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C L I M A T O L O G Y

Geologic evidence for an icehouse Earth before 
the Sturtian global glaciation
Scott A. MacLennan1,2*, Michael P. Eddy3, Arthur J. Merschat4, Akshay K. Mehra1,5, 
Peter W. Crockford1,6, Adam C. Maloof1, C. Scott Southworth4, Blair Schoene1

Snowball Earth episodes, times when the planet was covered in ice, represent the most extreme climate events in 
Earth’s history. Yet, the mechanisms that drive their initiation remain poorly constrained. Current climate models 
require a cool Earth to enter a Snowball state. However, existing geologic evidence suggests that Earth had a 
stable, warm, and ice-free climate before the Neoproterozoic Sturtian global glaciation [ca. 717 million years (Ma) ago]. 
Here, we present eruption ages for three felsic volcanic units interbedded with glaciolacustrine sedimentary rocks 
from southwest Virginia, USA, that demonstrate that glacially influenced sedimentation occurred at tropical latitudes 
ca. 751 Ma ago. Our findings are the first geologic evidence of a cool climate teetering on the edge of global glaciation 
several million years before the Sturtian Snowball Earth.

INTRODUCTION
Glacial coverage is controlled by the global distribution of surface 
temperatures and the rate of temperature change with altitude (lapse 
rate). Today, these variables lead to a configuration where the snow 
line is at sea level near the poles and at high altitude in the tropics. 
Snowball Earth episodes represent a departure from this state, where 
the sea level snow line extends through the tropics. Potential 
causative mechanisms for Snowball initiation fall into two categories: 
(i) changes in the atmosphere’s greenhouse gas budget (1–3) and 
(ii) changes in planetary albedo (4, 5). Critical to testing, the viability 
of these models is the initial climate boundary condition.

Most initiation models assume a cold climate immediately before 
the first Neoproterozoic Snowball Earth [ca. 717 million years (Ma) ago], 
invoking tectonically controlled mechanisms such as increased 
planetary albedo related to the presence of a tropical supercontinent 
and elevated CO2 sequestration through weathering of mafic rocks 
along convergent and divergent margins (3, 6, 7). However, this as-
sumption is difficult to test because the only climate proxies cur-
rently available for the Neoproterozoic are geologic. Snowball Earth 
episodes, with evidence of equatorial sea ice, represent the only 
times during the Neoproterozoic where global climate is con-
strained. The Tonian Period (1000 to 717 Ma ago) preceding the 
first Neoproterozoic Snowball Earth has an apparent absence of gla-
cially influenced sedimentary rocks and an abundance of platform 
carbonates and evaporites, consistent with an Earth that had a stable, 
ice-free climate. Rapid exit from such a climate state would require an 
extraordinarily powerful trigger because a warm ocean-atmo-
sphere system has a substantial buffering effect on climate (4). 
The interpretation of a warm global climate before the onset of 
Snowball Earth episodes rests on the assumption that all Neopro-
terozoic glaciogenic sedimentary rocks belong to one of three glob-
ally correlative glacial episodes: the Sturtian [717–659 Ma ago (8–
11)], the Marinoan [639–635 Ma ago (12, 13)], or the Gaskiers [ca. 

580  Ma  ago (14)]. However, there are glaciogenic sedimentary 
rocks with poor age control or disputed stratigraphic correlations 
[e.g., (15)] that may predate the Sturtian, including the Kaigas For-
mation in Namibia (16,  17), the Quruqtagh Group in northwest 
China (18), and the Konnarock Formation in Virginia, USA (19).

