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Background:Nowadays, although the cause of hepatocellular carcinoma (HCC) mortality
and recurrence remains at a high level, the 5-year survival rate is still very low. The DNA
damage response and repair (DDR) pathway may affect HCC patients’ survival by
influencing tumor development and therapeutic response. It is necessary to identify a
prognostic DDR-related gene signature to predict the outcome of patients.

Methods: Level 3 mRNA expression and clinical information were extracted from the
TCGA website. The GSE14520 datasets, ICGC-LIRI datasets, and a Chinese HCC cohort
were served as validation sets. Univariate Cox regression analysis and LASSO-penalized
Cox regression analysis were performed to construct the DDR-related gene pair (DRGP)
signature. Kaplan–Meier survival curves and time-dependent receiver operating
characteristic (ROC) analysis curves were calculated to determine the predictive ability
of this prognostic model. Then, a prognostic nomogram was established to help clinical
management. We investigated the difference in biological processes between HRisk and
LRisk by conducting several enrichment analyses. The TIDE algorithm and R package
“pRRophetic” were applied to estimate the immunotherapeutic and chemotherapeutic
response.

Results: We constructed the prognostic signature based on 23 DDR-related gene pairs.
The patients in the training datasets were divided into HRisk and LRisk groups at median
cut-off. The HRisk group had significantly poorer OS than the LRisk group, and the
signature was an independent prognostic indicator in HCC. Furthermore, a nomogram of
the riskscore combined with TNM stage was constructed and detected by the calibration
curve and decision curve. The LRisk group was associated with higher expression of HBV
oncoproteins and metabolism pathways, while DDR-relevant pathways and cell cycle
process were enriched in the HRisk group. Moreover, patients in the LRisk group may be
more beneficial from immunotherapy. We also found that TP53 gene was more frequently
mutated in the HRisk group. As for chemotherapeutic drugs commonly used in HCC, the
HRisk group was highly sensitive to 5-fluorouracil, while the LRisk group presented with a
significantly higher response to gefitinib and gemcitabine.
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Conclusion: Overall, we developed a novel DDR-related gene pair signature and
nomogram to assist in predicting survival outcomes and clinical treatment of HCC
patients. It also helps understand the underlying mechanisms of different DDR patterns
in HCC.
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INTRODUCTION

Liver cancer remains a major contributor to the global cancer
burden, and it is estimated that the global incidence cases will
exceed 1 million by 2025 (Llovet et al., 2021). Hepatocellular
carcinoma (HCC) is the most common form of liver cancer and
the fourth-highest cause of cancer mortality (Villanueva, 2019).
Hepatitis B and C virus (HBV and HCV) infection, cirrhosis,
metabolic diseases, and alcohol-related liver disease are the main
risk factors for HCC (Tunissiolli et al., 2018). Although diagnosis
and treatment have made rapid progression in HCC, the 5-year
survival rates remain very low (Siegel et al., 2013). Because of the
different levels of heterogeneity in HCC, particularly interpatient,
intertumor, and intratumor (Hoshida et al., 2009), several
prognostic biomarkers widely used in clinical practice are still
far from satisfying (Liu et al., 2019). Recently, deep mining of
public gene expression data tends to be an effective method to
identify novel gene prognostic signatures to accurately predict
HCC prognosis and guide personalized therapy for patients
(Long et al., 2018; Liu et al., 2019; Liu et al., 2020).

Genomic instability has been reported as a fundamental
hallmark of cancer (Negrini et al., 2010). Genomic instability
refers to the high frequency of harmful changes in the genomic
structure due to DNA damage response (Sahin et al., 2016). To
maintain genome stability, eukaryotic cells evolve several
mechanisms to detect DNA damage, present damage signals,
and mediate cellular responses to eliminate the damage (Ciccia
and Elledge, 2010; Pandita et al., 2013; Su et al., 2018). This
process is called DNA damage response and repair (DDR). The
DDR pathway is an important mechanism that consists of eight
major pathways: mismatch repair (MMR), base excision repair
(BER), nucleotide excision repair (NER), homologous
recombination repair (HRR), checkpoint factors (CPF),
nonhomologous end-joining (NHEJ), Fanconi anemia (FA),
and translesion DNA synthesis (TLS) (Scarbrough et al., 2016;
Song et al., 2021). Furthermore, studies have revealed that the
DDR system plays an important role in tumorigenesis, tumor
progression, and response to therapy (Lima et al., 2019). It is
currently appreciated that tumor progression requires
downregulation of DNA damage response mechanisms and an
increase in genetic instability to achieve uncontrolled
proliferation and adaptability to invasive tumors (Jeggo et al.,
2016). For tumor treatment, genotoxic drugs have been the
mainstay of cancer chemotherapy for over 30 years, which
cause DNA damage exceeding the repair capacity of DDR
systems (Pearl et al., 2015).

