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Abstract

With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we
witness the RNAi therapy field reaching a critical turning point, when further
improvements in drug candidate design and delivery pipelines should enable fast
delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel
development of RNAi dedicated in vitro pharmacological profiling aiming to identify
undesirable off-target activity may slow down or halt progress in the RNAi field.
Since academic research is currently fueling the RNAi development pipeline with
new therapeutic options, the objective of this article is to briefly summarize the
basics of RNAi therapy, as well as to discuss how to translate basic research into
better understanding of related drug candidate safety profiles early in the process.
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Introduction
Francis Crick’s 1957 central dogma lecture changed the course of modern biology and

the pharmaceutical industry by placing proteins at the end of the biological informa-

tion transfer [1–3]. Consequently, perturbations in protein levels and function contrib-

ute to pathomechanisms of human diseases, despite their molecular, genetic and

physiological origins. Hence, restoring human protein homeostasis has become one of

the main goals of research into post-genomic therapeutic strategies. However, it

quickly became clear that only some disease-related proteins have the ability to bind

small chemical molecules, being potential drugs. Indeed, as estimated in the early

2000 s, among the approximately 3000 disease-related proteins encoded in the human

genome, only 600-1500 are potential small-molecule drug targets (proteins with en-

zymatic function or a conformation that is accessible to traditional drug molecules)

[4–6]. Similarly, the highly specific, protein-based drugs including monoclonal anti-

bodies are mainly limited to cell-surface receptors or circulating proteins [7, 8]. Not-

ably, about 80% of the proteins involved in human diseases execute two or more

biochemical functions [9], and thus their precise chemical targeting can be very diffi-

cult or impossible due to potential adverse effects. Furthermore, pharmacologically

relevant small molecule-mediated therapeutic effects often rely on maximizing drug-

receptor effects (at above 90% target engagement), requiring high dosing levels and
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thus reduced safety [10]. Thus, the discovery and development of alternate therapeutic

strategies addressing and exploiting chemically “undrugabble” proteins have remained a

challenge for the industry.

The 2006 Nobel prize crowned the discovery of RNA interference (RNAi) [11] as a

pathway in which small non-coding RNA molecules, by controlling mRNA stability and

translation, modulate protein cellular levels. Furthermore, subsequent reports that short

(21 and 22 nucleotide) double stranded RNAs (dsRNAs) may enter the RNAi silencing

pathway in mammalian cells [12–14] opened new prospects for the pharmaceutical in-

dustry. Initially, the opportunity for rational drug design to treat diseases that were

once thought to be untreatable was well received by drug developers. However, subse-

quent unsuccessful clinical trials revealed numerous limitations of RNAi application,

including: dose-limiting and immune-related toxicities, insufficient therapeutic efficacy,

poor metabolic stability, as well as off-targets effects [15–20]. Hence, despite confirm-

ing efficient RNAi therapy in humans, the mainstream pharmacological industry with-

drew from the RNAi field in the 2010s [20–22].

However, despite this excessive skepticism toward RNAi therapy, in August 2018 a

small interfering RNA (siRNA) against transthyretin (TTR) mRNA, ONPATTRO (pati-

siran) was proven to be an effective therapy for hereditary transthyretin amyloidosis

(hATTR) and approved as the first RNAi drug by both the US Food and Drug Admin-

istration (FDA) and the European Medicine Agency (EMA) [23–25]. Furthermore, mul-

tiple RNAi drug candidates are currently progressing through clinical trials, with many

of them excelling and reaching phase III [25]. Hence, we witness the RNAi therapy field

reaching a critical turning point, when further improvements in drug candidate design

and delivery pipelines should enable fast delivery of novel life changing treatments to

patients. Furthermore, microRNA (miRNA) based drug candidates promise not only

elimination of erratic proteins (such as siRNA), but also provide tools to restore miss-

ing proteins to physiological levels [26–44]. Importantly, since mammalian miRNAs are

not perfectly complementary to their target mRNA sequences and have multiple tar-

gets, this directly translates into a higher attrition rate in related drug discovery. Hence,

ignoring parallel development of RNAi dedicated in vitro pharmacological profiling

[45] aiming to identify undesirable off-target activity may slow down or even halt pro-

gress in the RNAi field.

Since academic research is currently fueling the RNAi development pipeline with

new therapeutic options, the objective of this article is to briefly summarize the basics

of RNAi therapy, as well as to discuss how to translate basic research into better under-

standing of related drug candidate safety profiles early in the process.

