable if
the number of mutations is large as exhaustive enumeration is
not required. The conditional updates employed by the block
Gibbs sampler require significantly less computational effort but
the approach is prone to being trapped in single posterior mode
and our simulations show that it failed to identify the mode cor-
responding to the linear phylogeny structure (max θ = 0.4).

.. Real Data Analysis
We next sought to demonstrate the method using real muta-
tion sequencing data. We extended the model to allow each
tumor sample s to have its own mixture weights θ (s) over
a common pool of K possible cell types defined by X
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Figure . Breast cancer model fit. Heatmaps showing the discrepancy between the posterior mean of the variant allele frequencies φ for eachmutation and tumor sample
against the observed variant allele frequency r/d. Model fits are shown for the block Gibbs sampler, the Hamming ball sampler (for variousm) and reported results from
Zare et al. () (for their most complex model involving up to six sub-clones).

and performed MCMC inference over the joint distribution
p(θ (1), . . . , θ (13),X|y(1), . . . , y(13)).

We obtained the breast cancer data from Zare et al.
(2014). This dataset consists of 17 confirmed somatic variants
sequenced in 12 tumor samples and 1 normal tissue sample
obtained from a single breast cancer patient (10 samples from
3 primary sections and 2 samples from a metastasis). As in Zare
et al. (2014), we modified the model and inference algorithm
to account for the multiple datasets by assuming that the data
for each tumor sample are generated from a common mutation
matrix X but each tumor sample s ∈ {1, . . . , 12} is associated
with its own weight parameters θs.

Figure 6 shows heatmaps of the model fit residuals calculated
as

Residuali j = Observed VAFri j/di j − Posterior mean of φi j

for the ith mutation of the jth sample for each of the sampling-
based algorithms and compared to the six-component model
given in Zare et al. (2014). In all instances, the Bayesian model
fits are superior to the point estimates given by the EMalgorithm
of Zare et al. (2014), which shows some extreme discrepancies

and there is little difference between the block Gibbs and Ham-
ming ball samplers.

Figure 7 shows the posterior distribution of the largest two
values of θ for each tumor sample given by each of the sam-
plers. The posterior distributions given by the Hamming ball
sampler tend to exhibit greater variance and captures multiple
modes demonstrating that it is exploring the posterior model
space better than the block Gibbs sampler. In fact, the posterior
distribution given by the block Gibbs sampler tends to be highly
concentrated in relatively small areas of the posterior space but
this area of the space cannot correspond to the only values of
(θ,X) consistent with the data as the Hamming ball sampler
is able to explore a greater range of parameter values that give
residual fits as good as the block Gibbs sampler (see Figure 6). In
combination, the two results show that there are indeed a large
range of possible model configurations that can give rise to the
same observed data and that the Hamming ball sampler better
captures the true statistical uncertainty than the point estimates
of Zare et al. (2014) or a standard block Gibbs sampler. Note that
in this case a Hamming distancem = 4 gives approximately the
same result as m = 10 (the exact marginal sampling approach)
but with a substantial computational saving.
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Figure . Breast cancer model fit. Posterior distributions of maximum two values of θ for each tumor sample for each of the sampling algorithms.

Overall, we demonstrate two important points. First, mis-
leading inferences can be made about the latent subclonal
architecture of a tumor not only through poor data quality or
model misspecification but also an inadequate inference proce-
dure. In this case, the use of conditional updates in a standard
block Gibbs sampling approach is inappropriate due to corre-
lations between θ and X. Second, the statistically most efficient

marginal sampling scheme is prohibitively expensive to run for
large problems. Our Hamming ball sampling strategies provides
access to a continuum of intermediate sampling schemes that lie
between the extremes offered by the block Gibbs and marginal
approaches. This gives control to the analyst to determine a suit-
able inferential procedure that is appropriate for their resources
and time frame.
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4. Discussion