Konnarock Formation
To better characterize Earth’s climate state before the Sturtian glacia-
tion, we have constrained the depositional age of the Konnarock 
Formation by dating zircon crystals isolated from intercalated felsic 
volcanic rocks using isotope dilution–thermal ionization mass spectrom-
etry (ID-TIMS) U-Pb geochronology. Our samples are from a 
structurally continuous sedimentary succession in southwest Virginia 
consisting of the Mount Rogers, Konnarock, and Unicoi Formations 
(Fig. 1A). The stratigraphy lies unconformably on 1.3– to 1.0–billion 
year gneiss related to the Grenville orogeny, implying an autoch-
thonous relationship and that the sequence is not exotic to Laurentia 
(19, 20). This stratigraphic relationship also implies that the paleo-
magnetic record from Laurentia may be used to constrain the deposi-
tional paleolatitude of the overlying Neoproterozoic sedimentary 
rocks. Multiple paleomagnetic studies robustly constrain eastern 
Laurentia (modern eastern and central United States) to low latitudes 
for most of the Tonian (21–25).

The Mount Rogers Formation comprises predominantly felsic 
volcanics and associated sedimentary rocks that were deposited 
ca. 755 Ma ago (26–28). The <1100-m-thick Konnarock Formation overlies 
the Mount Rogers Formation and consists of argillite, fine siliciclastics, 
and massive and stratified diamictite, with clasts up to boulder size 
(19, 20). The limited outcrop area, relatively thick sedimentary 
sequence that includes debris flow deposits and massive to graded 
sandstones, and presumed association with bimodal volcanics in the 
Mount Rogers Formation suggest that the Konnarock Formation 
was deposited in a continental rift undergoing rapid subsidence 
(29). However, the rhythmic appearance of the argillites in the 
Konnarock Formation, the presence of outsize clasts of Grenville 
granite gneiss, early lithified frozen till fragments, and dropstones 
(Fig. 1B) support glacially influenced deposition within a lacustrine 
setting during rifting (29–34). The Unicoi Formation of the lower 
Chilhowee Group unconformably overlies the Konnarock Formation 
(20). On the basis of the lithological correlation of basaltic flows in 
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the Catoctin Formation, a maximum age of ca. 570 Ma ago has been 
assigned to the basal Chilhowee Group (26). Glaciolacustrine deposi-
tion as recorded by the Konnarock formation is therefore currently 
temporally constrained between the late Tonian and early Cambrian 
(ca. 750 to 570 Ma ago) (19, 20, 28).

Despite previous U-Pb geochronology from the Mount Rogers 
Formation (26, 27), more precise age constraints for Konnarock 
Formation are unavailable because the unit has not been dated 
directly, and its depositional relationship to the underlying Mount 
Rogers Formation remains unresolved. The nature of the contact 
between these two formations has been interpreted to be conform-
able, unconformable, and structural (19, 20, 28, 35).

The uppermost Mount Rogers Formation and lowermost Konnarock 
Formation contain several bodies of rhyolite that are up to ca. 2000 m 
wide and 300 m thick (19, 28, 35), which are appropriate for U-Pb 
zircon dating. Concordance with local strike and dip, along with the 
presence of flow banding and transitional volcaniclastic facies, pro-
vides evidence that these units are syndepositional. To further test 
this interpretation, we collected three rhyolite samples in strati-
graphic order, spanning the contact between the uppermost Mount 
Rogers Formation (KR18-04 and KR18-01) and the overlying 
Konnarock Formation (KR18-05; Fig. 1) for U-Pb ID-TIMS zircon 
geochronology. Sample descriptions, isotopic data, and analytical 
methods are described in the Supplementary Materials. If the eruption 
ages for these rhyolites follow the law of superposition, then they 
can be used to assess the depositional relationship between the 

Mount Rogers and Konnarock Formations and the timing of glacio-
lacustrine sedimentation.

RESULTS
Zircons were separated from our rhyolite samples using traditional 
mineral separation techniques (see Materials and Methods). The 
zircons are predominantly clear and euhedral and frequently frag-
mented, likely during mineral separation. Pb loss is apparent in U-Pb 
concordia space for many grains, despite the use of the chemical 
abrasion technique (36). However, all three samples exhibit popula-
tions of zircon that are the same age within analytical uncertainty. 
We interpret these populations to represent pre- and syneruptive 
zircon growth and use them to estimate eruption ages using a 
Bayesian Markov Chain Monte Carlo technique (37). The resulting 
eruption ages are 752.60 + 0.12/−0.65 Ma ago for KR18-04, 752.06 + 
0.40/−0.54 Ma ago for KR18-01, and 751.28 + 0.10/−0.71 Ma ago 
for KR18-05 (Fig. 1C; 95% credible interval, analytical uncertainties 
only) and satisfy the law of superposition. As a result, we interpret 
these rhyolites to be syndepositional flows that constrain the age of 
the sedimentary rocks around them.

