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To improve the applicability of RNA-seq technology, a large number of RNA-seq data analysis methods and correction algorithms
have been developed. Although these new methods and algorithms have steadily improved transcriptome analysis, greater
prediction accuracy is needed to better guide experimental designs with computational results. In this study, a new tool for the
identification of differentially expressed genes with RNA-seq data, named GExposer, was developed. This tool introduces a local
normalization algorithm to reduce the bias of nonrandomly positioned read depth. The naive Bayes classifier is employed to
integrate fold change, transcript length, and GC content to identify differentially expressed genes. Results on several independent
tests show that GExposer has better performance than other methods. The combination of the local normalization algorithm and
naive Bayes classifier with three attributes can achieve better results; both false positive rates and false negative rates are reduced.
However, only a small portion of genes is affected by the local normalization and GC content correction.

1. Introduction

RNA-Seq is a technology based on next-generation sequenc-
ing to determine transcript abundance, transcriptional struc-
ture of genes, and posttranscriptional modifications. It is
essential to accurately construct genome-wide gene expres-
sion profiles in order to interpret the functional elements
of the genome, molecular constituents of cells, development
of organisms, and mechanism of diseases [1]. RNA-seq has
many advantages over microarray such as high resolution,
low background noise, no requirement on prior knowledge
of reference sequences, and the ability to distinguish iso-
forms and allelic expression [1]. RNA-seq data are typically
generated from a library of cDNA fragments made from
a population of mRNAs. Then cDNAs are sequenced en
masse with or without amplification. There are two steps in
analyzing the RNA-seq reads. The obtained short reads are
first aligned to a reference genome or transcriptome, and,
in the second step, for a given gene, the numbers of reads
are compared between two different samples. The number
of short reads mapped onto one gene is the count that is

taken as a measure of the expression level of the gene. Many
different types of analyses can be applied to the results of
short-read alignment, including single nucleotide polymor-
phism discovery, alternative transcript identification, and
gene expression profiling.

Because of the importance of RNA-seq, many methods
have been developed to analyze aligned RNA-seq data to
identify differentially expressed (DE) genes over the last
four years. They include edgeR [2], DESeq [3], Cuffdiff [4],
baySeq [5], TSPM [6], NBPSeq [7], BitSeq [8], POME [9],
NOISeq [10], Gfold [11], and MRFSeq [12]. EdgeR [2], the
first statistical method developed for digital gene expression
data, is a parametric statistical method, which is based on a
negative binomial model (an overdispersed Poisson model)
[13]. DESeq [3] is also a parametric statistical method based
on the negative binomial model. When estimating variances,
DESeq and edgeR both employ gene information but edgeR
estimates the gene-wise variance or dispersion by conditional
maximum likelihood conditioning on the total count for
that gene [14]. Cuffdiff [4], a part of the Cufflinks package
developed for the identification of differentially expressed
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genes and revealing differential splicing events, uses a similar
normalization method as DESeq and specifically addresses
the uncertainties of read counts caused by ambiguous reads
from different but similar isoforms. The baySeq [5], another
parametric statistical method using a negative binomial
model, takes a Bayesian approach which assumes that non-
differentially expressed genes should possess the same prior
distribution on the underlying parameters across conditions,
while differentially expressed genes should possess variant
parameters for prior distributions. NBPSeq [7] is based
on an overparameterized version of the negative binomial
distribution that is called an NBP model. BitSeq [8] is a
recently developed method, which estimates the distribution
of transcript levels based on a probabilistic model of the
read generation process and is simulated with a Markov
chain Monte Carlo (MCMC) algorithm. BitSeq estimates the
variance in the transcript expression based on a hierarchical
log-normal model and determines the probability of differ-
ential expression by Bayesian model averaging. POME is
another recently developed algorithm for gene expression
analysis with RNA-seq, which uses Poisson mixed-effects
model to characterize base-level read coverage within each
transcript [9]. NOISeq [10] is a nonparametric statistical
method, and several different normalization methods for the
raw read counts are implemented with NOISeq, including
RPKM (reads per kilobase of exonmodel permillionmapped
reads) [15], TMM [16], and UQUA [17]. Gfold is designed
for samples without replicates, and significantly differentially
expressed genes are determined based on the posterior
distribution of their log fold changes [11]. MRFSeq [12]
combines a Markov random field (MRF) model and the
gene coexpression data to predict differential gene expres-
sion. Recently, a quantile normalization method has been
developed to remove technical variability in RNA-seq data
[18].