4.1 RelatedMethods

TheHamming ball sampler provides a generic sampling scheme
for statistical models involving high-dimensional discrete latent
state-spaces that generalizes and extends conventional block
Gibbs sampling approaches. It can be considered as a type of
slice sampling that is suitable for discrete combinatorial state
spaces. It differs from regular slice samplers that are based on
uniform sampling in the subgraph of the probability distribu-
tion (see Robert and Casella (2005) for a review), since now
the model slicing is constructed directly around a local neigh-
borhood set centered on an auxiliary variable that is resampled
based also on the same neighborhood set principle. Further-
more, the slicing idea inHamming ball sampling leads to a com-
putationally tractable algorithm for discrete state spaces while
for continuous high-dimensional spaces it would be intractable.
To see this, notice that if we were to slice based on the set {U :
||U− X|| ≤ m} where U,X ∈ R

D and || · || denotes a continu-
ous norm, the step of samplingXwould require simulating from
a truncated high-dimensional continuous distribution, which is
typically infeasible.

The neighborhood approach used by theHamming ball sam-
pler resembles certain types of purely M-H schemes, particu-
larly the Metropolized Shotgun Stochastic Search (M-SSS) pro-
cedure (see sec. 4.1 in Hans, Dobra, and West 2007) that has
been applied in sparse linear regression. More precisely, M-SSS
can be viewed as using the restricted space defined by the Ham-
ming Ball set Hm(X) (where radius was set to m = 1 in Hans,
Dobra, andWest 2007) to construct directly a proposal distribu-
tion in a accept/reject M-H step to sample X without the use of
the intermediate auxiliary variable U. Specifically, if X(t ) is the
value of the current state we can define a proposal Q(X′|X(t ))

by slicing the exact model probability distribution around X(t )

according to

Q(X′|X(t )) = p(y,X′, θ )I(X′ ∈ Hm(X(t )))

Zm(X(t ))
, (27)

where Zm(X(t )) =∑X′∈Hm(X(t ) ) p(y,X
′, θ ). Sampling then pro-

ceeds by proposing a certain X′ from the above instrumental
distribution, which is then accepted (i.e., the next state is set to
X(t+1) = X′) with probability

min

⎛⎝1,
p(y,X′, θ )

p(y,X(t ), θ )

p(y,X(t ),θ )I(X(t )∈Hm(X′))
Zm(X′ )

p(y,X′,θ )I(X′∈Hm(X(t ) ))

Zm(X(t ) )

⎞⎠
= min

(
1,

Zm(X(t ))

Zm(X′)

)
, (28)

otherwiseX′ is rejected andX(t+1) = X(t ). Notice that Zm(X(t ))

is the probability mass or volume of the sliced part of the model
around X(t ), which is the state we are starting from, while simi-
larly Zm(X′) is the volume around the state we attempt to move
into. Thus, to satisfy detailed balance the aboveM-H probability
needs to take into consideration the probability volume around
the current state and the volume around the proposed state.

The above scheme has two main differences with the Ham-
ming ball sampler. First, controlling the acceptance rate in the
above scheme, when samplingX, is difficult and samplingmight

exhibit unpredictably low acceptance rate so that the chain can
get stuck to the same state for many iterations. In contrast, the
Hamming ball sampler has exactly the same computational cost
with the above pure M-H algorithm, but through the specific
auxiliary variable construction we can derive a Gibbs sampler
that always accepts any proposed X(t+1).

A second important difference is that the amount of possi-
ble exploration (per iteration) based on the above purely M-H
scheme is half the amount of exploration of the Hamming ball
sampler for the same value of the radius m and the same com-
putational cost. This is because now the next state X(t+1) can
differ from the currentX(t ) in at mostmP elements. In contrast,
in the Hamming ball sampler the next (always accepted) X(t+1)

can differ from X(t ) by up to 2mP elements.

4.2 Extensions of the Hamming Ball Sampler

A generalization of the algorithm is obtained by allowing block-
wise random maximal Hamming distances.

More precisely, if we assume a varying radius for the indi-
vidual Hamming balls, then the conditional distribution over
U is now uniform on the generalized Hamming ball Hm(X) =
{U : d(ui, xi) ≤ mi, i = 1, . . . ,P}, where m = (m1, . . . ,mP)

denotes the set ofmaximal distances for each subset of variables.
Furthermore, we can allowm, at each iteration, to be randomly
drawn from a distribution p(m),which leads us to the following
generalization of the algorithm:

(U,m)← p(U|X,m)p(m), (29)

(θ,X)← p(θ,X|y,U,m), (30)

where again the second step can be implemented either by apply-
ing two conditional Gibbs steps or a jointM-H step. This scheme
remains valid since essentially it is Gibbs sampling in an aug-
mented probability model where we added the auxiliary vari-
ables (U,m).