DDR pathways are found to be associated with chemotherapy
resistance of HCC (Evans et al., 2016; Chen Y. et al., 2021). HCC
cells strengthen their DDR ability to frustrate the DNA damage

caused by chemotherapy drugs, often leading to chemotherapy
resistance (Al-Hrout et al., 2018; Chen et al., 2018). Consequently,
the DDR pathway may impact HCC patients’ survival by
influencing tumor development and therapeutic response.
Recently, some studies have successfully constructed
prognostic and predictive signatures based on the expression
of the DDR gene (Evans et al., 2016; Sharma et al., 2019; Chen
J. et al., 2021). Taken together, it is significant to explore a
prognostic DDR-related gene signature to predict the outcome
and characterize two different DDR pathway activity subtypes of
HCC patients.

In this study, a gene-pair strategy was used to improve the
robustness of the identification of the predictive signature (Eddy
et al., 2010; Li et al., 2017). Univariate and Lasso-Cox regression
analysis was conducted to construct a novel prognostic
biomarker. We clustered HCC patients into two risk groups
according to 23 DDR-related gene pairs and identified two
subtypes related to prognosis and chemotherapy response. In
addition, the prognostic value of our DDR-related gene pair
signature was further validated in GSE14520 datasets, ICGC-
LIRI datasets, and a Chinese HCC cohort (LIHC-CN).
Collectively, we identified a robust signature to present new
evidence into the prognostic value of the expression of DDR-
related genes in HCC and explore the underlying mechanisms of
DDR patterns and potential therapeutic drugs in HCC treatment.

MATERIALS AND METHODS

Data Collection and Processing
Level 3 mRNA expression, somatic mutation data, and
clinicopathological data were obtained from the TCGA website
(https://portal.gdc.cancer.gov/repository). A segment of copy
number for the TCGA-LIHC cohort was accessed from the
GDAC FireBrowse (http://firebrowse.org/). The raw count data
were transferred to transcripts per kilobase of exon model per
million mapped reads (TPM) data which would represent the
expression of mRNA in the TCGA-LIHC cohort. After filtering
mRNAs with lowmedian absolute deviation (mad ≤0.5) across all
samples and removing the samples without complete survival
information, a total of 351 HCC samples were enrolled in this
study. RNA-seq data, somatic mutation data, and clinical data
with 240 tumor samples were downloaded from the International
Cancer Genome Consortium (ICGC) portal (https://dcc.icgc.org/
projects/LIRI-JP). Raw read count values were transformed into
TPM values for subsequent analysis. The expression data and
detailed clinical information of GSE14520 (including 219 HCC
samples based on the GPL3921 platform) were downloaded from
the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
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gov/geo/). Additionally, a LICH-CN cohort with 159 Chinese
HCC patients was downloaded for somatic mutation, clinical
outcome, and transcriptome expression FPKM value from the
literature (Gao et al., 2019).

Construction and Validation of the
DDR-Related Gene Pair Signature
DDR-gene list including 557 genes was assembled from relevant
gene lists, including MSigDB from the Broad Institute (http://
www.broad.mit.edu/gsea/msigdb/) or literature (Pearl et al., 2015;
Knijnenburg et al., 2018; Chen J. et al., 2021). Finally, 384 DDR
genes detected in all datasets were analyzed in this study
(Supplementary Table S1). Then, each gene pair was
calculated via their gene expression level in each HCC sample.
According to the pairwise comparison, the calculated score was 0
when the first expression level of the DDR gene was higher than
that of the following DDR gene; otherwise, the calculated score
was 1. DRGP scoring 0 or 1 in more than 90% of the samples were
removed because they could not provide discriminative patients
with different survival. The remaining DRGPs were considered as
initial candidate DRGPs.