The transcript abundance of genes causes bias in detecting
differential expression [19]. Nonuniform read coverage as a
result of experimental protocols and bias caused by local
sequence context also exists and some correction methods
have been developed. The biases from the GC content can
be corrected by base-level correction methods, such as the
random hexamer bias correction method [20] and multiple
additive regression trees (MART) [21]. Additional gene-
level methods [22, 23] are developed to detect GC content
biases and dinucleotide frequencies based on aggregated read
counts for each gene and to remove the GC content bias trend
across genes. Other types of GC content correction algo-
rithms have also been developed [24, 25]. It has been reported
that even after global normalization, longer transcripts are
more likely to be called as differentially abundant compared
to the shorter ones using 𝑡-tests [26]. Gao et al. developed
an algorithm for transcript length normalization based on
Poisson models; each gene’s test statistics were adjusted using
the square root of the transcript length followed by testing
for gene set using the Wilcoxon rank-sum test [27]. Both
positional [28] and sequence-specific [20, 29] biases are iden-
tified in sequenced fragments. Positional bias refers to a local
effect in which fragments are preferentially located towards
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Figure 1: Flowchart of GExposer.

either the beginning or the end of transcripts, and sequence-
specific bias is a global effect where the sequence surrounding
the beginning or the end of the potential fragment affects its
likelihood of being selected for sequencing. These biases can
affect expression estimates [21], and Roberts et al. designed
algorithms to correct these biases [23].

In our research, we have identified a new bias of mapped
reads, the unevenly positioned reads depth, and designed a
local normalization algorithm to correct this bias. Based on
that, we have developed an analysis method using a naive
Bayes (NB) classifier to determine DE genes. This method,
called GExposer, uses three attributes: fold change (FC),
averaged reads per kilobase (ARPK), and relative GC content
(GCC). GExposer has performed the best or among the best
when compared with other statistical methods and tested on
multiple data sets beyond the one the model was constructed
on. The software tool is available at http://sysbio.unl.edu/.

2. Materials and Methods

Figure 1 shows the flow chart of GExposer. The inputs of
this tool are aligned reads and their genome annotations.
All data were preprocessed with the same protocol. The
raw short reads underwent the quality control with FASTX-
Toolkit package [30], and all low quality reads, that is, average
scores <20, were removed. Any short read mapping tool can
be used to align RNA-seq reads to a reference genome. In
this study, all RNA-seq reads were mapped by Bowtie [31]
allowing up to two mismatches, and the reads mapped to
multiple locations were discarded. Numbers of reads in genes
were counted by the HTSeq-count tool using corresponding
gene annotations, and the “union” resolution mode was used

http://sysbio.unl.edu/
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[32]. The distribution of read depths in each transcript can
be determined according to the gene annotation as well.
With a Poisson model, all read depths in one transcript are
adjusted, and abnormal high or low depths are modified.
This step is referred to as the local normalization. The
local normalization can reduce the noise from nonspecific
resources and the variation among replicates. Therefore, the
variation among replicates is not considered as an attribute
in the following NB classifier. Then, the global normalization
algorithm, TMM, designed in DESeq package [3] is used to
normalize reads depths between samples, and three attributes
of the gene reads are extracted: FC, ARPK, and relative GC
content. Generally, FC shows the relative difference between
two samples and ARPK is the expression level of a transcript
normalized by the transcript length. Previous studies also
suggested that integrating GCC can help find DE genes
[25], and, hence, GCC is included. Finally, a naive Bayes
(NB) classifier is applied onto these features to score a given
gene. The NB classifier is a simple probabilistic classifier
based on applying Bayes theorem with naive independence
assumptions. Generally, a probability model for a classifier
is a conditional model 𝑝(𝐶 | 𝑓