Furthermore, via the randomness overmwe can again inter-
pret standard blockGibbs Samplers as special cases.When p(m)

is such that at each iteration it randomly picks a single index i,
setsmi = length(xi) and for the rest j �= i setsmj = 0, the algo-
rithm reduces to a block Gibbs sampler. Since, in such a case,
xi would be freely sampled from its conditional p(xi|X−i, θ, y)
while the remaining blocks X−i = {x j : j �= i} would be frozen
to their current values because the maximal distances of their
individual Hamming balls are zero.

In practice, using a varying or randomm could lead to more
efficient variations of the Hamming ball sampler where, for
instance, the vectorm could be automatically tuned during sam-
pling to focus computational effort in regions of the sequence
where there is most uncertainty in the underlying latent struc-
ture of X.

A further extension can be obtained by using a more com-
plex form for the auxiliary conditional distribution p(U|X). For
instance, a simple generalization is to assume an auxiliary dis-
tribution of the form

p(U|X) =
P∏
i=1

1
Zi,m

exp(−λd(ui, xi))I(ui ∈ Hm(xi)), (31)

where the parameter λ ≥ 0 controls the variance of the distribu-
tion,When λ = 0, the above reduces to the uniformdistribution
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while as λ increases p(U|X) places more and more probability
mass toward the centerX in a spherically symmetric way. Given
that all vector xi’s have size K, the overall normalizing constant
can be written as Zm = MP

λ whereMλ =
∑m

j=0 e
−λ j(S− 1) j

(K
j

)
,

which is aweighted volume of each block-specificHamming ball
that still remains independent from xi. Notice that in the above
scheme λ is a parameter that the user could tune to optimize
sampling performance.

Othermore complex forms of the auxiliary distribution could
be possible (for instance, this distribution could depend on the
data y). However, from practical point of view, it is critical that
this distribution factorizes across the blocks, similarly to (31),
and it has an analytically computed normalizing constant so
that exact simulation is straightforward. In our simulations, we
experiment with the simplest (and perhaps the most practical)
Hamming ball schemes where the Hamming radius is fixed and
the auxiliary distribution is uniform and leave the above more
elaborate cases for future work.

5. Conclusions

In our investigations, we have applied the Hamming ball sam-
pling scheme to three different statistical models and shown
benefits over standard Gibbs samplers. Importantly, the Ham-
ming ball sampler gives the statistical investigator control over
the balance between statistical efficiency and computational
tractability through an intuitive mechanism—the specification
of the Hamming Ball radius and the block design strategy—
which is important for Big Data applications where the volume
of data precludes exact analysis. Yet, we have also demonstrated
that in many problems, basic Hamming ball samplers (m = 1
or m = 2) that are computationally inexpensive can still give
relatively good performance compared to standard block Gibbs
sampling alternatives.

Throughout we have provided pure and unrefined Ham-
ming ball sampler implementations. In actual applications, the
proposed methodology should not be seen as a single univer-
sal method for speeding up MCMC but a novel addition to
the toolbox that is currently available to us. For example, the
computations performed within each Hamming ball update are
often trivially parallelizable, which would allow the user to take
advantage of any special hardware for parallel computations,
such as graphics processing units (Lee et al. 2010; Suchard et al.
2010). In addition, Hamming ball sampling updates can also
be used alongside standard Gibbs sampling updates as well as
within parallel tempering schemes in EvolutionaryMonte Carlo
algorithms (Brooks et al. 2011).

Finally, we believe the ideas presented here can have appli-
cations in many areas not yet explored, such as Bayesian
nonparametrics (e.g., in the Indian Buffet Process; Griffiths
and Ghahramani 2005) and Markov random fields. Further
investigations are being conducted to develop the methodology
for these statistical models.

SupplementaryMaterials

Supplementary information details blocking strategies and applications to
factorial hidden markov models.
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