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Abstract 
After decades of research, our understanding of when and why 
individuals infected with Plasmodium falciparum develop clinical 
malaria is still limited. Correlates of immune protection are often 
sought through prospective cohort studies, where measured host 
factors are correlated against the incidence of clinical disease over a 
set period of time. However, robustly inferring individual-level 
protection from these population-level findings has proved difficult 
due to small effect sizes and high levels of variance underlying such 
data. In order to better understand the nature of these inter-
individual variations, we analysed the long-term malaria epidemiology 
of children ≤12 years old growing up under seasonal exposure to the 
parasite in the sub-location of Junju, Kenya. Despite the cohort’s 
limited geographic expanse (ca. 3km x 10km), our data reveal a high 
degree of spatial and temporal variability in malaria prevalence and 
incidence rates, causing individuals to experience varying levels of 
exposure to the parasite at different times during their life. Analysing 
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individual-level infection histories further reveal an unexpectedly high 
variability in the rate at which children experience clinical malaria 
episodes. Besides exposure to the parasite, measured as disease 
prevalence in the surrounding area, we find that the birth time of year 
has an independent effect on the individual’s risk of experiencing a 
clinical episode. Furthermore, our analyses reveal that those children 
with a history of an above average number of episodes are more likely 
to experience further episodes during the upcoming transmission 
season. These findings are indicative of phenotypic differences in the 
rates by which children acquire clinical protection to malaria and offer 
important insights into the natural variability underlying malaria 
epidemiology.

Keywords 
Plasmodium falciparum, clinical malaria, malaria susceptibility, 
naturally acquired immunity, spatial heterogeneity, longitudinal 
cohort study
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Introduction
Individuals growing up in P. falciparum malaria endemic areas 
acquire a general state of immunity against clinical malaria 
through repeated exposure to the parasite. This process of  
naturally acquired protection is still poorly understood1 but 
believed to involve the build-up of a repertoire of immune 
responses against the myriad of antigenic targets that the  
parasite displays over its lifecycle during in vivo infections2–4. 
Although protection against life-threatening disease may be 
acquired through a small number of infections only5, individu-
als remain prone to experience clinical episodes throughout  
childhood and sometimes even into their late teens or early 
adulthood, depending on the intensity of transmission (acqui-
sition of protection is generally faster in high transmission  
settings with year-round transmission than in settings with little  
and interrupted transmission6).

Research into the complexity of clinical protection often relies 
on cohort studies, where antigen-specific immune responses 
are correlated against the incidence of disease. These stud-
ies have been key in advancing our understanding of the role 
of variant surface antigens in both disease severity and natu-
ral acquired protection, for example, and are instrumental for 
the discovery of novel candidate targets for vaccine research7,8. 
Unfortunately, finding robust correlates of protection is made  
complicated by at least two factors. First, the observed effect 
sizes are often small, in particular with respect to the vari-
ability of the underlying data, and it is difficult to ascertain how  
much these reflect the true effects sizes due to the many  
confounding factors influencing the observations. Second,  
protection itself is not a dichotomous phenotype but rather 
related to an individual’s risk, or probability of developing dis-
ease if infected. The latter is particularly problematic because 
in many cases we simply do not know whether someone got  
infected during the study period or not.

In order to capture some of the spatial and temporal variation  
in disease transmission, and thus some of the uncertainty 
underlying the risk of an infection per se, Olotu et al.9  
previously proposed an exposure index, which provides a quan-
titative marker for the risk of infection experienced by an  
individual in space and time. What this and other research10 
found was that disease prevalence, or transmission intensity, is 
not necessarily homogeneous across space or time. In fact, even 
small geographic regions can exhibit malaria hotspots, where 
individuals have a notably higher chance of getting infected 
than in surrounding areas11–13. The temporal stability of these  
hotspots is variable, however. Whereas some hotspots can be 
persistent because of environmental or geographic factors, such 
as proximity to standing water and so to mosquito breeding  
sites, others might just persist for the duration of a transmis-
sion season or two. One way or the other, this heterogeneity  
in exposure must be considered as an important source of 
variability in an individual’s risk of experiencing a clinical  
episode in a given year, irrespective of their degree of protection.

Longitudinal cohort studies are ideally placed to offer more 
detailed insights into the process of naturally acquired  
protection (e.g. 14). That is, following individuals over time and 
recording their clinical episode histories can provide important  
information on how previous infections relate to a child’s  
future risk of disease and how this changes as they grow up 
under repeated exposure to the parasite. Here we made use of 
data generated from a long-term birth-cohort study in Kenya. 
Using individual-level episode histories together with spatio-
temporal disease prevalence data we demonstrate that children  
exhibit a high degree of phenotypic variability regarding their 
development of protection from clinical malaria. We further 
identified independent risk factors for clinical disease, which 
should help to guide future studies aimed at finding robust  
immune signatures of anti-malarial protection.

Methods
Study population
The study was conducted through the KEMRI-Wellcome Trust 
Research Programme (KWTRP), Kilifi, Kenya. The children 
investigated were part of the long-term birth cohort in Junju.  
Recruitment into the cohort was voluntary following sensitisation 
of the whole area without specific spatial or demographic selec-
tion criteria, such thatthe cohort provides an unbiased spatial  
representation of the village as a whole. Children were recruited 
into the cohort at birth and actively monitored on a weekly 
basis for detection of malaria episodes until 15 years of age.  
See 15 for further information regarding the Junju cohort.

P. falciparum (Pf) episodes, defined as a body temperature  
> 37.5°C and 2,500 parasites per microlitre of blood, are  
diagnosed during weekly active surveillance, where auxiliary  
body temperature and/or recent history of fever were recorded. 
Blood samples were taken from febrile children and Pf  
infection initially detected by rapid diagnostic test (RDT) and 
confirmed by microscopy. Apart from the children’s infection 
status and history of clinical malaria, we also had access to  
their date of birth, spatial location of their homestead, and  

          Amendments from Version 2
The manuscript has been revised to add additional information 
regarding the enrolment into the cohort. Specifically, it is now 
explicitly stated that the sampled and analysed cohort provides 
an unbiased spatial representation of the geographic region 
of interest. The description of the methodological approach 
underlying the so-called prevalence index (PI) and its spatial 
smoothing has also been revised to improve clarity on how the PI 
is derived and how it is affected by spatially distanced individuals. 
To avoid potential confusion, it is now stated that this index 
only captures observed incidence of clinical malaria in children 
and does not equate to prevalence of all malaria infections in 
the cohort. Furthermore, Figure 8 has been revised, which now, 
by using age categories instead of using age as a continuous 
variable, better illustrates the interaction between age and the 
previous number of episodes and their effect on a child’s risk 
of experiencing a clinical episode. Finally, a brief discussion 
regarding previous reports on dynamically changing immunity 
landscape, and how these relate to our findings, has been added 
to the Discussion.

Any further responses from the reviewers can be found at 
the end of the article
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sickle cell trait status (AA or AS; homozygous (SS) individuals 
were removed from this analysis).

Ethical considerations
Approval for human participation in this cohort studies was 
given by Kenya Medical Research Institute Ethics Research 
Committee, and research was conducted according to the  
principles of the Declaration of Helsinki, which included the 
administration of informed consenting in the participant’s local 
language.