Patients were randomly divided into training and testing sets
at cut-of 7:3 in the TCGC cohort. Then, a univariate Cox
regression analysis was performed to identify the significant
DRGPs related to overall survival (OS) if the FDR p-value was
less than 0.05. Next, candidate DRGPs were submitted to LASSO-
penalized Cox regression analysis based on package “glmnet” in R
to construct an optimal prognostic signature in TCGA training
datasets (Friedman et al., 2010). A DDR-related gene pair
riskscore of each sample was calculated based on the lasso
Cox regression model coefficients (β) multiplied with its
DRGP score, as follows:

Riskscore � ∑n

i�1(βi × Scorei)
where Scorei is the relative expression of DRGPs for patient j in
each cohort and βi is the LASSO Cox coefficient of the DRGPsi.
Then, all patients were separated into low- (LRisk) or high-risk
(HRisk) groups at the median cut-off. Kaplan–Meier survival
curves were plotted for prediction of the clinical outcomes in the
two groups via the “survival” package in R. The differences in
survival were evaluated via the log-rank test. Time-dependent
receiver operating characteristic (ROC) analysis curves
were built, and the area under the curves (AUCs) for 1-, 3-,
and 5-year overall survival (OS) were calculated utilizing
the “survivalROC” package in R (Heagerty et al., 2000). The
same method was further investigated in the TCGA testing
cohort, TCGA whole cohort, GSE14520 cohort, and ICGC-
LIRI cohort.

Subgroup Kaplan-Meier Survival Analysis
To explore the diagnostic capability of the DRGP prognostic
signature in different levels of other clinical prognostic
parameters, HCC samples in TCGA sets were stratified into
different subgroups based on age (≥60 and <60), gender
(female and male), TNM stage (I and II + III + IV), grade

(G1+G2 and G3+G4), and TP53 (mutation and wild). Then,
cancer samples in each subgroup were clustered into HRisk and
LRisk groups. The differences in prognosis between the two
groups were assessed via Kaplan–Meier OS analysis, followed
by a log-rank test.

Correlations Between the DRGP Model and
Clinical Properties
To elucidate whether the prognostic model for OS is independent
of other prognostic factors, we presented univariate Cox
regression analysis and multivariate Cox regression survival
analysis to predict the clinical outcomes of HCC patients,
which was visualized via package “forestplot” in R. Hazard
ratio (HR), 95% confidence interval (CI), and p-value were
calculated, respectively.

Construction and Validation of Gene
Prognostic Nomogram
A nomogram was constructed based on all independent
prognostic parameters screened by univariate and multivariate
Cox proportional hazards regression analysis to predict the
probability of 1-, 3-, and 5-year OS using the “rms” package
of R software. Then, we used a calibration curve to visualize the
performance of the nomogram with the observed rates of the
TCGA whole set at corresponding time points by a bootstrap
method with 1000 resamples. Furthermore, decision curve
analysis (DCA) and calibration curves were detected to check
the reliability of our nomogram (Kerr et al., 2016).

Functional Enrichment Analysis
To investigate the difference in biological process between HRisk
and LRisk, we performed some enrichment analysis using
“GSVA” and “clusterprofiler” R packages (Yu et al., 2012;
Hänzelmann et al., 2013). The infiltrating score of 24
microenvironment cell types was calculated with single-sample
gene set enrichment analysis (ssGSEA) in the “GSVA” R package.
Gene set enrichment analysis (GSEA) was conducted between
HRisk and LRisk by using the R “clusterProfiler” package. A
signature of eleven oncogenic pathways and a DDR gene list,
which include eight core DDR pathways, were obtained from the
literature (Pearl et al., 2015; Sanchez-Vega et al., 2018; Lu et al.,
2021). Then, we used the gene set variation analysis (GSVA)
method to generate enrichment scores for each cohort using
the R package “GSVA”. The KEGG gene sets
(c2.cp.kegg.v7.4.symbols.gmt) was selected as the reference
datasets, which was obtained from the MSigDB database.