RNA interference

RNA interference is a native gene silencing pathway of most eukaryotic cells that uti-

lizes non-coding RNA (ncRNA) molecules (produced by various mechanisms) to obtain

efficient post-transcriptional repression of homologous sequences [46–48]. ncRNA

molecules act on specific mRNAs through short guide strands that recognize comple-

mentary bases in the target RNAs. With an 8 nucleotide (nt) long region called the

“seed sequence,” the guide strands must have significant homology to their target

strand(s) in order to allow the RNAi mechanism to affect gene expression. The guide
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strands, depending on their biogenesis and actions on the intended mRNAs, can be

broken up into the three categories of RNAi.

(i) miRNAs are short (approx. 22 nt) endogenous non-coding single substrates for the

RNAi machinery [49]. microRNAs are encoded in both introns and intergenic clus-

ters and these genes are first transcribed by RNA polymerase II into long primary

miRNA (pri-miRNA) transcripts. Next, the pri-miRNA are processed by the the

double-strand-specific ribonuclease Drosha-DGCR8 complex transcripts into pre-

cursor miRNA (pre-miRNA) stem loop structures [50] that, following their trans-

port to the cytoplasm, are further dissected by the Dicer RNAase III endonuclease

to deliver mature 21-23 nucleotide microRNAs [50–56]. Notably, an alternate,

Dicer-independent miRNA biogenesis pathway has also been reported [57]. Mature

miRNAs strands are associated with Argonaute 2 (Ago2) containing RNA-induced

silencing complexes (RISC) that can diminish a specific target mRNA by Ago2-

catalyzed degradation of the mRNA and down regulate specific target gene expres-

sion via either reducing the transcript levels or by translational repression [52–56,

58–63]. Notably, in humans, only Ago2 carries catalytic cleavage activity [64, 65].

microRNAs perceive their target mRNAs through base-pairing interactions be-

tween nucleotide numbers 2 and 8 of the miRNA (the seed sequence) and the

complementary nucleotides in the 3′-untranslated region (3′-UTR) of the mRNAs

[66–69]. Importantly, nuclear mammalian miRNAs mediated nuclear chromatin si-

lencing at specific loci by base pairing to nascent transcripts has also been reported

[70–72].

(ii) Small interfering RNAs (siRNA) being 21-22 bp long dsRNA with 3′ two-

nucleotide overhangs originate from cytosolic Dicer mediated processing of 30 to

100 bp dsRNA that are either transcribed from cellular genes or introduced into

the cells by infecting pathogens, or artificially via transfection or transduction by a

viral-derived vector [12, 47, 73, 74]. siRNA interacts with and activates RISC (Ago2

cleaves and releases the “passenger” siRNA strand (sense strand), while the “guide”

strand (antisense strand) remains associated with the complex) [73, 74]. The single

“guide” strand of siRNA directs the specificity of the mRNA target recognition and

cleavage by Ago2 by intermolecular base pairing [74]. mRNA targets that bind the

“guide” strand with perfect or near-perfect complementarity are then degraded by

Ago2, and thus specific gene expression silencing is obtained [27, 75]. In some

cases, however, imperfect complementarity between the “guide” strand and target

mRNA may mimic miRNAs’ mediated translational repression [76]. Importantly,

RISC can also mediate transcriptional gene silencing using the siRNA specificity to

direct silent chromatin modifications over homologous DNA loci [77]. Natural siR-

NAs likely originated as a defense mechanism against viruses and foreign DNA ele-

ments, allowing their elimination [47, 78].

(iii)piwi-interacting RNAs (piRNAs) are small, 23-30-nucleotide, endogenous RNAs

that are issued from long single stranded precursors-a Dicer-independent mechan-

ism [79]-and serve as repressors of transposable elements (TE) [79]. Hence, piRNA

safeguard mammalian germ cells from deleterious effects of transposons and pre-

serve chromatin structure [79]. piRNAs guided silencing is analogous to the other

RNAi mechanism in that piRNAs guide PIWI proteins to target mRNAs through
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RNA base pairing and the mRNAs are then dissected by the endonuclease activity

of the PIWI proteins [80–83]. Although initial studies assigned piRNAs activity

with mammalian germ cells, emerging evidence suggests that they may be func-

tional in somatic cells as well [79, 81, 82, 84–91]. However, despite the increasing

interest in piRNA mediated mechanisms, knowledge about their functional roles

remains fairly limited. Furthermore, related experimental approaches are limited by

the plethora of unique piRNAs sequences [92–97]. and the lack of easily available

verified piRNAs analogs and inhibitors. Hence, although piRNAs may eventually be

included in RNAi therapy, this is not going to be quick or easy process.