Sample selection
Our statistical analyses are based on a subset of samples 
taken between 2006 and 2018 and include children between 
the ages of 1 and 12 years (n = 544, total number of samples  
N = 3767). Unless stated otherwise, these samples include 
children with the known malaria protective sickle cell trait  
(heterozygous, AS; n = 92, total number of samples N = 618). 
Note, throughout the analysis we refer to n as the number of 
individuals, and refer to N as the number of samples (with  
N > n, as individuals were sampled longitudinally over the  
course of the study).

Prevalence index
To capture and compare the spatial distribution of malaria over 
time within this cohort we devised a prevalence index (PI), 
which provides a summary statistic of the annual prevalence at  
location i in year t by summing over all individuals j with 
recorded malaria episodes in that year in the neighbourhood  
of i, weighted by their spatial distances, D

ij
. It is given as
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 is a binary operator indicating whether whether the 

individual had a recorded episode or not. Note, locations and 
individuals are used somewhat interchangeably, which also  
accounts for the occasions where multiple children from the same 
homestead are simultaneously enrolled. Although clustering 
at the individual household-level has previously been described  
(e.g. 16), we here did not consider such fine spatial resolution, 
especially as we only focused on children and no other family /  
household members. 

The spatial weighting factor a determines how rapidly the  
influence of an infection at j on the prevalence at j declines 
with increased spatial distance. Note, this measure does not 
rely on a fixed spatial radius to determine the neighbourhood of 
i; instead, the chosen functional form of the spatial weighting 
means it naturally converges towards 0, such that far away loca-
tions have little to no effect. The value of a (here a = 2) has a  
significant influence on the spatial heterogeneity of PI, with 
smaller values leading to smaller differences in PI between  
distant locations, and vice versa. Initial attempts to estimate a  
form the data were not satisfactory due to large variations between 
estimates based on individual years. It was therefore decided to  

determine a by maximising the correlation between the result-
ing prevalence index and clinical episode for all individuals and  
all time points (PI ~ Z).

Statistical modelling
In order to determine potential risk factors underlying an  
individual’s probability of experiencing a clinical malaria  
episode, we built a Bayesian hierarchical logistic regression 
model. The modelled outcome was GotEpisode, a binary 
response variable (yes/no) indicating whether an individual  
experienced a clinical episode in a given year or not. The 
explanatory variables were PI, Age, BirthQuarter, and  
Genotype (AA or AS, heterozygous sickle cell trait). To test the 
effect of an individual’s previous episode history, we built an 
additional model using PrevEpisodes along-side PI and Age, and 
the interaction between Age and PrevEpisodes, as explanatory 
variables. Here, PrevEpisodes refers to the child’s number of pre-
viously recorded clinical episodes. In both cases we included a  
child-specific intercept (commonly known as a random effect  
in the frequentist literature), to accommodate the longitudi-
nal nature of these data, where individuals were repeatedly 
sampled over multiple years over the duration of the study.  
To assess the effect of between-child variation, we compared the 
model against an equivalent non-hierarchical model assuming 
complete independence of all data points. Model comparison 
was done based on the models’ expected log predictive density 
(ELPD) using Pareto smoothed importance-sampling leave-
one-out cross-validation (PSIS-LOO) from the loo package  
in R. All continuous variables were centred and scaled (i.e. set 
mean = 0 and standard deviation = 1) to improve model conver-
gence and to allow for better comparison between the estimated  
effect sizes. A zero-mean normal prior (with standard devia-
tion = 10) was placed on all regression coefficients, and a 
gamma prior (with shape and scale parameter = 1) was placed 
on the standard deviation for the group-level effect (i.e. the 
standard deviation for the child-specific intercepts). The model  
parameters were jointly inferred by means of MCMC sam-
pling, using the rstanarm (version 2.21.1) R package. A total of 
2000 iterations (including 1000 iterations for warm-up) were 
used for each of four chains run in parallel. Convergence was 
assessed via trace plots and the Rhat convergence diagnostic.  
Marginal effects for the explanatory variables on the response 
were plotted using the marginal_effects function in the brms 
(version 2.13.5) R package. R version 3.6.3 was used to produce  
all the figures and perform all of the analyses.

Results
Malaria prevalence fluctuates over time and space
Figure 1A illustrates the annual variation in the total number of 
clinical episodes and proportion of individuals with a recorded 
clinical episode between 2006 and 2018 based on children 
under the age of 12 years enrolled in this cohort. Although 
prevalence and total number of episodes follow a qualitatively 
similar trend, years of high prevalence, such as 2014 and 
2018, are also characterised by individuals experiencing 
multiple episodes in the same year (Figure 1B and 1C). That 
is, in those years we not only see more individuals with a  
clinical episode but a disproportional increase in the numbers of  
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Figure 1. Temporal variation in malaria incidence. A. Temporal variance in the number of clinical episodes and proportion of individuals 
with a recorded episode in Junju, Kenya, between 2006 and 2018. B,C. Temporal variation in the distribution of children experiencing 1 (blue 
bars), 2 (green bars), or ≥ 3 clinical episodes (yellow bars) per year between 2006 and 2018, highlighting an excess of multiple episodes in 
years of high transmission (2014 and 2018).
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episodes per individual, which could be indicative of a prolonged 
or more intensive transmission season or a possibly a change  
in the circulating parasite population.

The strong inter-annual variability is also mirrored in the  
spatial distribution of malaria prevalence, as shown by means 
of the prevalence index (PI, see Methods) for the years 2007 
to 2018 in Figure 2. Not only do these maps show significant 
year-on-year fluctuations but they also reveal temporal trends  
with some regions having much higher prevalence rates in  
some years than others. Furthermore, we find that in high  
prevalence years (2014 and 2018), malaria incidence was not 
confined to particular areas but was observed almost across 
the entire cohort, which could be indicative of more intense 
and/or longer transmission seasons. Note, because PI is based 
on recorded symptomatic episodes in children only we can-
not say whether the observed spatial patterns are indicative of 

dynamically changing transmission hotspots or of potential 
heterogeneities in the immunity landscape across the cohort,  
or both.

High individual-level variability in clinical episode 
histories
The spatio-temporal analyses above imply that individuals 
growing up in the cohort are likely to experience different  
levels of exposure to the parasite at different points during their 
lives. Consequently, individual histories of clinical malaria epi-
sodes are expected to be equally variable. This is exemplified 
in Figure 3, where individual episode histories, by means of the  
cumulative number of episodes, are plotted over time for  
children born between 2006 and 2011, stratified by the indi-
viduals’ year of birth and genotype (AA/AS). Besides the high  
variance in the rate at which individuals acquire clinical  
episodes, these graphs also suggest that neither the cumulative 

Figure 2. Spatio-temporal variation in malaria prevalence. Geographic homestead location of children enrolled in the Junju cohort, 
stratified by year. The size of each point correspond to the child’s number of recorded episodes that year, with the colour indicating their 
prevalence index (PI).
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Figure  3.  High  variance  in  clinical  episode  histories.  Graphs showing individual children’s cumulative number of clinical malaria 
episodes over time, stratified by birth year. Red lines indicate children with the sickle cell trait (AS). Orange rectangles highlight high malaria 
transmission years (2014 and 2018).

number of episodes nor the rate at which episodes are acquired 
(i.e. number of episodes per year) are simply a function of age. 
That is, in years of particularly high transmission, e.g. in 2014 
or 2018, most children seem susceptible to a clinical episode  
regardless of their age or previous episode history.