DISCUSSION
Numerous paleomagnetic studies constrain Laurentia to low latitudes 
during the Tonian (21–24). In particular, recent geochronologic 
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(38) and paleomagnetic (25) data from the Chuar Group in Arizona, 
USA, necessitate equatorial paleolatitudes for the modern eastern 
United States ca. 751 Ma ago (Fig. 2). Given the autochthonous contact 
between the Konnarock Formation and Laurentian basement, these 
data constrain the paleolatitude of these rocks to ca. 10°S during 
deposition. As a result, the presence of sample KR18-05 stratigraph-
ically above laminated diamictite constrains tropical glaciolacustrine 
sedimentation to ca. 751 Ma ago, ~33 Ma before the start of the 
Sturtian glaciation (8, 10).

The presence of tropical glaciers provides an important first- 
order constraint on Earth’s climate before the Sturtian Snowball 
Earth. While the occurrence of glacially influenced rocks in the 
tropics suggests the possibility of Snowball Earth conditions, numerous 

observations of shallow water carbonate deposition within tropical 
latitudes ca. 751 Ma ago [e.g., (9)] preclude global glaciation. Never-
theless, the implications of tropical glaciers can be explored by 
examining the relationship between tropical snow line altitude and 
sea surface temperature (SST) for different climate states (Fig. 3). A 
tropical SST of ca. 35°C and a shallow lapse rate, similar to the ice-
free Cretaceous (ca. 100 Ma ago) (39), would require deposition of the 
Konnarock Formation at altitudes >6 km. It is unlikely that rocks de-
posited at such high altitudes would be preserved in the geologic record. 
Furthermore, Laurentia was undergoing extension ca. 751 Ma ago, 
precluding the possibility of Himalaya-like mountains in this area. Rather, 
the failed rift setting recorded by the Mount Rogers and Konnarock 
Formations is suggestive of topography similar to the modern East 
African Rift (29, 40). A steeper lapse rate (41) and a lower SST, sim-
ilar to the Last Glacial Maximum (LGM), result in a tropical snow 
line altitude at ca. 3.5 to 4 km (Fig. 3) (42). Even colder conditions 
would lower the snow line until eventually runaway ice albedo feed-
back leads to Snowball initiation (Fig. 3). Snow line elevations of 
1 to 3.5 km under these colder conditions are similar to the altitudes 
of modern lakes in the East African rift and may provide an analog 
for the depositional setting of the Konnarock Formation.

We suggest that the most parsimonious explanation for the evi-
dence of tropical glaciation preserved in the Konnarock Formation 
is deposition in a glacial lake at an altitude of 1 to 3.5 km in a global 
climate that was as cold as—or colder than—the LGM. This obser-
vation provides the first geological constraint on climate during the 
Tonian and definitively invalidates any climate models for this period 
where average global temperatures are too high to support low- 
latitude glaciers. Whether the Konnarock Formation represents the 
background climate or a short-term glacial event is ambiguous. 
However, a temporally correlative change in marine 87Sr/86Sr toward 
less radiogenic values (3) is interpreted to reflect CO2 sequestration 
through weathering of mafic rock (7) and supports the former. A 
prolonged period of cold conditions in the late Tonian is consistent 
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with a global climate governed by relatively slow tectonic processes 
that was primed for global glaciation. If true, then models describing 
Snowball Earth initiation are incomplete without understanding the 
longer-term forcing that led to this climate boundary condition.