siRNAs are highly specific with only one mRNA target and generally allow effective

gene silencing. This makes siRNAs the leading branch of the developing specific RNAi

therapies. However, these therapies are limited to the elimination of target proteins. In

contrast, miRNAs have multiple targets, and consequently specific miRNAs can modulate

transcriptional networks involving diverse autonomous targets such as transcription fac-

tors [98–100], and thus avoiding off-target effects can be extremely difficult. Furthermore,

despite the fact that some miRNAs have large switch-like effects reported under condi-

tions of stress or disease [101–113], these RNAs instead modulate protein levels than

serve as strong post-transcriptional repressors [114]. Hence, the miRNA-based drug dis-

covery process seems very challenging, as is reflected by the limited number of drug can-

didates undergoing clinical trials [20, 25–27]. Nevertheless, miRNA and their analogs

(antagomiRs) and agonists for RNA (target protectors/block-miRs) provide a therapeutic

opportunity for not only eliminating proteins but also restoring their physiological levels

and thus should be considered as the future of RNAi therapies [115].

Design of RNAi drug candidates

Although the therapeutic potential of RNAi drugs is evident, their formulation must

overcome different sets of hurdles impeding their development into clinical use, includ-

ing: off-target activity, immunogenic reactions to foreign dsRNA, immunogenic as well

as non-immunogenic effects of delivery chemicals, specific tissue delivery, as well as

obtaining desired drug candidate pharmacokinetics and bioavailability (stability, compe-

tition with endogenous RNA, cellular uptake, endosomal escape) [19, 25–27, 35, 41].

To date, numerous design and delivery strategies have been developed to address these

obstacles and to enhance RNAi drug candidate efficacy and specificity.

Entering the RNAi pathway

RNAi drug candidates triggered by synthetic RNAs channel into the RISC pathway at

the cytoplasmic stage. Minimal 15-30 bp, fully complementary dsRNAs or short hairpin

RNAs (shRNAs) are most commonly used. dsRNAs longer than 30 bp have increased

propensity for off-targeting and inducing nonspecific cytotoxicity via activating inter-

feron pathway [116]. dsRNAs shorter than 15 bp are not recognized by RNAi machin-

ery. Importantly, dsRNAs shorter than 21 bp do not require Dicer processing prior to

association with RISC [117, 118]. However, it has been reported that Dicer processing

of RNAi drug candidates results in their increased potency and better specificity (it has

been reported that dsRNAs with 27 nucleotides are up to 100 times more efficient than
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typical siRNAs with 21 nucleotides) [119–122]. In contrast, dsRNAs that bypass Dicer

processing provide the opportunity for more extensive chemical modification of such

RNAs and thus obtaining better metabolic stability [123]. Numerous chemical and de-

sign strategies have been tested in combine Dicer processing-related potency with in-

creased stability of RNAi drug candidates that include small segmented siRNAs

(division into 2 fragments precedes their association with RISC) or incorporating mo-

tives that eliminate the Dicer cleavage requirement, but sustain Dicer-RISC interaction

[25, 124]. Single-stranded RNAs (ssRNAs) may also be used as RNAi triggers, but their

potencies are usually much lower than those reported for dsRNAs [125, 126]. Never-

theless, recent reports show that ssRNAs offer enhanced delivery properties (even en-

tering cells via gymnosis), due to their amphiphilic nature and enhanced structural

flexibility (ssRNA vs dsRNA) [125–127]. A similar rule applies to synthetic miRNAs

(mimics), and despite ssRNAs containing the sequences that are identical to the guide

strands of the mature miRNAs that can function as miRNA mimics, their potency is

100 to 1000 times lower than that of dsRNAs containing miRNAs’ guide and passenger

strands [27, 115, 128]. Other strategies include designing longer synthetic miRNA pre-

cursors such as pre-miRNA (that will undergo Dicer processing in the cytoplasm) and

pri-miRNA (that will require delivery to the nucleus for processing) [129–131].