1
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class variable and 𝑓
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has three attributes). Using Bayes’ theorem, this conditional
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Since a naive Bayes classifier has the conditional indepen-
dence assumption, which assumes that, for a given class
variable, the value of a particular attribute is unrelated to any
other attributes, the conditional distribution over the class
variable 𝐶 becomes
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All model parameters, including class priors and attribute
probability distributions, can be estimated from the training
set with the method of maximum likelihood. An advantage
of an NB classifier is that it only requires a small amount of
training data to estimate the parameters, such as means and
variances of the variables. The software package used for this
work is the 𝑅 package, e1071, which computes the conditional
a posteriori probabilities of a categorical class variable using
the Bayes rule. For each gene, its feature vector has three
values for the three attributes, which will be described in
the following sections in detail. For the special requirement,
we modified the calculation of FC, ARPK, and GCC from
their common definitions in bioinformatics to a normalized
version tomake sure their ranges are in [0, 1]. For the training
step, the function of “naiveBayes” in the package e1071 is
used to train a statistical model based on a training set, in
which each gene has three attributes and known status. For
the prediction step, the function of “prediction” can calculate
the conditional a posteriori probability for a gene based
on its feature vector with the three values. The conditional
a posteriori probability is returned as a score, which is
the probability of the given gene belonging to the class.

The training data set and the 𝑅 code are available for
downloading from our website http://sysbio.unl.edu/.

2.1. Attributes. Three attributes are calculated with the fol-
lowing equations. The attribute of FC is calculated as
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where 𝑀
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aligned reads for a given transcript in all replicates of sample
𝑆
𝑖
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local and global normalizations. The attribute of ARPK for
a transcript is calculated as
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where 𝑀
𝑖
(𝑖 = 1, 2) have the same definition as in FC

calculation and TL is the transcript length. The attribute of
GCC can be calculated as

GCC = 1
1 + 𝑐/𝐶
, (5)

where 𝑐 is the average GCC of reads mapped to a given
transcript in both samples and 𝐶 is the average GCC of all
mapped reads. The GCC of one read is the ratio of the total
number of guanine and cytosine to the length of the read.
For each gene, the NB model will give a score in [0, 1] by
its three features. The higher the score, the higher possibility
a gene is differentially expressed. Here, we also assume that
the features of a given gene are independent of its specific
biological background.

2.2. Local Normalization. Generally, reads are positioned
randomly along every transcript in RNA-seq [33]. For a given
transcript 𝑇 with coordinates (𝑡
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Confidence limits are the lower and upper boundaries of a
confidence interval. With the Poisson distribution, we can
find the upper confidence limits (UCL) and lower confidence
limits (LCL) for 𝜆

𝑇
, such as at 97.5% and 2.5% confidence

level, respectively, in this paper. With the UCL and LCL, the
number of reads for a given position, 𝑟
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Table 1: Summary of all data sets used in this paper.

Data set DE genes NDE genes SRA accession number
MAQC UHRR and HBRR 1966 3388 SRA010153.1
Colorectal cancer 13 0 SRX026158 and SRX026158
Maize leaf 6 9 SRA012297

With this adjustment, the total number of reads mapped to
the transcript is

𝑅
0
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𝑛

∑

𝑖=1

𝑟
0

𝑖
. (9)

It has been reported that the assumption of a Poisson distri-
bution is too restrictive to predict more accurate variations
among data from different replicates [2, 3], but a Poisson
distribution can fit data in a specific exon from one sample,
because they have fewer variations.

2.3. Training and Testing Data Set. We collected training
and testing data sets from several different resources, and
Table 1 summarized these data sets. The training data set
contains two RNA-seq data sets with 35 base-pair-long
reads obtained using Illumina’s Genome Analyzer II high-
throughput sequencing system [17], and they correspond to
data obtained by the microarray quality control (MAQC)
project [34]. The accession number of these RNA-seq data in
SRA is SRA010153.1. The two RNA sample types used were
a universal human reference RNA (UHRR) from Stratagene
and a human brain reference RNA (HBRR) from Ambion.
There are seven lanes for each sample with about 40 million
reads. After processing the RNA-seq data, all RNA-seq reads
were aligned against the human genome (GRCh37.68). The
data set has about 997 RT-PCR data for validation of RNA-
seq analysis results [35], and the genes with mean reads
number fewer than 5 in both samples are not considered.
Based on their expression (log