The effect of age on the risk of clinical malaria
Under the assumption of naturally acquired immunity, 
whereby individuals acquire protection against clinical malaria 
through repeated infections, we would expect age and/or the 
number of previously experienced malaria episodes to be  
correlated with a reduced risk of clinical malaria. Having 
access to individual episode histories we can thus analyse how  
both age and previous number of episodes alter the risk of 
future episodes. As illustrated in Figure 4, and against expec-
tation, individuals who experience an episode in a given 
year are not different in age (Figure 4A) but appear to have 
acquired more previous episodes on average than those  
who did not (Figure 4B). Importantly, the fact that individu-
als with more episodes seem more at risk of a further episode 
does not seem to be an age effect but persists as individual  
grow older, which is demonstrated in Figure 5 by means of 
age-stratified distribution of previous number of episodes in  
individuals with and without a clinical episode.

Birth time of year affects the risk of clinical malaria
Previous studies have shown that in utero exposure to  
P. falciparum can affect a child’s future susceptibility to malaria 
(e.g. 16–19). Equally, poor nutrition during pregnancy has also 
been linked with long-term negative consequences for disease  
susceptibility (e.g. 20–23. We therefore asked whether the birth 
time of year has an effect on a child’s experience of clinical  
malaria episodes. For this we looked at the total number 
of clinical episodes acquired by a certain age (here we set  
age = 6 years), stratified by birth quarter (Q1-Q4). As 
clearly indicated in Figure 6A, children born towards the 
end of the year (Q4) appear to be at a lower risk of a clini-
cal episode on average than those who are born earlier in the  
year.

Next we investigated the temporal stability of this protec-
tive effect, for which we calculated the age-dependent risk 
ratio of children born in Q4 relative to those born in Q1–Q3. 
As can be seen in Figure 6B, Q4 children under the age of  
6 years have a significantly reduced risk of experiencing a clini-
cal malaria episode than those born earlier. This protective  
effect wanes as children get older, however, possibly under the 
influence of other environmental factors, including continuous  
exposure to the parasite.
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Risk factors of clinical malaria
The exploratory analyses presented above have revealed a 
high degree of heterogeneity in both malaria prevalence and 
in individual episode histories. In order to determine if and by 
how much the latter is simply a function of the former, and 
to what degree other factors have an independent effect on an  
individual’s risk of experiencing a clinical malaria episode 
we built a Bayesian hierarchical logistic regression model 
(see Methods). Specifically we investigated the effect of PI,  
genotype (AA/AS), age and birth quarter on the probability of  
a child experiencing a clinical episode in a given year.

Figure 7A shows the credible intervals (CI) of the regression 
coefficients (median plus 80% and 95% credible intervals). 
As expected, malaria prevalence (PI) has the strongest effect 
on the risk of a clinical episode (median effect size estimate:  
0.96, 95% CI [0.87, 1.06]). Equally expected is the protec-
tive effect of the sickle cell trait (-0.89, 95% CI [-1.23, -0.55]). 

In line with the above exploratory analysis (Figure 6), birth  
quarter Q4 also has a protective effect (-0.42, 95% CI [-0.8, 
-0.03]). In contrast to the similarity in the age distribution 
between individuals who experience a clinical episode or not  
(Figure 4A), accounting for inter-individual level variation we 
now find that older children have a slightly reduced risk of expe-
riencing an episode compared to younger ones (-0.15, 95%  
CI [-0.24, -0.07]). Figure 7B–D illustrate the marginal effects 
of the four covariates on the probability of a clinical epi-
sode, again showing the protective effect of birth quarter Q4, 
the sickle cell trait (AS), and, to a smaller and more uncertain  
degree, age.

Our results suggest that beside exposure, by means of disease 
prevalence in the surrounding area (PI), individual-level differ-
ences in susceptibility could have a significant effect on the risk 
of experiencing a clinical episode in a given year. Apart from  
the well-known protective sickle cell trait, these differences may 

Figure 4. Effect of age and exposure history on risk of clinical malaria. Box and whisker plots indicate the median and inter quartile 
ranges of age and previous number of episodes of individuals with or without a recorded episode in a given year. Due to confounding effect 
of the sickle cell trait, AS individuals were removed in (C).
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Figure 5. Age-stratified distribution of episode history in relation to risk of clinical malaria. Box and whisker plots indicate the 
median and inter quartile ranges of age and previous number of episodes of individuals with or without a recorded episode in a given year. 
Individuals with sickle cell trait removed.

stem from the birth time of year, for example, as demonstrated  
here, as well as other inter-individual differences accounted for 
by the hierarchical nature of our model (confirmed by means of 
model comparison against a non-hierarchical model based on 
the estimated log probability density, ELPD: -2136, hierarchical  
model, vs. -2326, non-hierarchical model; see Methods).

These individual-level differences, on the other hand, also 
imply that a child’s episode history could in fact be indicative  
of their risk of experiencing a future episode, which has already 
been alluded to in Figure 5. To quantify this further, we used a 
child’s previous number of clinical episodes as an explanatory 
variable in our model, alongside PI and Age. As the number of 
previous episodes is strongly influenced by the sickle cell trait, 
these children were removed from this analysis. As a reminder, 

all variables are centred (zero mean), which allows us to make 
inferences on the predicted changes in risk with respect to  
deviations from the variable’s mean value. Figure 8 demon-
strates that children with an above average number of previous 
episodes are at a much higher risk of an additional episode than  
similar aged children with fewer episodes (median effect size 
estimate for 1–4 year old children: 1.14, 95%CI [0.79, 1.54]).  
Equally, older children appear to be more protected than younger 
children who have a similar number of previous episodes. In 
fact, accounting for the interaction between age and episode 
history we now also find that the effect of age is much more  
pronounced (Figure 8C,D). The overall negative effect of the 
interaction between age and number of previous episodes  
therefore strongly suggests an independent protective effect  
of age, regardless of the previous number of episodes.
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Figure  6. The effect of birth quarter on the risk of clinical 
malaria.  A. Distribution of the number of clinical episodes 
experienced by an individual child by the age of 6 years stratified  
by birth quarter. Box and whisker plots indicate the median 
and inter quartile ranges. B. Risk ratio of experiencing a clinical 
episode in a given year between children born in Q4 compared to  
those born between Q1 and Q3.

Figure 7. Risk factor analysis of clinical malaria. A. Estimated effect sizes (plus 80% and 95% CI; boxes and bars, respectively) for 
individual factors underlying risk of clinical malaria. B–E. Conditional effect plots showing the the probability of a clinical episode against 
prevalence index (B), sickle cell genotype (C), birth time of year (D), and age (E). The solid lines (B, E) and circles (C, D) represent the median 
and the shaded areas (B, E) and whiskers (C, D) the 95% prediction intervals.