Another family of RNAi drug candidates, antagomiRs (antimiRs), are synthetic chem-

ically modified ssRNA, about 21-23 nucleotides long, which fully complement miRNAs

and effectively sequester mature miRNA in competition with cellular target mRNAs lead-

ing to functional inhibition of miRNA [132–137]. However, assessing antagomiRs effi-

ciency in preventing miRNAs activity may be very challenging since their mechanism of

miRNA inhibition depends on the type of chemical modifications used. Two types of

modified antimiRs can be discussed here: high affinity oligo nucleotides which sequester

the targeted miRNA in a heteroduplex, and lower affinity oligonucleotides which promote

miRNA degradation as also do cholesterol-conjugated antimiRs [138–141].

Finally, an alternate and more explicit concept relies on the prevention of miRNA

interaction with an individual seed sequence of a specific mRNA using target protectors

[142]. Target protectors (morpholinos) are chemically modified ssRNAs (~ 25 base)

complementary to an mRNA target sequence (at least 14-15 contiguous bases) that pre-

vent the interaction of the miRNA with its specific target, and assembly of the RISC

complex [142–145]. The chemical modification of target protectors prevents them from

triggering the RNAi pathway, whereas their uncharged backbone facilitates their

delivery by non-toxic endocytosis assisted delivery reagents [146].

Sequence optimization

The potency of the RNAi drug candidate varies greatly depending on its sequence and

this ensures specific selection of an antisense strand and minimal off-target effects

[147]. Hence, the first concern is the quality of the software package for designing

RNAi drug candidates and to predict their efficacy [31, 148–151]. Particularly import-

ant in this design procedure is avoiding sequence related off-target effects that may re-

sult from partial homology to other transcripts and thus induce miRNA-like activity

[152–154]. It has been reported that siRNA duplexes can have differing activities con-

tingent upon the number, position, and base-pair composition of mismatches with
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respect to the target RNA [155], but so far this problem remains mostly unsolved. Not-

ably, siRNAs seed regions consist of 7 nucleotides, which often results in a large num-

ber of partially complementary off-target transcripts. However, modern algorithms

often include and develop filtering of siRNA with seed regions that mirror naturally oc-

curring miRNAs and select these with the fewest seed region matches in the 3′ UTRs

of off-target transcripts [148, 156].

Since the majority of RNAi drug candidates are dsRNA, both strands can enter RISC.

However, on-target silencing requires the guide strand (antisense strand) to remain as-

sociated to the active RISC to guide it to the target mRNA, while the passenger strand

is degraded and discarded [157]. An improper RISC loading orientation causes the ex-

pected guide strand to be neglected and off-target effects are created as the remaining

strand is complementary to the unintended transcripts resulting in off-target effects.

The same problems apply to synthetic miRNAs, where wrong strand selection at RISCs

results in the other miRNA (star form) to be a guide RNAi toward its targets [158,

159]. However, the strand with weaker base pairing at the 5′ terminus of an miRNA or

siRNA duplex will be preferred as a guide strand [158, 160]. Furthermore, since a

strand with a relatively unstable 5′ end is selected as the guide strand while the strand

with a more stable 5′ end is discarded as the passenger strand, the so-called “asym-

metry rule” can be applied, by designing a 5′ of the antisense (guide) strand more AU

rich than the corresponding end of the sense strand (5′) [157]. Furthermore, AGO pro-

teins display a preference for selecting, as the guide strand, the strand with a U (or less

preferably, an A) at position one at the 5′ end. Hence, the ideal passenger strand

should consist of C or G at the 5′ end to reduce the risk of selection, whereas the guide

strand should contain a U or A at the 5′ end [157]. Furthermore, since there are re-

ports that siRNAs with a rich G/C content are less potent, due to their increased over-

all duplex thermodynamic stability [147, 161], it is generally accepted as optimal that

the G/C content of siRNA is between 30 and 64% [162]. Moreover, sequences with G/

C stretches of nine or more nucleotides may reduce the gene silencing efficiency of

siRNA and thus should be avoided [163].

Mammalian cells recognize dsRNAs by dsRNA-binding proteins and Toll-like recep-

tors, which results in overall stoppage of protein synthesis and activation of the inter-

feron response [164]. Despite the fact that initial studies assigned activation of the

immune response to dsRNAs longer than 30 bp [116], some shorter siRNAs and miR-

NAs analogs have also been shown to activate innate immunity in a sequence-

dependent manner [165, 166]. Notably, the length of the dsRNA threshold may vary

among cell types, and even 23 bp siRNAs have been shown to induce interferon re-

sponses in some cell lines [167]. To date, several immune-related sequence motifs have

been reported to activate Toll-like receptor (TRL) signaling. Unfortunately, these motifs

are usually U-rich (e.g. 5′GUCCUUCAA3′, 5′UGUGU3′, 5′UGU3′, or 5′UGGC3′),

and thus are hard to eliminate from an RNAi drug candidate sequence [168–171]. Al-

ternate solutions to this problem focus on use of chemical modifications and non-

endosomal delivery routes (e.g., electroporation), to prevent TRL activation [172, 173].