Prediction of Immunotherapeutic and
Chemotherapeutic Response
For immunotherapy, the tumor immune dysfunction and
exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/) was
applied to predict potential clinical response to immune
checkpoint inhibitors (Jiang et al., 2018). Based on Genomics
of Drug Sensitivity 2016 (GDSC 2016; https://www.cancerrxgene.
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org/), the R package “pRRophetic” was applied to estimate the
chemotherapeutic sensitivity by the half-maximal inhibitory
concentration (IC50) of each HCC sample in four cohorts.
Therefore, we could investigate the different sensitivity of
common liver cancer chemotherapy drugs between HRisk and
LRisk. In addition, in order to identify potential drugs in HCC
samples, we performed a two-step analysis to find candidate
compounds as described previously (Yang et al., 2021). First,
differential drug response analysis between top decile riskscore
samples and bottom decile riskscore samples was conducted to
verify drugs with significantly different estimated IC50 in two
riskgroups (|log2FC| > 0.2). Next, Spearman correlation analysis
was utilized to calculate the correlation coefficients between
riskscore and IC50 of each candidate drug (|Spearman
correlation coefficient| > 0.4).

HBVpca Quantifies the Expression Level of
HBV Virus
HBV oncoproteins were quantified for expression according to
the previous study: HBVgp2_S, HBVgp3_X, HBVgp4_c, and
HBVgp2_pre-S1/S2 (Xue et al., 2021). The four HBV
oncoprotein expressions were identified and presented as
FPKM values. To comprehensively explain the original
expression level of HBV oncoproteins, we established a
variable that was calculated by principal component analysis
(PCA) as the previous study described (Lu et al., 2019).
HBVpca was derived from the first and second principal
components that represented 76.73 and 17.10% of the
variation in the original data, respectively. The coefficients of
four HBV oncoproteins to the first and second principal
components are shown in Table 1.

Mathematically, let Eij denotes the log2(FPKM +1) value of
specific oncoprotein j in sample i, and Cjk represents the
corresponding coefficient of HBV oncoprotein (HBVj;
j∈{1,2,3,4}) for principal component k (k∈{1,2}). The HBVpca

can be calculated as follows:

HBVpca �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E11 / E1j

..

.
1 ..

.

Ei1 / Eij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C11 / E1k

..

.
1 ..

.

Cj1 / Ejk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ 0.76730.1710
]

Comprehensive Analysis of Genomic
Variation Between Different DRGP
Subgroups
We then investigated the genomic variation between HRisk and
LRisk groups. The mutation landscape was analyzed by the R

package “maftools” with the initial removal of 100 FLAGS
(Mayakonda et al., 2018). The data CNV segments were
detected by Genomic Identification of Significant Targets In
Cancer 2.0 (GISTIC 2.0) analysis. In the process of GISTIC
2.0 analysis, except for the refgene file which was
“Human_Hg19.mat”, parameters were set to the default
parameters. The individual fraction of genome altered (FGA),
fraction of genome lost (FGL) and fraction of genome gained
(FGG) for the HCC in the TCGA cohort were calculated as the
study described (Lu et al., 2021). We also obtained GISTIC calls
comprising −2 (deletion), −1 (loss), 0 (diploid), 1 (gain), and 2
(amplification) from GISTIC2.0 (Wu et al., 2020).

Statistical Analyses
All statistical analyses were performed with R software (version
4.1.1: http://www.r-project.org) and R Bioconductor packages in
this study. Kaplan–Meier analysis with the log-rank test was used
to detect differences of OS between different groups through the
package “survminer” in R. Time-dependent ROC was utilized to
evaluate the predictive accuracy of the DRGP riskscore through
package “survivalROC” in R. Cox proportional hazards
regression for estimating the hazard ratios (HRs) and 95%
confidence interval (CI). Comparison of a continuous variable
in two groups was performed using Wilcoxon rank-sum test.
Correlation between two continuous variables was measured by
Spearman’s rank-order correlation. Differences in proportions
were compared by the Chi-squared test or Fisher’s exact test.