Taken together, our results are indicative of significant (inher-
ent or induced) differences in the qualitative and quantitative 
nature by which children experience clinical malaria episodes 
and acquire clinical protection under repeated exposure to the  
parasite.

Discussion
Here we used long-term epidemiological cohort data to inves-
tigate individual-level differences in children’s development 
of clinical protection against P. falciparum malaria. Our analy-
ses reveal high levels of spatial and temporal heterogeneity 
in malaria incidence, which lead to significant differences in  
exposure levels to the parasite as children grow up in this 
cohort. However, we found that the variability in the rate at 
which individuals experience clinical episodes is not solely 
explained by exposure alone but points towards child-specific 
differences in disease susceptibility. We believe that these are  
important yet often neglected sources of variation in the data 
collected from prospective cohort studies aimed at identifying  
correlates of protection.

It has previously been reported that some children growing 
up in a malaria endemic region appear to suffer from excess 
malaria episodes compared to other children before reach-
ing a similar state of clinical protection, even when account-
ing for exposure and age15. These findings, which are broadly 
in line with the results presented here, add further evidence  
that children seem to exhibit inherent (phenotypic) differences 
in their susceptibility to clinical malaria episodes. Here we 
explicitly accounted for the inter-individual variability and con-
centrated primarily on an individual’s risk of experiencing a 
clinical episode in a given year or not. What was interesting  
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to observe is that age itself only appeared to have a signifi-
cant effect when accounting for this inter-individual variabil-
ity. That is, although age usually needs to be factored in as a  
confounding factor when looking for immune correlates of  
protection, as older children are more likely to have experi-
enced more episodes and have thus developed a higher degree  
of protection, we find that in this relatively low transmis-
sion setting and below the age of 12 years it only has a  
marginal effect on someone’s risk of experiencing a clinical  
episode.

Unsurprisingly, the most significant risk factor was simply 
exposure. Here we devised a new prevalence index, which  

provided a measure of infection prevalence in the surround-
ing area in a given year. It is related to the exposure index as 
previously introduced by Olotu et al.9 but yields more spatially 
smoothed estimates and in this case revealed clear temporal  
trends in the spatial distribution of infection prevalence  
(Figure 2). Although our calculation of the prevalence index was 
based only on children with a confirmed episode, it is unlikely 
that these heterogeneities disappear when accounting for all 
individuals. Another important point to make here is that this 
measure is semi-quantitative in that it is based on the number  
of infected children, and not the total number of infections  
in the surrounding area. However, and as evidenced by our 
analyses, it is strongly correlated with the probability of a 

Figure 8. The effect of previous episode histories on the susceptibility to clinical malaria. A. Estimated effect sizes (plus 80% and 
95% CI; boxes and bars, respectively) for individual factors underlying risk of clinical malaria. B–D. Conditional effect plots showing the 
the probability of a clinical episode against prevalence index (B), previous episodes (C), and age (D). The solid lines and shaded regions 
represent the median and the 95% prediction intervals.
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child experiencing a clinical episode in a given year and thus  
captures the level of malaria transmission in the surrounding  
area. Our findings are also in line with previous studies that 
have revealed that malaria infections are not necessarily homo-
geneous across space but can exhibit pronounced hotspots 
of variable stability (e.g. 12,13,24). Unfortunately, the data 
analysed here did not allow us to investigate whether these  
spatio-temporal patterns are also reflective of locally chang-
ing transmission intensities or are purely driven by the changing 
immunity landscape among the study participants, or possibly  
both.

Apart from age and exposure, our analysis suggests that 
the time of year when an individual is born has a protective  
effect against clinical episode and that this effect can last for 
many years of early childhood. In this case we found that  
individuals born during the last quarter of the year (October -  
December) had a reduced risk of experiencing clinical  
episodes, which also manifested in a lower number of total  
episodes compared to other age-matched children under 
similar exposure conditions. In terms of timing, being born 
during Q4 in this cohort means that infants may acquire their 
first infection at the age of 4–6 months towards the end of 
maternal protection, assuming that the main transmission 
season in Junju starts around April. Alternatively, it might open 
up the possibility that their mothers got infected during the 
second trimester. It has previously been reported that malaria  
infections during pregnancy can alter an infant’s suscepti-
bility to clinical malaria (e.g. 16–19). It is also known that 
nutritional intake during pregnancy, which in many parts of the 
world still changes significantly between seasons, can have a 
lasting effect on the child’s susceptibility to disease (e.g. 21). 
Unfortunately, we cannot say whether the effect that we  
observe is due to in utero exposure during pregnancy or first 
exposure under waning maternal protection. Follow-up stud-
ies will be required to answer both this question and also if  
similar effects can be found in other malaria endemic settings.

Another important finding is that the risk of a clinical malaria 
episode is not simply a decreasing function of the number of 
episodes experienced in the past. In fact, we found that those 
children who have experienced many more episodes by a cer-
tain age have a much higher baseline risk than other, similar 
aged children. What we cannot conclude from this analysis is  
whether this might be due to inherent, i.e. genetic differences 
in susceptibility to clinical malaria, or whether these differ-
ences are somehow induced whereby an exposure to the parasite 
early in life can lead to impaired immunity to malaria, which in  
turn leads to further episodes of malaria in the future. A recent 
study has also found that individuals who carry asymptomatic 
infections are at an increased risk of experiencing a sympto-
matic episode in the near future25. However, as the observed 
effect declined rapidly over time and was also seen across  
all age groups it is questionable whether it describes the same 
phenomenon as reported here. Using a systems immunological 
approach, we have previously described how repeated malaria 
episodes can lead to measurable modifications of the immune  
system, based on the comparison between children with few 
versus a large number of episodes26. Using the insights gained  
from this analysis it would thus be interesting to follow a  

similar approach and compare children based on the risk  
factors identified herein. 

There are a number of caveats in this study. The first is that we 
only monitored children under the age of 12 years. What is 
clear from our analyses is that by this age, and in this setting, 
many of the children are still experiencing clinical episodes  
at a rate similar to younger children, even though their risk of 
severe and life-threatening malaria had declined long before 
that. Due to limited sample sizes and high variability in 
malaria transmission over space and time, identifying children 
who have acquired a level of natural protection is almost  
impossible simply by comparing incidence of clinical malaria. 
In fact, even children who appeared to have plateaued in  
experiencing new episodes24 and are thus believed to have  
acquired a state of clinical protection can succumb to a  
malaria episode once more in years of high transmission 
(e.g. 2018). This, on the other hand, is an important point to  
re-emphasize: protection itself is not a dichotomous state but 
can best be understood as the probability of developing clinical 
symptoms if infected. Monitoring individual children and their  
level of exposure to malaria over long periods of time is there-
fore required to robustly infer immunological changes under-
lying their transition to clinical protection. The other caveat is 
that our measure of prevalence is retrospective, i.e. it is a sum-
mary measure based on all recorded infections over the entire  
year. One could thus argue that its high correlation with clini-
cal episodes follows a circular argument. However, as the 
index case was not included in its calculation and because 
its computation is done over the same period of time as the  
response (clinical episode in that year, yes or no), this should  
not be a reason for concern.