Taken together, the development of bioinformatics tools accompanied by better un-

derstanding of a drug candidate sequence’s relationship to its potency and specificity

has facilitated efficient design of RNAi drug candidates. Nevertheless, such bioinfor-

matic tools depend on the quality of the data deposited in sequence databases (often
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updated, and problematic in regard to non-coding regions and longer sequence repeats

[174]). It should be noted that numerous miRNAs have been recently recognized as

sequencing artifacts [175–177]. Furthermore, rules allowing motifs inducing stress

response pathways to be avoided are still poorly understood. Therefore, extensive

experimental validation of RNAi drug candidate sequence specificity and related off-

targets as well as for any possible immunostimulatory adverse effects seems absolutely

mandatory. Especially, some off-target siRNA effects can be reduced at concentrations

that match the individual potency of these RNAs [178]. However, the recent rapid de-

velopment and decreasing costs of next generation sequencing, and thus the ability to

access entire transcriptome changes upon RNAi drug candidate administration, should

facilitate the process of identification and selection of the best candidates with minimal

adverse effects.

Chemical modifications

The vulnerability of RNAs to degradation by endogenous and exogenous nucleases

[179, 180], resulting in poor pharmacokinetics, is another obstacle to RNAi therapy.

Furthermore, although the right sequence optimization of RNAi drug candidates can

greatly improve their specificity and potency and minimize the risk of adverse effects, it

cannot completely eliminate the risk of immune response activation [25, 27]. Addressing

these issues had resulted in development of numerous chemical modifications that, be-

sides increasing RNAs stability and attenuating immune responses, can also enhance

guide strand selection and delivery, as well as reduce RNAi off-target activity [25, 27, 181].

Finally, chemical modifications can be used to facilitate RNAi drug delivery [25, 27, 182].

Importantly, modifications to siRNAs and miRNAs analogs cannot impair their ability to

effectively enter and function in the RNAi pathway, and thus prevent their interaction

with Dicer and Ago proteins or compromise their silencing efficiency. Since the 5′ phos-

phate, the 5′ proximal part, and the central positions of the guide strand are crucial for

interaction with the RISC, these sites cannot be easily modified [183]. On the other hand,

alterations at the whole passenger strand and the 3′ proximal part and 3′ overhang of the

guide strand are generally well tolerated [180]. Furthermore, in the case of pri-miRNA

chemical modifications should allow nuclear processing [115]. As mentioned above,

chemical modifications of antagomiRs determine microRNA fate by targeting it for deg-

radation or accumulation in heteroduplexes [115, 138–141]. Interestingly, possibilities of

piRNA chemical modifications are much less well explored, despite the fact that naturally

existing piRNAs incorporate the 3′-end 2′-O-methyl modification that protects them

from RNases [184].

Nowadays, numerous chemical strategies relying on base, sugar or backbone modifi-

cations of antisense strands are applied to improve RNAi drug candidate function and

stability. Commonly used modifications employ ribose 2′-OH group substitution with

other groups along with 2′-O-methyl (2′-O-Me), 2′-fluoro (2′-F) and 2′-methoxyethyl

(2′-O-MOE) to increase RNAs nuclease resistance and reduce the risk of immune re-

sponses (by preventing TRL activation) [185–188]. However, these modifications may

occasionally limit silencing efficiency [189–191].Similar advantages can be achieved by

using locked nucleic acid (LNA) and unlocked nucleic acid (UNA) modifications that

can also minimize the risk of off-target effects by ensuring proper guide strand
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selection. LNA creates a stable “locked” ring conformation by introducing into nucleic

acid a methylene bridge between the 2′-O and the 4′-C of pentose [192]. Since LNA

modification at the 5′ end of the passenger strand prevents incorporation into the

RISC, it reduces the risk of off-target effects [193]. This modification also improves

RNA stability and reduces its immunogenicity [165, 193]. However, LNA modifications

are also reported to reduce siRNA potency [194].