RESULTS

Construction and Validation of the
Prognostic DDR-Related Gene Pair
Signature
The clinical features of HCC samples in the training and
validation sets are listed in Supplementary Table S2. In the
training datasets of 246 patients, 85 patients died during the
follow-up. As tested by the univariate Cox regression OS analysis,
459 DRGPs had significant associations with OS of HCC in the
training set (all FDR p-value < 0.05). Based on LASSO-Cox
regression analysis, 23 DRGPs were independently related to
the prognosis of HCC (Figures 1A,B). Among them, 11 gene
pairs were risk factors for HCC prognosis (HR > 1).
Supplementary Table S3 lists the 23 selected gene pairs and
their coefficients. The regression coefficients and DRGP score of
these 23 gene pairs in each sample were used to calculate the
riskscore in each HCC cohort.

TABLE 1 | Coefficients of four HBV oncoproteins to the first and second principal components.

Principal components HBV oncoproteins

HBVgp2_S HBVgp3_X HBVgp4_c HBVgp2_pre-S1/S2

Componment1 0.62 0.57 0.34 0.41
Componment2 0.29 0.43 −0.74 −0.42
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The patients in the training datasets were divided into HRisk
or LRisk groups at median cut-off. Kaplan-Meier survival analysis
indicated that the HRisk group have a poorer OS than the LRisk
group (hazard ratio (HR) = 3.99, 95% CI = 2.48–6.44, p-value <
0.001, Figure 1C). The values of AUC are 0.76, 0.83, and 0.86 at
1-, 3-, and 5-year follow-up, respectively (Figure 1I), showing

that the signature displays good sensitivity and specificity. The
C-index of the DRGPmodel is 0.80. To determine the predictive
ability of this prognostic model, we calculated individual
riskscore with the aforementioned method and classified the
patients in TCGA-testing set, TCGA whole set and other
validation sets into HRisk and LRisk groups. Similarly, we

FIGURE 1 | Construction and validation of a prognostic DDR-related gene pair signature. (A,B) LASSO regression identified 23 DRGPs. (C–H) The Kaplan–Meier
overall survival (OS) curves in the TCGA training datasets (C), TCGA testing datasets (D), TCGA datasets (E), GSE14520 datasets (F), ICGC datasets (G), and LIHC-CN
datasets (H) show that patients in the HRisk group have a poorer prognosis. (I–N) ROC curves show the predictive efficiency of the signature for patients in the TCGA
training datasets (I), TCGA testing datasets (J), TCGA datasets (K), GSE14520 datasets (L), ICGC datasets (M), and LIHC-CN datasets (N) on the survival rate.
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validated the prediction of signature in these datasets.
Consistent with the above findings, the HRisk patients in all
cohorts have a markedly shorter OS than those in the LRisk
group (Figures 1D–H). The AUCs of ROC curves for 1-,3-, and
5- year OS are shown in Figures 1J–N.

Independent Prognostic Role of the DRGP
Signature
To further explore the clinical potentiality of the prognosis
model in HCC, stratified analysis based on these clinical
characteristics was conducted. As shown in Figures 2A–J
and Supplementary Figure S1, Kaplan–Meier OS curves also
showed that HRisk patients had considerably worse OS than
LRisk patients, which further indicated the excellent prediction
of the DRGP model. We further analyzed whether the riskscore
was an independent prognostic predictor for OS. In univariate
Cox regression analyses, high riskscore was significantly
associated with shorter OS in TCGA cohort (HR = 3.22, 95%
CI = 2.53–4.13, p-value < 0.001, Figure 3A) According to the
multivariate Cox regression analysis results, we considered the
TNM stage (HR = 1.27, 95% CI = 1.00–1.61, p-value = 0.0515)
and riskscore (HR = 2.96, 95% CI = 2.29–3.83, p-value < 0.001]
are both independent prognosis factors for TCGA (Figure 3A).
The independence of the DRGP signature for HCC prognosis
was also confirmed in GSE14520, ICGC, and LIHC-CN cohorts
(Figures 3A,B). Collectively, the signature was an independent
prognostic factor for HCC.