MATERIALS AND METHODS
Rhyolite samples were cut into small chips before being disaggregated 
using short runs in a SPEX 8530 ring and puck mill. The resulting 
material was sieved to <500 m and panned to obtain a rough density 
separation. Following panning, magnetic minerals were removed 
with a hand magnet and repeated runs on a Frantz isodynamic 
magnetic separator. A pure zircon separate was then hand-picked 
from the resulting heavy, nonmagnetic fraction from each sample.

Zircons were dated at Princeton University using a modified 
version of chemical abrasion–ID-TIMS (36). Zircons were first 
annealed at 900°C and 1 atmosphere for 60 hours. Subsequently, 
individual zircons were loaded into Teflon perfluoroalkoxy alkane 
microcapsules with 100 to 125 l of 29 M hydrofluoric acid (HF) 
and 25 l of 30% HNO3. The microcapsules were then loaded into a 
Parr dissolution vessel and held at 215°C for 12 to 14 hours. The 
resulting solutions were then discarded, and each individual zircon 
was repeatedly rinsed in 29 M HF, H2O, and 6 N HCl. After rinsing, 
approximately ~0.006 g of EARTHTIME 202Pb-205Pb-233U-235U iso-
topic tracer (43, 44) and 75 to 100 l of 29 M HF were added to each 
microcapsule. The microcapsules were then reloaded into a Parr 
dissolution vessel and held at 215°C for 60 hours for total digestion. 
The solutions were then dried down and dissolved in 6 N HCl at 
180°C for ~12 hours to convert the samples to chloride form. Uranium 
and Pb were purified from the dissolved sample with AG-1 X8 200- 
to 400-mesh anion exchange resin using methods modified from 
(45). Samples were loaded onto 50 l of anion exchange columns in 
50 to 75 l of 3 N HCl and rinsed dropwise to remove trace elements. 
Then, Pb and U were eluted using 200 l of 6 N HCl and 250 l of 
H2O, respectively. Samples were dried down with a microdrop of 
0.05 M H3PO4 before analysis via TIMS.

All isotopic measurements were made on the IsotopX PhoeniX-62 
TIMS at Princeton University. Lead was run as a metal and measured 
by peak hopping on a Daly photomultiplier. Uranium was analyzed 
as UO2 and was measured statically on a series of faraday cups. 
Measured ratios were corrected assuming an 18O/16O of 0.00205 ± 0.00004 
(2), corresponding to the modern atmospheric value (46). Corrections 
for mass-dependent fractionation were performed using the known 
ratios of 202Pb/205Pb and 233U/235U in the ET2535 isotopic tracer and 
assuming a 238U/235U of 137.818 ± 0.045 (2), which represents the 
mean value of 238U/235U measured in natural zircon (47). Corrections 
for Pb fractionation were performed cycle by cycle. However, the 
correction for U fractionation was performed using the mean 233U/235U 
for the analysis. Daly photomultiplier dead time for Pb was monitored 
by running the NBS981 and NBS982 Pb isotopic standards over the range 
1000 counts per second to 2.5 Mcps over the course of the study.

A correction for common Pb (Pbc) was performed by assuming 
that all Pbc is from laboratory contamination and using the measured 
204Pb and a laboratory Pbc isotopic composition to subtract the 
appropriate mass of Pbc from each analysis.

A correction for initial secular disequilibrium in the 238U-206Pb 
system due to the exclusion of Th during zircon crystallization [e.g., 
(48)] was made for each analysis using a ratio of zircon/melt partition 
coefficients (fThU) of 0.23 to estimate the [Th/U]Magma. These parti-

tion coefficients were empirically determined from measurements 
of glass and coexisting zircon rims or surfaces in a transitional 
tholeiitic-alkalic rhyolite erupted in Iceland [sample IETR in (49)]. 
Our estimated [Th/U]Magma values (5.78 to 3.48) are consistent with 
the composition of silicic magmas erupted in rift settings (50, 51). 
Regardless, the effect of this correction is negligible (<100,000 years) 
for the dates reported in this study.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/24/eaay6647/DC1
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