UNA are based on removal of the C2′ and C3′-bond of the RNA ribose, which de-

creases modified RNA binding affinity to their target RNAs [195, 196]. Thus, UNA

modifications in a seed region of the guide strand can be used to decrease sequence

mismatch tolerance, and thus prevent miRNA-like off-target effects [195, 196]. Al-

though single UNA modifications are generally well-tolerated in both the passenger

and guide strands and improve RNA, UNA modifications of guide strands can also re-

duce silencing efficiency [195, 196].

Another chemical strategy relies on substituting the phosphodiester backbone link-

ages with other types of linkage. In the most common approach, the nonbridging phos-

phate oxygen atoms are substituted with a sulfur atom to create phosphorothioate (PS)

[197]. PS significantly increases the stability of modified RNAs and enhances their

pharmacokinetics via promotion of nonspecific binding to plasma proteins [198, 199].

However, in order to maintain RNAi drug candidate compatibility with the RISC path-

way, only partial PS modification can be introduced, leaving the center region of the

RNA duplex unmodified [200, 201]. Notably, PS modifications along with cholesterol

conjugation improve systemic circulation of dsRNAs and stimulate their uptake by

gymnosis [124, 202–204]. Furthermore, replacement of siRNA backbone phosphodie-

sters with the neutral phosphothioesters facilitates such an RNA cellular uptake, while

cytosolic thioesterases revert this to native form (short interfering ribonucleic neutrals,

siRNNs) [204]. Other chemical strategies are also reported to increase nuclease resist-

ance and accordingly modulate the binding strength with target RNA by using peptide

nucleic acids, (PNA) or morpholinos [205, 206].

Taken together, it is clear that optimal pharmacological results and potency of RNAi

drug candidates can be obtained by combining the above-mentioned different chemical

strategies [207, 208]. Although challenging, as in the classical drug development pipe-

line, sequential selection and optimization of differentially modified derivatives in-

creases the chance of selecting the leader combination of chemical modifications in

terms of stability, potency and specificity.

Targeted delivery

The cellular membrane constitutes a barrier preventing siRNA and miRNA analogs

from entering the cytoplasm, due to their hydrophilic nature, size (~ 14-15 kDa) and

negative charge. Moreover, naked nucleic acid molecules are the subject of rapid deg-

radation in biological fluids and, following systemic administration, do not accumulate

in target tissue. Hence, the efficient and targeted delivery of RNAi drug candidates still

remains one of the major obstacles to the development of RNAi therapies [209]. It is

also evident that an optimal delivery system cannot increase toxicity or induce immune

response. Furthermore, an optimal carrier should also protect RNAi drugs from deg-

radation in the circulation at physiological conditions and prevent their clearance by
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the mononuclear phagocytic system, and finally, it should allow their efficient endoso-

mal escape into the cytosol [19, 182, 210].

Many initial clinical approaches and research reports have been based on DNA

strategy and viral delivery in which RNAi drug candidates (including miRNA) are pro-

duced by intracellular processing of vectors encoding longer RNA hairpin transcripts

[211–218]. Following transcription and processing, resultant short hairpin RNAs

(shRNAs) and pre-miRNAs enter the RNAi pathway [219, 220]. While research use of this

delivery strategy is relatively simple and efficient, and has a large potential for related gene

therapy, in a clinical setting usage of viral-derived vectors raises serious concerns regard-

ing their high immunogenicity and the risk of insertional mutagenesis [221–229].

Therefore, chemical excipients have become the leading strategy for delivering RNAi

drugs, due to their better safety profile and lower production cost [25, 27, 40, 41, 115,

157, 219]. Furthermore, these chemical carriers/excipients can be modified to accom-

plish site-specific delivery (by incorporating targeting ligands, as summarized in [230]),

or to enhance serum stability [209]. Polymer-based and lipid-based systems are the two

main categories of RNA delivery systems.