Conclusions
Cohort studies and results based on them are often affected by 
the high variability in the underlying data. This may not only 
drown out real effects, which can be small even when compar-
ing clearly define phenotypes at the gene expression level25, but 
can also make comparisons between studies challenging. What 
we have demonstrated here is that individual-level variations  
in observed outcomes, in this case the incidence of clinical  
episodes in a given year, are more than noise in the collected 
data and have to be taken into consideration when trying to  
make inferences from population-level measures. The high-
lighted heterogeneity in exposure to the parasite implies that 
children experience different transmission intensities at dif-
ferent times during their life. So far we do not know whether  
there is a (long-term) difference in children who experi-
ence the majority of their clinical episodes before the age of  
6 years or after, for example. What is clear, though, is that 
there are pronounced differences in the children’s pathway 
to becoming clinically protected. Identifying those who get 
there much faster than others might be key for broaden-
ing our understanding of natural acquired protection against  
malaria.

Data availability
Underlying data
Kemri Wellcome Trust Research Programme (KWTRP) 
Research Data Repository: Replication Data for: Individual-level  
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variations in malaria susceptibility and acquisition of clinical  
protection, (https://doi.org/10.7910/DVN/WQCKJJ)27.

Note, spatial location data of individual homesteads has been 
removed due to confidentiality reasons. Data sharing requests 
will be reviewed by the Data Governance Committee at  
KEMRI CGMRC Kilifi (dgc@kemri-wellcome.org) who will 
manage the process and ensure that appropriate ethical approval 
is in place (if applicable), consent obtained caters for uses  
outlined in the data request, and the request is in line with the  
institution’s policies on data sharing.

Extended data
Kemri Wellcome Trust Research Programme (KWTRP) Research 
Data Repository: Replication Data for: Individual-level variations 

in malaria susceptibility and acquisition of clinical protection, 
(https://doi.org/10.7910/DVN/WQCKJJ)27.

This project contains the following extended data:

•    Data overview

•    Statistical analysis

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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zones over time? 
 

○

Regarding the birth exposure analysis, is it possible that Q4 births are at lower risk simply because 
they have less accumulated exposure/episodes before entering the cohort? Given the incremental 
differences between Q1--> Q2 -->Q3-->Q4, with the largest difference seen between Q1 and Q4 
births, and the effect waning with age, this seems like one possible explanation. Based on your 
annualized outcome (Gotepisode = annual have episode or not), I assume that a child enters the 
analysis only for the first calendar year AFTER their first birthday which could introduce the above 
bias. With the detailed data available, could a more precise metric of pregnancy exposure be 
estimated, based on rainfall, total cohort cases in the 9 months before their birth, or even PI 
associated to a birth (or pregnancy). This would be a more compelling comparison. 
 
Other concerns:

Did you observe any household clustering of children with high numbers of cumulative 
episodes? Our work has demonstrated that infections are primarily clustered (Obala PLOS 
One) and also related (Nelson Nat Comm) at the household level (as measured by haplotype 
sharing) indicating that spatial structure of local ‘prevalence’ beyond the household is 
probably measuring a risky environment (ie mosquito density) rather than the actual risk of 
a nearby infection on another susceptible individual. Additional consideration/discussion of 
household-level factors would strengthen the overall conclusions of the manuscript. 
 

○

Figure 5: The y axis values (0 - 3.5 previous episodes) in Figure 5 do not seem to agree with 
those in Figures 3 and 4B, where it appears some children experienced up to 30 previous 
episodes. How do you reconcile these numbers? 
 

○

Given the large differences between years in overall episodes, shouldn’t year be a covariate 
in the model given that children will have episode data spanning years with much different 
overall morbidity? In a previous analysis that included this cohort, calendar year was 
identified as a significant independent predictor of clinical malaria (Ref 15; Ndungu et al. 
BMC Med 2015). 
 

○

Why was PrevEpisodes excluded from the risk factor analysis in Figure 7? 
 

○

Figure 8: It would be helpful to have a graphical representation of the interaction between 
previous episodes and age to aid the reader in understanding your interpretation of the 
interaction as “older individuals will by nature have experienced more episodes and also 
acquired a higher degree of protection”; for example, plotting Fig 8C for multiple ages/age 
strata would more clearly communicate your point. 
 

○

Reading your responses to Dr. Okell’s thoughtful comments significantly aided in our 
understanding of different aspects of the manuscript; however, some of the indicated 

○
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modifications still seem to be missing from version 2 of the manuscript, including:
Revised description of spatial homo/heterogeneity in results section text for Fig 2.○

Additional panel in Fig 4 showing the distribution of incidence (clinical episodes per 
year) for all children against age.

○

Clarifying the units to effect sizes/regression coefficients for Fig 7-8○

Additional interpretation in the text for Figure 8C and 8D 
 

○

Other studies have also found that previous exposure increases risk of future exposure 
(Sumner eLIFE, asympt exposure increases risk of future symptoms).

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Malaria, epidemiology, implementation science/trials

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 31 Jan 2022
Mario Recker, University of Exeter, Penryn, UK 

We would like to thank the reviewers for their careful evaluation of our manuscript, which 
we hope has helped to improve clarity regarding the methodology, incl. sampling, and 
presentation of our results. Please see below for a point-by-point response to all concerns 
raised by the reviewers. Note, we have included here some additional figures to address 
specific points; these are not part of the manuscript as we felt they would distract from the 
main findings. 
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Major concerns: 
The Prevalence Index (PI) was described in the manuscript as capturing the spatial 
distribution of malaria over time within the cohort. It was also found to have the strongest 
effect on risk of clinical malaria compared to other covariates. However, we are concerned:

PI is used as a metric of local risk, but it is not clear how spatially representative the 
cohort is. There is no information about intervening households not enrolled in the 
cohort. PI assigns a number to only the local malaria cases only among cohort 
members which may not reflect something fundamental about the underlying 
epidemiology. It would be helpful to comment on how spatially representative cohort 
households are in Junju or how children were selected for enrollment. We went back 
to some previous papers and still could not quite get this clearly.

○

Response: This is an important point. Recruitment into the cohort was based on which 
homesteads volunteered following sensitisation of the whole area and was not subject to specific 
spatial or demographic selection criteria. We therefore believe that the cohort analysed here does 
provide an unbiased spatial representation of the village as a whole and have added this 
information in our revised manuscript (Methods section). Furthermore, although the prevalence 
index (PI) is based on recorded malaria episodes in only a small subset of the population, it 
strongly correlates with an individual’s risk of malaria in a given year. And whilst we agree that 
this simple index does not capture all of the underlying factors contributing to risk, we cannot 
think of any reasons why it would not be reflective of the general spatio-temporal epidemiology 
in this area.   
 

Some clarification of the variable definitions for PI is needed. The introduction to PI in 
the methods describes summing over all recorded malaria episodes in a year; 
however, the sums are defined over j, which is described as a location in the text. If 
the latter, and since Zj,t is binary for at least one clinical episode at location j, 
locations/households with vastly different rates of clinical malaria in a given year 
would be weighted equally, diminishing some heterogeneity in the data.