2
fold change), the genes were

grouped into three sets: DE, no-call, and non-DE (NDE),
with the log

2
(fold-change) being >1.5 [0.5, 1.5] and <0.5,

respectively. The expression log
2
(fold-change) for RT-PCR

samples was calculated by the ΔΔCT method [36]. This way,
we compiled 389, 178, and 235 genes in the categories of
DE, no-call, and NDE, respectively. For the same RNA-seq
data, correspondingmicroarray experiments were conducted
by MAQC with Affymetrix Human Genome U133 Plus
2.0 arrays (GEO: GSE5350). Microarray data were prepro-
cessed with RMA [37] and analyzed with limma package
[38]. For the results of the microarray data analysis, genes
having absolute log

2
(fold-change) ≥1.5 and 𝑃 values <10−3

were considered as DE; genes were NDE if their absolute
log
2
(fold-change) <0.5, and the rest were no-call genes.

Finally, there are 1756, 2340, and 3372 genes for DE, no-
call, NDE, respectively. The classified genes by both PCR and
microarray were combined together to be used as the training
data set for the NB model. A gene was considered as DE
(or NDE) if at least one method, either PCR or microarray
assay, confirmed it as DE (or NDE), and finally there are
1966 DE and 3388 NDE genes in this training set. The NB

model trained by this data set is also applied to other species,
including plants, for testing.More details about other test data
sets are described in the following sections.

3. Results and Discussion

3.1. Results for the Training Data Set. The NB model was
trained using 1966 DE and 3388 NDE genes in the training
data set. DE genes were considered as positive while NDE
ones were considered as negative. For validation, the leave-
one-out cross-validationwas used to score them.To assess the
performance of GExposer, the currentmost popularmethods
such as edgeR (2.6.7) [2], DESeq (1.12.0) [3], Cuffdiff (2.1.1)
[4], NOISeq (2.0) [10], and Gfold (1.0.7) [11] were applied
to the same RNA-seq data sets for comparison. The default
setups were used for other methods as well. Following the
work of Tarazona et al. [10], 𝑃 values created by the other
methods, except for NOIseq, were used as the scores for
ranking genes. NOIseq outputs one score for each gene to
quantify the expression level. Since different parameters are
used by different methods to select DE genes, it is difficult
to select a cutoff that can produce comparable analysis and
fair comparison for all methods. In this study, we compared
the area under receiver operating characteristic curve (AUC)
values of all methods, which can avoid the difficulty of
selecting a comparable cutoff of 𝑃 values for all methods.
This evaluationmethod has been used to other RNA-seq data
analysis tools before [17, 39]. A receiver operating charac-
teristic (ROC) curve represents a dependency of sensitivity
and (1 − specificity), which is plotted with true positives rate
versus false positive rate at various threshold settings. To
change the threshold setting, the number of the predicted DE
genes was increased in steps of one gene. Figure 2 shows ROC
curves of all methods for the same data set. The AUC values
of all methods are shown in Table 2. GExposer achieved
the highest AUC value (0.9255). To test the ability of each
method to successfully identify DE (true positive) or NDE
(true negative) from a noisy pool, no-call genes are treated as
true negative (NDE) or true positive (DE) genes, respectively.
For no-call genes, themodel trained by all DE andNDE genes
was used to score them with an NB classifier. All AUC values
are also shown in Table 2. For both cases, GExposer achieved
the highest AUC values.

3.2. Independence to the Number of Replicates. To study
the dependence on the number of replicates, six RNA-seq
analysismethodswere applied on some subsets of the training
data set, from one lane to seven lanes. Results of these
methods are shown in Table 3. Results of all methods are
relatively stable with more than one lane, but there is a
sharp drop in AUC values for Cuffdiff and DESeq when
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Figure 2: ROC curves of different methods tested on the training
data set.

Table 2: AUC values of six methods on the training data set with
the leave-one-out cross-validation.

Method False positive test
No-call as NDE

False negative test
No-call as DE

edgeR 0.8997 0.8567 0.7945
DESeq 0.9002 0.8602 0.7909
Cuffdiff 0.8347 0.7740 0.7610
NOISeq 0.8679 0.8460 0.7267
Gfold 0.9079 0.8886 0.7790
GExposer 0.9255 0.9030 0.8054

only one lane is available. If there is no replicate, the AUC
value for DESeq is no more than 0.67 and for Cuffdiff is no
more than 0.60. GExposer constantly has the largest AUC
values for different numbers of replicates.Moreover, although
Gfold is designed for data without replicate, GExposer still
outperformed it even when only using one lane. This test
implies that the local normalization reduces the variation
among replicates, and, hence, the performance of GExposer
is not affected by replicates.