In lipid-based systems several approaches are used. The simplest are so-called lipoplexes

which are cationic lipid-RNA or DNA complexes and which, although successfully used

in in vitro studies, appear toxic when administered into animals. More elaborated are

long-circulating liposomes (~ 100 nm in diameter) containing either cationic lipid-nucleic

acid (lipoplexes) or cationic polymer-nucleic acid complexes inside the liposome water

space [231, 232]. RNA-containing lipoplexes or vesicles are taken up by cells mostly via

endocytosis and released into the cytosol via the “endosomal escape” pathway [209, 232–

234]. However, the lead technology for the non-viral delivery systems of genetic drugs is

the so-called lipid nanoparticle system (LNPs) which is based on the method developed

by Curtis et al. employing an ethanol-loading procedure, usage of ionizable cationic lipids

and rapid mixing [235]. The resulting structure is a ~ 100 nm diameter particle covered

with a PEG-lipid monolayer interacting with other constituent lipids in which water-filled

cavities containing nucleic acid molecules can be seen [235]. This system has been found

to be very efficient in hepatocyte transfection due to liver accumulation and interaction

with ApoE. The efficiency of such a construct is high (0.005mg siRNA/kg body weight in

mice); the authors suggest that this is due to “the combination of the optimized cationic

lipid MC3, cholesterol and DSPC, together with the rapidly dissociating PEGC14-lipid”

[236] The above-mentioned properties and in addition tolerability led to the development

the recently approved first RNAi drug, patisiran, directed against transthyretin-induced

amyloidosis [23, 24].

In polymer-based delivery systems, cationic polymers are used to establish electro-

static polyplexes with the negatively charged RNA; for example synthetic polyethyleni-

mine (PEI), cyclodextrins, Poly(lactic-co-glycolic acid) (PLGA) and Silica-based

nanoparticles) [237–252]. Also, cationic proteins such as protamine and peptides, such

as nona-arginine (9R) peptide can be used [253]. An interesting possibility is offered by

the application of recombinant protamine as a fusion protein with an scFv antibody

fragment which assures targeting of a protamine-nucleic acid complex against cells ex-

posing particular marker molecules to the potential to be bound [254].

All the above-mentioned nanosized particles can enter cells via endocytosis and often

promote endosomal escape. However, as mentioned above, because of their high charge
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density, some cationic nanoparticles are often toxic [27, 255]. Recently, natural cationic

polymers such as chitosan, (derived from chitin), and atelocollagen, which is a protein

obtained from calf dermis, have been proposed as dependable options for RNA delivery

[255–258].

Finally, lipolyplexes consisting of both polymers and lipids are currently being devel-

oped to overcome the restraints of the exclusive polymer-based or lipid-based delivery

system [249, 259–261].

Importantly, the success of therapeutic RNAi is also often highly dependent on tissue

or cell type specific targeting, and thus avoiding unwanted on-target activity in non-

target tissues. Target gene expression may be deregulated in target tissue (e.g., cancer

cells), but at the same time at the correct levels in healthy non-target tissue (e.g., nor-

mal cells). Hence, modulating target gene expression in order to obtain therapeutic

benefits in target tissue may be accompanied by deregulation of this gene expression in

non-target tissues, leading to toxicity. This is especially important during systemic

RNAi drug delivery, since its accumulation in tissues not intended for its activity may

be toxic [262]. Furthermore, since miRNA expression is very often tissue and cell type

specific [263, 264], targeted delivery is the key to the best potency and minimal off-

target effects of related drugs. Hence, the development of targeting ligands for RNAi

drugs (e.g., antibodies, aptamers, or small molecules, N-Acetylgalactosamine-GalNAc),

as well as methods for their systemic and local administration create another major

bottleneck in the further expansion of RNAi therapies [25, 26, 265–270].

Concluding notes and future prospects
It is clear that current progress in the RNAi therapy field provides an opportunity to

deliver novel drugs that could change patients’ lives. However, despite the success story

of Partisiran and multiple other RNAi drug candidates currently progressing through

clinical trials, several technical barriers and hazards (Fig. 1) need to be overcome so

such therapies could become common clinical treatment; that is, also accessible for or-

phan diseases.

From the clinical point of view, finding novel effective methods for systemic delivery

of RNAi drugs to non-liver and non-kidney tissues, along with dedicated improvement

of their pharmacokinetic and pharmacodynamics, remains one of the key challenges in

achieving this goal [25, 182, 271]. Hopefully, further development of chemical modifica-

tions, as well as better understanding of cellular pathways governing endosomal escape

and endocytosis [272–274], will eventually address this issue [275–279]. Finally, al-

though the first RNAi drug is approved, we are very far from understanding the long-

term effects of siRNA and miRNA therapy in vivo in human subjects.

Another main challenge is reducing the risks of RNAi drug candidate off-target ef-

fects. The initial hazards related to RNAs chemical modifications, non-viral delivery

systems and immunogenicity can often be identified, tested in animal models and fi-

nally eliminated through the classical drug development pipelines that include in vitro

pharmacology profiling [45, 280–283].