○

Response: We agree that the description of how the prevalence index is derived lacked clarity, 
which we hope is now easier to follow in the revised version. In brief, for each individual we sum 
over all individuals (not homesteads) within a certain spatial neighbourhood (radius around the 
index location). For this we used a binary classification: 1 if the neighbouring individual had a 
recorded episode that year, and 0 otherwise. This way, locations or households with vastly 
different rates of clinical malaria, that the reviewers were alluding to, will be weighted differently; 
that is, a location / household with many individuals who had a recorded infection contribute 
more than an equally distant location with only a single individual. Spatial heterogeneity can 
therefore be captured whilst also achieving some spatial smoothing.  
 

Given the previous two points, and particularly since this number is based on 
symptomatic cases, we feel that the term “prevalence” index could be misleading. 
“Cohort incidence index” or similar may be more appropriate.

○

Response: This is a fair point; however, at this stage of the reviewing process, with the 
manuscript having been online for over a year, we feel it might be better to stick with prevalence 
index but to clarify this point in the revised manuscript to avoid potential misinterpretation.  
 

It would be useful to see more information about ‘a’. It is given as 2 with an indication 
that it was estimated from the data, but more information about a, a description of 

○
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how well a fit the data, a sensitivity analysis of the effect of a on the relationship 
between PI & episodes all would be useful in understanding this central parameter.

Response: This is another important point, which also lacked detail in the original submission. 
The parameter a acts like spatial smoothing, with larger values corresponding to smaller 
influences of spatially distant locations contributing to the prevalence index (PI), leading to more 
spatial heterogeneity, as shown in the graph below plotting the standard deviation of PI against 
a.  
 
Graph 1  
 
We initially tried to use spatial statistics to infer the value from the data but found that it varied 
too much between individual years. In the end we therefore decided to use a value that 
maximised the correlation between PI and number of episodes for all individuals and all years, as 
shown in the graph below. 
 
Graph 2 
 
This value was also found to be a good ‘visual’ compromise between spatial smoothing and 
maintaining sufficient heterogeneity to demonstrate spatio-temporal trends (Fig. 2). We would 
usually add these graphs as supplementary material but here, given the WT OpenResearch 
publishing format, felt that they would distract from the main findings. We hope that interested 
readers will still be able to find this information in the comments section. 
 

It is interesting that the zones of highest ‘PI’ seem to shift from north to central to 
south over the course of the study period. This is consistent with our finding of 
dynamic hotspots of fever (Platt Sci Rep). Could this be related to local levels of 
population immunity? Or is it influenced by the open cohort model where you have 
more cohort members in different zones over time?

○

Response: We agree that this was an interesting finding and partly motivated some of the 
subsequent analyses. We speculate that this might indeed be driven by a dynamically changing 
immunity landscape, as previously indicated in Bejon et al. PloS Med (2010) and also in line with 
the paper referred to by the reviewers, rather than spatially biased enrolment into the cohort (for 
reasons mentioned above). We have added a brief discussion on this point in our revised 
manuscript. 
 
Regarding the birth exposure analysis, is it possible that Q4 births are at lower risk simply 
because they have less accumulated exposure/episodes before entering the cohort? Given 
the incremental differences between Q1--> Q2 -->Q3-->Q4, with the largest difference seen 
between Q1 and Q4 births, and the effect waning with age, this seems like one possible 
explanation. Based on your annualized outcome (Gotepisode = annual have episode or not), 
I assume that a child enters the analysis only for the first calendar year AFTER their first 
birthday which could introduce the above bias. With the detailed data available, could a 
more precise metric of pregnancy exposure be estimated, based on rainfall, total cohort 
cases in the 9 months before their birth, or even PI associated to a birth (or pregnancy). This 
would be a more compelling comparison. 
 
Response: This is an interesting hypothesis but there are reasons to believe why this cannot fully 
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explain our observations. Children are enrolled at birth but for our analyses we only selected 
children 1 year old or above. It is true that individuals born early January have nearly an extra 
year of exposure compared to those born late in December and therefore could theoretically have 
more cumulative episodes. However, we did not find an incremental differences between Q1->Q2-
>Q3->Q4 that the reviewers are referring to (see Figs. 6 and 7). This becomes more apparent 
when we stratified by birth month, as shown below (due to low sample sizes we a birth quarter 
stratification in the manuscript). 
 
Graph 3 
 
Furthermore, although it is possible that the discrete nature of age and year can introduce the 
referred bias in the number of cumulative episodes, this would not affect their risk of getting a 
clinical episode in subsequent years, which our analysis showed was reduced for those born in 
Q4. We fully agree that these observations warrant more detailed analyses into the likely causes 
(e.g. exposure during pregnancy or exposure during first year of life), and in fact is something 
that we are currently working on, but we feel that this was outside the scope of this manuscript.  
 
Other concerns:

Did you observe any household clustering of children with high numbers of 
cumulative episodes? Our work has demonstrated that infections are primarily 
clustered (Obala PLOS One) and also related (Nelson Nat Comm) at the household 
level (as measured by haplotype sharing) indicating that spatial structure of local 
‘prevalence’ beyond the household is probably measuring a risky environment (ie 
mosquito density) rather than the actual risk of a nearby infection on another 
susceptible individual. Additional consideration/discussion of household-level factors 
would strengthen the overall conclusions of the manuscript.

○

Response: We did not look specifically at household clustering but agree that this might be a 
potentially important factor contributing to an individual’s risk of infection / clinical episodes. Of 
a total of over 500 individuals analysed, only around 50 shared homesteads, and because we 
only considered children aged 1-12 years, rather than all members in a household, we do not 
believe that this would make a significant difference to the results presented here.  
 

Figure 5: The y axis values (0 - 3.5 previous episodes) in Figure 5 do not seem to agree 
with those in Figures 3 and 4B, where it appears some children experienced up to 30 
previous episodes. How do you reconcile these numbers?

○

Response: Thank you for pointing this out, this was due to an unfortunate mislabelling of the y-
axes; what was plotted in Fig. 5 was the average number of episodes per year, i.e. cumulative 
episodes / age. We have now revised this figure to show total number of previous infections 
(going up to >30 in the 12 year old age class). 
 

Given the large differences between years in overall episodes, shouldn’t year be a 
covariate in the model given that children will have episode data spanning years with 
much different overall morbidity? In a previous analysis that included this cohort, 
calendar year was identified as a significant independent predictor of clinical malaria 
(Ref 15; Ndungu et al. BMC Med 2015).

○

Response: This is a good point; however, the effect of year is implicitly taken care of by the 
prevalence index, which strongly correlates with the total number of episodes and hence year, as 
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shown in the below graph. 
 
Graph 4 
 

Why was PrevEpisodes excluded from the risk factor analysis in Figure 7?○

Response: The reason why PrevEpisodes was excluded is because we argued that individual-level 
factors such as genotype or birth quarter will affect the number of previous episodes experienced 
by a child, i.e. PrevEpisodes itself will be a function of those factors. This is why we then carried 
out the subsequent analysis using only PrevEpisodes and PI as covariates, which is shown in Fig. 
8. 
 

Figure 8: It would be helpful to have a graphical representation of the interaction 
between previous episodes and age to aid the reader in understanding your 
interpretation of the interaction as “older individuals will by nature have experienced 
more episodes and also acquired a higher degree of protection”; for example, 
plotting Fig 8C for multiple ages/age strata would more clearly communicate your 
point.