Construction and Verification of a
Prognostic Prediction Nomogram for HCC
We constructed a nomogram based on multivariate Cox
regression analysis for prediction of the 1-, 3-, and 5-year
survival probability in TCGA datasets (Figure 3C). As shown

in the calibration chart (Figure 3D), the nomogram could
robustly predict OS for HCC patients. Moreover, the DCA
curve suggested that riskscore was more beneficial when
compared with the TNM stage alone (Figure 3E). The DCA
curve demonstrated that the net benefit of the combined model
was comparable to the riskscore. These results showed that the
nomogram built with the combined model might help clinical
management.

LRisk Group Associated With Higher HBV
Virus Expression and Higher Proportion of
TIDE-Predicted Responders
A previous study indicated that the high expression of HBV16
E6/E7 was significantly linked to a favorable prognosis because
the inflammatory/immune response of the host may be
stimulated (Lu et al., 2019). To investigate whether HBV
oncoproteins were differentially expressed between two risk
groups in HCC, we calculated the HBVpca by principal
component analysis (PCA) based on the FPKM value of four
HBV oncoproteins in the TCGA cohort. In our study, 96 HVB-
infected HCC patients were identified, the first and second
principal components were used since they covered almost
the variations (93.83%; Figure 4A). We found a significant
difference in HBV virus expression between HRisk and LRisk
(Wilcoxon test, p = 0.018, Figure 4B), and HBVpca has also
observed a mildly negative correlation with riskscore (R =
−0.280, p = 0.006, Figure 4C). It means a high level of
HBVpca corresponds to low risk in HCC patients.

To evaluate the tumor immune microenvironment in
different groups, a ssGSEA method was used to estimate the
infiltration levels of the 24 types of immune cells. The ssGSEA
score and immune cell types which were differentially
infiltrated between LRisk and HRisk groups in the TCGA
set are presented in Figure 4D. The proportion of 24

FIGURE 2 | Kaplan–Meier curves analyses of different clinical subgroups in TCGA cohort. Patients were classified into (A) Age >60 years, (B) Gender: Female, (C)
TNM stage: I, (D) Grade: G1+G2, (E) TP53 wild type, (F) Age ≤60 years, (G) Gender: Male, (H) TNM stage: II + III + IV, (I) Grade: G3+G4, and (J) TP53 mutant type.
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FIGURE 3 | Validation of the independency of the riskscore for prediction of HCC prognosis. (A,B) Univariate and multivariate cox regression survival analysis
validated riskscore was an independent prognosis factor for HCC patients in TCGA datasets (A), GSE14520 datasets (A), ICGC datasets (B), LIHC-CN datasets (B).
The p-value, hazard ratio (HR), and 95% confidence interval (CI) were indicated in the forest plots. The blue circle represents the value of HR each parameter scored.
(C,E) Construct nomogram for survival prediction. (C) which integrated with two independent prognosis factors for predicting the probability of patient mortality at
1-, 3-, or 5-year OS. (D) The calibration plots for predicting patient 1-, 3-, or 5-year OS. (E) DCA curves for two independent prognostic factors or a combination of them
in OS prediction.
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immune cells in each group is shown in a bar plot. The results
revealed that the level of infiltration of dendritic.cells.resting,
macrophages.M0, mast.cells.activated, and
T.cells.CD4.memory.activated in the HRisk group was
significantly higher than that in the LRisk group, while the
level of endothelial cells, mast.cells.resting, and NK
cells.activated in the LRisk were higher than that in the
HRisk group. For further investigating the immune
landscape of different risk groups reflected by the DRGP
signature, validation cohorts GSE14520, ICGC, and LIHC-
CN were also calculated by ssGSEA to verify the

differences in risk groups at the immune level
(Supplementary Figure S2).