3.3. Results from Human Colorectal Cancer Data Set. An
RNA-seq data set for human colorectal cancer generated by
Griffith et al. [40] was used to perform an independent test.
This data set is from the same species as the training set,
but from a different tissue. In this data set, 84 bp paired-
end reads were sequenced, and there are eight lanes in total
for colorectal cancer cell line MIP/5FU and 15 lanes for cell
line MIP101 [40]. In this data set, the top 50 differential or
alternative expression events were tested and 13 genes were
confirmed as DE by experiments. For the human colorectal
cancer data set, all 23 lanes with 84 bp length reads were
applied to different RNA-seq analysis tools, and the 13 known
DE genes were ranked using these tools. The orders of these

genes ranked by different methods are shown in Table 4. One
can find that 7 out of the 13 confirmed genes are ranked in the
top 50 genes by GExposer. The numbers for other methods
are no more than six except for Gfold. In particular, Gene
TSPAN12 is ranked in top 50 only by GExposer and Cuffdiff.
In this data set, some genes, such asMR1, have long transcript
length with many exons, and an isoform with a small portion
of exons is expressed. GExposer could not rank this kind
of genes to top position because of the transcript length
correction. Using the length of a specific isoform, instead
of the total length of all exons for a given gene, could be
considered to improve GExposer’s accuracy of identification
of differentially expressed isoform.

3.4. Performance of GExposer onMaize RNA-Seq. In contrast
to other RNA-seq analysis tools, GExposer needs a training
set, which was a set of RNA-seq data from human tissues for
this work. Naturally, one may raise the question whether the
performance of GExposer could have potential correlation
with the species that is used to generate the RNA-seq data.
To test whether the human-data trainedGExposer works well
on different species, the method was applied to plant (maize)
RNA-seq data. The maize RNA-seq data set that compares
bundle sheath and mesophyll cells were obtained from the
laser-capture microdissected (LCM) samples from the tip of
the maize leaf which incorporates two biological replicates
[41]. The RNA-seq data were obtained from the NCBI short
read archive (SRA) under accession number SRA012297. The
expression levels of 40 genes (only 37 genes were found in
the current version of B73 gene annotation) were measured
by RT-PCR and were also grouped into three sets: DE (6),
no-call (22), and NDE (9), as log

2
(fold-change) is >1.5 [0.5,

1.5] and <0.5, respectively, for the comparison between cells
at a maturing zone (+4 cm above the leaf two ligule) and
mature zone (tip, +1 cm below the leaf three tip). All RNA-
seq analysis tools were applied onto this RNA-seq data set,
and these 37 genes were ranked by different methods. The
distributions of top 10 genes ranked by different methods are
shown in Table 5. In top 10 genes, GExposer has the largest
number of DE genes (5 genes), while DESeq has the least (3
genes). None of these methods rank NDE genes in top 10,
except for Gfold.

3.5. Performance of Local Normalization. GExposer was also
applied onto the maize RNA-seq data to test the performance
of the local normalization method. The RNA-seq data were
generated to study differentially expressed genes in quality
protein maize (QPM) endosperm tissue [42]. To simplify the
results, the RNA-seq data from the two genotypes, W64A
o2 mutant and K0326Y QPM, were used because it is the
most important comparison for the QPM study. Each sample
has about 20 million 50 bp long reads made up of kernels
pooled from five biological replicates. Reads for maize were
aligned against the reference genome (ZmB73-RefgenV2),
for the pair-wise comparison between the genotypes, W64
o2 and K0326Y QPM. There is a portion of genes that are
assigned with different expression levels when using or not
using the local normalization method. We selected seven
such genes that have been assigned different fold changes
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Table 3: AUC values of six methods on the training data set with different number of replicates.