○

Response: We fully agree and have now revised the analysis to use age categories instead of 
using age as a continuous variable. The new figure also more clearly demonstrates the 
interaction effect between the number of previous episodes and age (i.e. that the effect size of 
PrevEpisodes decreases with increasing age).  
 
Graph 5 
 

Reading your responses to Dr. Okell’s thoughtful comments significantly aided in our 
understanding of different aspects of the manuscript; however, some of the indicated 
modifications still seem to be missing from version 2 of the manuscript, including:

Revised description of spatial homo/heterogeneity in results section text for Fig 
2.

○

Additional panel in Fig 4 showing the distribution of incidence (clinical episodes 
per year) for all children against age.

○

Clarifying the units to effect sizes/regression coefficients for Fig 7-8○

Additional interpretation in the text for Figure 8C and 8D○

○

Response: We apologise for this but are equally puzzled as to why none of our resubmitted and 
revised material (manuscript and figures) following Dr. Okell’s comments had been available 
online. We will try to navigate this system more carefully to make sure that all updated text and 
figures are available for review. 
 

Other studies have also found that previous exposure increases risk of future 
exposure (Sumner eLIFE, asympt exposure increases risk of future symptoms).

○

Response: Thank you for pointing us towards this interesting study, which incidentally was 
published after our manuscript went online. We would like to point out that the effect described 
therein declined rapidly over time and was observed across all age groups. It is therefore 
questionable whether this describes the same phenomenon underlying our observations. This is 
now briefly discussed in the Discussion.    
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Competing Interests: No competing interests were disclosed.

Reviewer Report 14 September 2021

https://doi.org/10.21956/wellcomeopenres.19005.r45823

© 2021 Okell L. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Lucy C. Okell   
MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease 
Epidemiology, Imperial College London, London, UK 

The authors have addressed all my comments very thoroughly - thank you for the insightful 
responses. I have no further comments.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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Version 1

Reviewer Report 13 July 2021

https://doi.org/10.21956/wellcomeopenres.18203.r44305

© 2021 Okell L. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Lucy C. Okell   
MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease 
Epidemiology, Imperial College London, London, UK 

This analysis harnesses a rich dataset following children over many years within one area and 
assessing the incidence of clinical malaria episodes. The findings are very interesting and 
challenge the idea that immunity to disease could be acquired after a specific number of previous 
disease episodes. Disease appears to be more concentrated within particular individuals than 
might be expected within a given area. The findings have important implications for studies of 
malaria susceptibility, risk factors, immune protection, and mathematical models. The analysis is 
detailed, thoughtful and well written. 
 
I have some comments and clarifications:

Could you clarify in the methods whether children were continuously recruited during the 
study period, or were all recruited at birth at the beginning of the study and followed up? 
This becomes clearer later on, but it would help interpretation e.g. of Figure 1, where it’s not 
quite clear if year also indicates increasing average age of the cohort. 
 

○

Can you briefly state whether any interventions were provided as part of the cohort study 
(treatment, nets…) 
 

○

Are all episodes uncomplicated malaria, or do you count severe malaria also? 
 

○

Statistical modelling – can you explain a bit more the ‘got episode’ outcome versus the 
‘previous episodes’ explanatory variable. Does ‘got episode’ depend on the most recent year 
of data for a given child, while the previous episodes are those occurring in the years before 
that? 
 

○

In this part of the results: “in those years we not only see more individuals with a clinical 
episode but a disproportional increase in the numbers of episodes per individual” – how is 
the disproportional part assessed – maybe based on a Poisson/negative binomial 
distribution or similar? 
 

○

Figure 2 is a nice depiction. Are the years with high prevalence definitely more spatially 
homogeneous? Visually the lower prevalence years, e.g. 2007 and 2012 also look quite 
homogeneous. 
 

○
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Fig 4 is very interesting. Why are sickle cells carriers removed from panel B but not A? 
 

○

It could be helpful to have a standard plot of incidence of episodes by age near the 
beginning, to help the reader compare this cohort to those from other endemic settings. 
 

○

P6 Can you clarify the units of the effect size estimates - are they the regression coefficients 
on the log odds scale? i.e. 0 = no effect? Same in the fig 7A legend. 
 

○

Fig 7 – I like these plots, but is the blue just 1-yellow? It may be clearer with just one or the 
other. It would be good to also define ‘GotEpisode’ again in the legend to save the reader 
referring back – i.e. probability of a current clinical episode – per year, I think? 
 

○

Fig 8. Given the interaction, more explanation is needed for panels A, C and D. What is the 
baseline group for age and previous episodes in the regression, and what units are used? 
For what age does C show the effect of previous episodes? (the youngest age perhaps, or 
the median?). It could be helpful to plot panel C twice, once the effect of previous episodes 
for a younger age and once for an older age, so the reader has more intuition how the 
interaction works (there should be less effect of previous episodes at older ages given the 
direction of interaction?). Does the effect of previous episodes ever become protective at 
older ages in the multivariable model? (despite not being protective in Fig 5). 
 

○

Same query for panel D – for what number of previous episodes does this age effect apply? 
 

○

Can you comment on the strength of correlation between previous episodes and the 
prevalence index? Is it possible to distinguish the two effects from each other during the 
regression? E.g. can a child with say 20 previous episodes come from a lower PI area? 
 

○

A very interesting discussion. Could you explain this sentence in the last paragraph some 
more? “children experience different transmission intensities at different times during their 
life” – I was not sure how this was inferred.

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epidemiology, mathematical modelling

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 03 Sep 2021
Mario Recker, University of Exeter, Penryn, UK 

We would like thank the reviewer for their positive evaluation of our work and critical 
comments, which we believe has helped to improve the quality and readability of our 
manuscript. Please see below for a point-by-point response to issues raised. 
 

Could you clarify in the methods whether children were continuously recruited during the 
study period, or were all recruited at birth at the beginning of the study and followed up? 
This becomes clearer later on, but it would help interpretation e.g. of Figure 1, where it’s 
not quite clear if year also indicates increasing average age of the cohort. 
Response: Since the initial setup of this cohort in 2005, children have been 
continuously recruited at or shortly after birth and actively monitored on a weekly 
basis for detection of malaria episodes. Furthermore, we aimed to maintain a similar 
average age over time by only selecting children that were between 1 and 12 years 
old in any given year. We have clarified this in the Method section. 
 

○

Can you briefly state whether any interventions were provided as part of the cohort study 
(treatment, nets…) 
Response: This was unfortunately omitted in the description of the data / cohort. All 
malaria positive children are treated with co-artemether. Bednet coverage is high in 
this cohort (doi: 10.1186/s12879-017-2822-x) and hence we did not consider it 
necessary to distribute nets specifically to study participants.  We found no 
correlation between bednet use and outcome; hence bednet use was not considered 
for further analyses. This has now been added to the Methods section. 
 