We also detected and compared the expression levels of several
immune checkpoints between the LRisk and HRisk groups.
Results showed that the mRNA expression levels of CTLA4,
PDCD1, and TIGIT were consistently overexpressed in the
HRisk in TCGA and ICGC datasets (Figure 5A), but we could
not observe a significant difference in GSE14520 and LIHC-CN
cohorts (both, p > 0.05, not shown). These results suggested that
the HRisk group may contribute to tumor immune dysfunction
and immune exclusion in HCC. To investigate whether LRisk

FIGURE 4 | Immune infiltration and HBVpca score between HRisk and LRisk group in TCGA cohort. (A) Barplots showing that the first and second principal
components present almost all the variations with a summing percentage of 93.83%. (B) Boxplot showing HBVpca difference in the HRisk and LRisk groups (Wilcoxon
test, p = 0.018). (C) Spearman correlation analysis between HBVpca and riskscore (R = -0.280, p = 0.006). (D) Boxplot for TCGA cohort showing the enrichment level of
24microenvironment cell types between HRisk (yellow) and LRisk (blue) groups. Statistical p values were calculated by theWilcoxon test and represented by. < 0.1,
* <0.05, ** <0.01, and *** <0.001.
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responds to immune checkpoint inhibits, we harnessed the TIDE
algorithm to predict the potential response to immunotherapy in
different groups. The higher TIDE score represented less
promising treatment for response to immunotherapy. In our
results, the HRisk group contained lower proportion of TIDE-

predicted responders than LRisk group in all four cohorts (TCGA
(p < 0.001), GSE14520 (p = 0.23), ICGC (p = 0.012), and LIHC-
CN (p = 0.016); Figure 5B). These results suggest that HCC
patients in LRisk might be more beneficial from immune
checkpoint inhibitors.

FIGURE 5 | Differential sensitivity to immunotherapy and chemotherapies between HRisk and LRisk. (A) Boxplot for TCGA and ICGC cohort showing the different
expression levels of six immune checkpoint genes between riskgroups. Statistical p values were calculated by the Wilcoxon test and represented by. < 0.1, * <0.05, **
<0.01, and *** <0.001. (B) Barplots revealed that LRisk might be more likely to response to immunotherapy than HRisk in TCGA (Chi-square test, p < 0.001), GSE14520
(Chi-square test, p = 0.23), ICGC (Chi-square test, p = 0.012), and LIHC-CN (Chi-square test, p = 0.016) cohorts, respectively. (C) Bubble plot showing the drug
sensitivity for eight commonly used chemotherapeutic drugs in liver cancer between HRisk and LRisk across four cohorts, where red and blue bubbles show that either
HRisk or LRisk group is more sensitive to a drug according to the corresponding mean value of predicted IC50; and a black circle wrapped around the bubble presents
whether a statistically significant difference is achieved. Statistical p values were calculated by the Wilcoxon test. (D) The results of Spearman’s correlation analysis and
boxplots for the distribution of seven HRisk sensitivity drugs response analyses in TCGA datasets. (E) The results of Spearman’s correlation analysis and boxplots for the
distribution of five LRisk sensitivity drugs response analyses in TCGA datasets.
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FIGURE 6 | Differentially functional pathways between the HRisk and LRisk group in TCGA. (A) GSEA identified upregulated pathways in HRisk. (B) Heatmap of
enrichment level calculated by GSVA for metabolism-related pathways derived fromGSEA and oncogenic pathways. (C,D)Boxplot of oncogenic pathways (C) and DDR
pathways (D) from GSVA of two riskgroups. Statistical p values were calculated by the Wilcoxon test and represented by. < 0.1, * <0.05, ** <0.01, and *** <0.001.
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Prediction the Sensitivity and
Chemotherapy
Considering that chemotherapy is a common way to treat liver
cancer, we first verify whether the DDR patterns groups may
affect the sensitivity of chemotherapeutic drugs commonly used
for treating liver cancer (including cisplatin, 5-fluorouracil,
gemcitabine, oxaliplatin, doxorubicin, mitoxantrone, gefitinib,
and sorafenib). We found that HRisk groups of all four HCC
cohorts were highly sensitive to 5-fluorouracil (all, p < 0.05;
Figure 5C, Supplementary Figure S3), and four LRisk groups
presented with a significantly higher response to gefitinib and
gemcitabine (all, p < 0.05; Figure 5C, Supplementary Figure S3).
Next, we performed a two-step analysis to find potential
therapeutic compounds. Eventually, the analysis obtained
seven compounds (including CDK9_5576, CDK9_5038,
bleomycin, midostaurin, SNX-2112, BMS-754807, and
podophyllotoxin bromide) that had lower IC50 in HRisk and a
negative correlation with riskscore (Figure 5D, Supplementary
Figure S4) across four datasets and five compounds (including
trichostatin A, gefitinib, afatinib, selumetinib, and EphB4_9721)
were observed to present a significant response to LRisk and a
positive correlation with riskscore (Figure 5E, Supplementary
Figure S4).