Method 1 2 3 4 5 6 7
False positive test, no-call as NDE

edgeR 0.8535 0.8607 0.8595 0.8591 0.8584 0.8574 0.8567
DESeq 0.6621 0.8626 0.8622 0.8618 0.8613 0.8610 0.8602
Cuffdiff 0.5963 0.7904 0.7772 0.7904 0.7773 0.7748 0.7740
NOIseq 0.8334 0.8392 0.8425 0.8445 0.8452 0.8456 0.8460
Gfold 0.8870 0.8334 0.8871 0.8875 0.8874 0.8886 0.8886
GExposer 0.8968 0.9016 0.9024 0.9024 0.9028 0.9032 0.9030

False negative test, no-call as DE
edgeR 0.7845 0.7903 0.793 0.7934 0.7936 0.7934 0.7945
DESeq 0.5800 0.7871 0.7895 0.7902 0.7912 0.7905 0.7909
Cuffdiff 0.5894 0.7674 0.7645 0.7674 0.7623 0.7606 0.7610
NOIseq 0.7269 0.7342 0.7335 0.7308 0.7288 0.7276 0.7267
Gfold 0.7905 0.6702 0.7498 0.7670 0.7753 0.7753 0.7790
GExposer 0.7942 0.8015 0.8045 0.8051 0.8053 0.8051 0.8054

Table 4: Ranking of 13 genes by six different methods.

Gene edgeR DESeq cuffdiff NOIseq Gfold GExposer
LAPTM4B 109 109 99 11 27 8
TSPAN12 59 54 18 55 98 10
TNNI2 8750 8730 41066 671 241 15861
H19 7 6 2 1 2 25
ZNF185 651 672 56286 7879 81 1008
MR1 144 141 22837 51 12 4156
ASRGL1 125 269 8560 101 10 854
C12orf59 13 11 70 4 1 2
KLK6 680 646 1568 17 36 115
ATOH8 66 70 956 224 21 99
FUT3 57 62 1583 6 5 9
KRT20 356 625 462 399 33 18
OLR1 48 42 8741 7 4 4
The numbers in bold font correspond to genes that were ranked in top 50.

with and without local normalization and applied RT-PCR
experiments to validate the real fold change. Since the gene
annotations and sequences of B73 are used to design the
primers for these genes in W64 o2 and K0326Y QPM,
only four genes, GRMZM2G002678, GRMZM2G018193,
GRMZM2G096719, and GRMZM2G38846, showed results
for RT-PCR experiments. The details of the RT-PCR exper-
iment and primers of these four genes are described in
Supplementary Data (see Supplementary Material available
online at http://dx.doi.org/10.1155/2015/789516). For these
four genes, their log

2
(fold-change) measured using the local

normalization method and not using it is shown in Table 6.
The log

2
(fold-change) measured without the local normal-

ization step shows higher values, while that measured by
GExposer with the local normalization is no more than 0.61.
The RT-PCR results support the GExposer analysis with
the local normalization. The RT-PCR results of these four
genes are shown in Figure 3(a), and these four genes are not
differentially expressed in W64 o2 and K0326Y QPM. To

Table 5: The distributions of top 10 differentially expressed genes
ranked by six different methods on maize RNA-seq data.

DE No-call NDE
edgeR 4 6 0
DESeq 3 7 0
Cuffdiff 4 6 0
NOIseq 4 6 0
Gfold 4 5 1
GExposer 5 5 0

Table 6: Results of four maize genes with and without the local
normalization.

Method GRMZM2
G002678

GRMZM2
G018193

GRMZM2
G096719

GRMZM2
G388461

log2(FC) without
local normalization −1.20 1.69 −1.72 4.18

log2(FC) with local
normalization −0.61 0.40 −0.59 0.43

understand what causes the difference, read coverage of three
exons of GRMZM2G002678 are shown in Figure 3(b). Many
reads aggregate in a very narrow peak in exon 5 for W64
o2, but there is no peak in K0326Y QPM. Therefore, this
peak artificially inflates the absolute value of fold changes
betweenW64 o2 and K0326Y QPM.With the use of the local
normalization method, the adjusted depth is low (at the level
of the red dotted line), and this false positive is therefore
removed.

3.6. Difference between True and Simulated Data Sets. In
order to further evaluate the effect of nonrandomly posi-
tioned reads, the real and simulated RNA-seq data sets were
compared. The next-generation sequencing read simulator
“ART” [43] was used to simulate RNA-seq reads. To simulate
the sequencing, the sequencing read simulator assumes that
the reads uniformly and randomly distribute on the transcript

http://dx.doi.org/10.1155/2015/789516
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Figure 3: (a) RT-PCR results of four genes in o2 and QPM lines. (b) Short read distribution in three exons of GRMZM2G002678 in W64 o2
and QPM, and the red dotted line indicates the adjusted depth by local normalization method.
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Figure 4: Fractions of discarded reads by local normalization
method for both real and simulated RNA-seq data.