○

Are all episodes uncomplicated malaria, or do you count severe malaria also?  
Response: This community based active surveillance of malaria with prompt 
provision of anti-malarials did not identify episodes of severe malaria. A malaria 
episode (which relates to our response variable GotEpisode) is defined as axillary 
temperature ≥37.5°C associated with >2,500 P. falciparum parasites per microliter of 
blood. This has been clarified. 
 

○

Statistical modelling – can you explain a bit more the ‘got episode’ outcome versus the 
‘previous episodes’ explanatory variable. Does ‘got episode’ depend on the most recent 
year of data for a given child, while the previous episodes are those occurring in the years 
before that? 

○
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Response: As outlined in the Methods section, GotEpisode is a binary response 
variable (yes/no) indicating whether an individual experienced a clinical episode 
(defined as above) in a given year or not. The variable PrevEpisodes, on the other 
hand, is the recorded total number of episodes a child has experienced up until but 
not including the year in question. We have tried to make this clearer in the Method 
section.  
 
In this part of the results: “in those years we not only see more individuals with a clinical 
episode but a disproportional increase in the numbers of episodes per individual” – how is 
the disproportional part assessed – maybe based on a Poisson/negative binomial 
distribution or similar?  
Response: This was originally assessed by eye only as it was clear from Figure 1B that 
in years with low-to-medium levels of infections, less than a third of children 
experience more than 2 episodes per year, whereas this increases to around two 
thirds in years of high prevalence. We have now added another panel showing the 
frequency distribution of 1, 2, and 3+ episodes to the graph to make this point 
clearer.  
 

○

Figure 2 is a nice depiction. Are the years with high prevalence definitely more spatially 
homogeneous? Visually the lower prevalence years, e.g. 2007 and 2012 also look quite 
homogeneous. 
Response: This is a good point and unfortunate wording on our part. We have 
replaced this sentence with “Furthermore, we find that in high prevalence years (2014 
and 2018), malaria incidence was not confined to particular areas but was observed 
almost across the entire cohort, which could be indicative of more intense and/or longer 
transmission seasons.” 
 

○

Fig 4 is very interesting. Why are sickle cells carriers removed from panel B but not A? 
Response: The reason for removing sickle cell carriers in Figure 4B is because it is a 
known protective trait. AS children will therefore have a lower total number of 
previous episodes and are also less likely to experience an episode in a given year, 
such that leaving them in would confound the results. On the other hand, they would 
not influence the relationship between age and the risk of an episode. We have 
added a note on this in the main text.     
 

○

It could be helpful to have a standard plot of incidence of episodes by age near the 
beginning, to help the reader compare this cohort to those from other endemic settings.  
Response: Thank you for the suggestion. We have now added an additional panel to 
Fig 4 showing the distribution of incidence (clinical episodes per year) for all children 
against age. This graph demonstrates that age on its own, at least in this cohort 
within the age range considered, is not a good predictor of clinical protection.   
 

○

P6 Can you clarify the units of the effect size estimates - are they the regression coefficients 
on the log odds scale? i.e. 0 = no effect? Same in the fig 7A legend.  
Response: All continuous variables were centred and scaled for the statistical 
analyses to permit better comparison between effect sizes. For those variables a unit 
represents one standard deviations from the mean. And yes, the regression 

○

 
Page 26 of 28

Wellcome Open Research 2022, 6:22 Last updated: 10 MAR 2022



coefficient are log odds, with 0 indicating no effect, negative values a protective effect 
and positive values an increase in risk. We have added a corresponding note to the 
Methods section and the main text and changed the x-axis labels in Figs 7A and 8A.   
 
Fig 7 – I like these plots, but is the blue just 1-yellow? It may be clearer with just one or the 
other. It would be good to also define ‘GotEpisode’ again in the legend to save the reader 
referring back – i.e. probability of a current clinical episode – per year, I think?  
Response: Thank you for the suggestion, we have amended the figure accordingly 
(as blue was indeed 1-yellow). We have also added a reminder to the main text and 
figure legends that GotEpisode refers to a child experiencing a clinical malaria episode 
in a given year or not.  
 

○

Fig 8. Given the interaction, more explanation is needed for panels A, C and D. What is the 
baseline group for age and previous episodes in the regression, and what units are used? 
For what age does C show the effect of previous episodes? (the youngest age perhaps, or 
the median?). It could be helpful to plot panel C twice, once the effect of previous episodes 
for a younger age and once for an older age, so the reader has more intuition how the 
interaction works (there should be less effect of previous episodes at older ages given the 
direction of interaction?). Does the effect of previous episodes ever become protective at 
older ages in the multivariable model? (despite not being protective in Fig 5). 
Response: We fully agree that Fig 8 was hard to interpret without further 
explanation. As mentioned above, all numerical variables are centred and scaled, so 
the effects shown in panel A are with respect to a standard deviation from the mean. 
Panel B is probably the easiest to interpret and simply shows that an individual’s risk 
of an episodes increases with increasing malaria prevalence in their surrounding 
area. What panel C shows is that of similarly aged individuals, those with a higher 
number of previous episodes are at a higher risk of subsequent episodes. Panel D 
shows this the other way around, i.e. that of children with similar numbers of 
previous infections, those that are older are more protected. And this interaction 
between age and previous number of episodes is what explains the overall small 
effect size of age when not accounting for it (shown in Fig 7). We have now added a 
more detailed interpretation of these results to the main text. With regards to age 
itself, and plotting panel C twice, as shown in Fig 5, the effect of the previous number 
of episodes does not appear to decline within the age groups considered in this 
analysis. Furthermore, as the data is centred, the results implicitly compare young 
and old children. We do agree, however, that at some point in their lives this effect 
should diminish; unfortunately, though, we do not have the data to explore this 
further.   
 

○

Same query for panel D – for what number of previous episodes does this age effect apply? 
Response: Please see response to previous comment. 
 

○

Can you comment on the strength of correlation between previous episodes and the 
prevalence index? Is it possible to distinguish the two effects from each other during the 
regression? E.g. can a child with say 20 previous episodes come from a lower PI area? 
Response: This is unfortunately not possible for this regression analysis simply 
because the prevalence index varies so much both over time and space, meaning it is 

○
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not possible to categorise children based on PI in a meaningful way for more than a 
year or two. Furthermore, we have mapped the cohort by number of previous 
episodes (results not shown) and could not find any clear spatial clustering of 
individuals with high a low number of episodes. And although we would expect that 
children with many episodes must come from areas where there was a lot of 
transmission, it is possible to find other children living in the same area with much 
fewer recorded episodes, which to us suggests substantial individual-level variation in 
the risk of experiencing a malaria episode.  
 
A very interesting discussion. Could you explain this sentence in the last paragraph some 
more? “children experience different transmission intensities at different times during their 
life” – I was not sure how this was inferred. 
Response: This statement is based on the fact that malaria prevalence in this cohort 
varies significantly across space and time, as illustrated in Fig. 2. So for example, a 
child living in the South-West might have experienced high malaria transmission 
during early childhood and much less so in later years, whereas a child growing up in 
the North-East would have been exposed to less malaria during the first few years of 
their life but more so at a later stage during their childhood. We currently do not 
know if or how this affects an individual’s ability to acquire protective immunity, but 
maybe this is a first step in acknowledging that these differences exist and can arise 
even within a small geographic area.   

○
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