Nevertheless, the specific RNA sequences remain the main components and sources

of hazards for the drug candidates. Bioinformatics tools try to prevent the design of

siRNA with a seed region that is partially complementary with off-target transcripts,

but they cannot fully eliminate the risks of all off-target interactions. Although small
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activating RNAs (ssRNAs) that are structurally identical to siRNA and that can mediate

promoter sequence specific activation of some gene expression are also considered in

therapy [284, 285], they also represent clear proof of siRNA related hazards. Further-

more, these prediction algorithms are based on consensus genome sequences, and do

not eliminate the potential complications related to the occurrence of single nucleotide

polymorphisms (SNPs) [67, 68, 286, 287]. As estimated for the human genome, SNP

Fig. 1. Schematic representation of the RNAi drug discovery and development process. Full mechanistic
understanding of the disease allows selection of highly disease specific therapy targets, and thus early
elimination of off-targets. In the first phase, candidate sequence design and optimization allows early
hazard identification and elimination, whereas chemical modifications can be applied to design out
potential hazards and limitations. Furthermore, in later phases potential liabilities regarding delivery system
choice should be assessed. Finally, broad pharmacological profiles of the lead drug candidates should be
obtained, before drug candidates undergo further clinical development
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can occur once in every 300 bp in both coding and non-coding regions of genes [288],

resulting in synonymous and non-synonymous changes that are often reflected in RNA

sequences [289]. One such nucleotide change in the human genome may eliminate

siRNA or miRNA seed region interaction with target RNA, or result in off-target degra-

dations, as well as disturb miRNA biogenesis [67, 68, 286]. Hence, early detection of

SNP-related off-target effects as well as paying attention to population stratification

[290–294] are crucial to prevent RNAi drug candidate halt during clinical trials or even

its market withdrawal.

For similar reasons to the siRNA/miRNA target sequence specificity, the use of

in vivo translational models is very limited and does not allow fair assessment of such a

drug candidate toxicity or off-target effects [295]. Furthermore, mRNAs and ncRNAs

expression is often sex, age, organ or tissue specific, and thus preclinical development

of RNAi drugs requires wide-ranging in vitro studies in different models to prevent

both its off-target and on-target activities in non-target tissues [296–300]. Fortunately,

recent development and decreasing costs of high-throughput genotyping technologies

such as deep sequencing and single cell sequencing [301–304] should allow development

of RNAi sequence design and related in vitro pharmacological profiling. Notably, these

technologies should propel development of miRNA therapeutics, by advancing

understanding of the mechanisms by which these RNAs modulate complex physiological

[49, 98, 305–320] and pathological molecular networks [24, 43, 44, 91, 310, 321–359].

Furthermore, long non-coding RNA (lncRNA)-dependent modulation of miRNA

levels may become a promising siRNA therapy target [360–370]. However, the bio-

logical roles of these ncRNAs, and thus potential off-target effects of lncRNA related

therapies, require better understanding [310, 371–384].

Taken together, the critical challenge in the RNAi therapeutics field is the development

of highly efficient pipelines for cost-effective selection of RNAi drug candidates that will

also allow reduction of safety-related drug attrition. However, overcoming this challenge

requires better understanding and more open cooperation between both drug developers

and academic researchers. Although basic research studies commonly utilize siRNAs and

miRNA analogs to increase our understanding of molecular mechanisms governing hu-

man health, they often focus on simplified (single pathway limited) models and thus are

difficult to transfer into drug development processes [48, 148, 271, 310, 385–397]. It also

has to be stressed that the bioinformatics databases used to predict siRNA/miRNA conse-

quences are generally solely based on scientific literature, and thus are only as valid and

efficient as the research underpinning them. However, the scientific literature lacks nega-

tive data on ncRNAs function (due to publishing limitations); while the related high scale

of comprehensive analysis of publicly deposited genome-wide transcriptomics data is very

challenging due to the need for harmonization of transcriptomic approaches and statis-

tical analyses [398–401]. Effectively, the general knowledge obtained by pharmaceutical

companies during unsuccessful clinical trials or during general RNAi drug design pro-

cesses is rarely shared with academics [25, 182, 281–283, 402].

Obviously, closer cooperation between the academic research and pharmacy business

realms would help RNAi therapy to realize its full potential to benefit patients.
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