[33], and, hence, there is no abnormal peak to be adjusted
by the local normalization method. We randomly selected
W64 o2 RNA-seq data from the maize endosperm data set as
the template to conduct the simulation. For each transcript,
the same number of reads as in the template data set was
generated by the simulator. Then, all simulated reads were
mapped to the same genome with the same parameters
as for the W64 o2 RNA-seq data. The fractions of the
discarded reads by the local normalization method of each
transcript are shown in Figure 4, and there is a significant
difference between the real and simulated data sets. For the
simulated data, only several genes (0.8% of all genes) have
more than 10% reads discarded with the local normalization,
but thousands of genes (10.3%) for the real RNA-seq data
do. It indicates that in reality, sometimes, reads are not
uniformly, randomly sequenced on a transcript, and the local
normalized method is a necessary step for this kind of cases.

Table 7: Performance of GExposer omitting each attribute.

False positive test
No-call as NDE

False negative test
No-call as DE

ΔGCC 0.9028 0.8964 0.8017
ΔARPK 0.8791 0.8656 0.747
ΔFC 0.6315 0.5946 0.6141
GExposer 0.9255 0.903 0.8054

3.7. Assessment of EachAttribute in GExposer. GExposer used
three attributes: FC, ARPK, and relative GCC. To understand
which one in the three scores plays a more important role,
each attribute was removed from the system and the same
training and test procedures were conducted to the training
data set. The results are shown in Table 7. The absence of any
attribute leads to some decrease of the AUC value, but the
attribute of FC is the most significant. The largest changes
occurred when the FC attribute was removed, whereas
removingARPK andGCC only caused small changes of AUC
(0.0464 and 0.0227). It is not surprising that the fold change
of read numbers is themajor criterion to determineDE genes.
The attributeARPK is related to the expression level of a given
gene and, hence, also plays an important role in the DE gene
identification. The GCC correction is applied to a very small
portion of genes. Therefore, the absence of the correction
reduces the AUC value only slightly, although this correction
is important for those specific genes.

3.8. Local Normalization and GC Content. The local nor-
malization method mainly focuses on the high peaks of the
reads; for a given high peak, its depth will be modified
according to the average depth and its standard deviation.
This raises one question: do the reads in these peaks have
special patterns of nucleotides or GCCs, compared with the
sequence background of all reads? If they have a special GCC,
for example, some existing correction algorithms for GCC
bias [20–23] could be applied to this case, instead of using the
local normalization. To answer this question, we calculated
the distributions of nucleotides in different types of reads.
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Figure 5: The distributions of nucleotides with different depths.

The result on maize W64 o2 data set from the QPM RNA-
seq data is shown in Figure 5.The blue bars are for all aligned
reads, and the red, yellow, green, and brown bars are for
the reads from peaks with depths of 1, 2, 3, and 4 standard
deviations away from the average. The average portion of a
type of nucleotide (NT) in one read was calculated. From
Figure 5, one can see that, for a certain type of NT, different
types of depths have very similar portions. This indicates
that the abnormal high peaks of reads have no correlation
with the GCC. Therefore, we can conclude that this kind
of read abundance does not result from a special pattern of
nucleotides.

4. Conclusions

In the study, a new bias in RNA-seq data called nonrandomly
positioned reads was identified. Our analysis shows that this
bias is different from GCC bias. In order to reduce the bias,
a local normalization algorithm has been developed and
the false positive rate caused by this bias is reduced, which
has been validated by the RT-PCR experiments. Moreover,
the combination of three attributes, FC, ARPK, and GCC,
can achieve better results; both false positive rates and false
negative rates are reduced. However, GCC correction is only
applied to a very small portion of genes in a whole genome.
Themodel of GExposer was trained by one data set, and there
is great potential for machine learning methods to improve
the performance in finding DE genes by combining more
training data sets from different species. On the other hand,
training data from various species could potentially limit the
ability of a naive Bayes classifier to identify DE genes.
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