Characterization of the HCC Riskgroups
Regarding Different Functional Pathways
To better characterize the two HCC riskgroups, differential
analyses were performed. Gene set enrichment analysis
(GSEA) was conducted using the “clusterProfiler” package,
and enrichment differences of pathways were significant if the
FDR p-value < 0.15 and |NES| >1 in all four cohorts. The results
indicated that 28 metabolism-relevant pathways were
significantly upregulated in LRisk, while HRisk enriched in cell
cycle, DNA replication, spliceosome, and DDR-relevant
pathways (Figure 6A). Thus, the HRisk group presents
upregulated cell cycle procession and DDR pathways which
might contribute to the hyperproliferation and development of
tumor cells. Pathway with significant differences in enrichment in
all four cohorts was considered subclass specific pathway. GSVA
was conducted to quantify and visualize the enrichment of
28 metabolism-related pathways which were classified into
four specific metabolism signatures, including lipid metabolism
relevant pathway, drug metabolism relevant pathway,
carbohydrate metabolism relevant pathway, and amino acids
metabolism relevant pathway (Figure 6A). Results confirmed
that the LRisk group has significant upregulation of metabolism
signatures, consistent with the results from GSEA.

To further investigate the activation of oncogenic pathways
among HRisk and LRisk (Figure 6C), We found that the cell cycle
oncogenic pathway was significantly activated in HRisk, while
LRisk had a higher score of angiogenesis and Wnt activation-
relevant pathways than HRisk (Figure 6D). Considering that the
risk groups were divided based on DDR-relevant genes signature,
we then decided to further explore whether different
characteristics exist in distinct DDR pathways. Eight DDR

core pathways were quantified using the GSVA algorithm.
HRisk group exhibited higher expression for all eight
pathways than LRisk. The same results were demonstrated in
cohorts GSE14520, ICGC, and LIHC-CN (Supplementary
Figures S5−S7).

Relationship Between Riskscore and
Somatic Mutation and Copy Number
Variation
We finally investigated the genomic variations between two
different risk groups in the TCGA cohort. To analyze whether
differences exist in the somatic variations (10%) of HCC between
two riskgroups, R package “maftools” was used (Figure 7A). The
results showed that the HRisk group had significantly high TP53
mutations and less CTNNB1 mutations than the LRisk group
(TP53: 46.3 vs. 12.5%, p < 0.001; CTNNB1: 17.7 vs. 31.8%, p =
0.007; Figure 7B), and we obtained consistent results in ICGC
cohort (TP53: 51.7 vs. 18.8%, p < 0.001; CTNNB1:35.0 vs. 41.9%,
p = 0.2883; Figure 7B) and LIHC-CN cohort (TP53: 73.4 vs.
43.8%, p < 0.001; CTNNB1: 17.7 vs. 21.2%, p = 0.5439; Figure 7B),
respectively. Mutation in TP53 is the most common genetic
change in HCC, and patients with mutated TP53 have shorter
OS than those with wild-type TP53. Therefore, we conducted
special subgroup analyses stratifying samples according to the
combination of TP53 mutation status and riskgroups. We found
that some patients with mutant type TP53 in the HRisk group had
significantly shorter OS than those with mutant wild TP53 in the
HRisk group (p = 0.89 in TCGA, p = 0.58 in ICGC, p = 0.34 in
LIHC-CN; Figure 7C), while patients with mutant type in the
LRisk group had longer OS than those with wild type in the HRisk
group (p = 0.0028 in TCGA; Figure 7C), but no significance could
be calculated in ICGC and LIHC-CN datasets (p = 0.58 in ICGC,
p = 0.40 in LIHC-CN; Figure 7C). These results confirm again
that the prognosis model is robust and superior. Unfortunately,
we could not find the mutation data of GSE14520.

Copy number variations were a common form of genomic
structural change, and an amount of research has demonstrated
chromosomal abnormalities play key roles in HCC. GISTIC 2.0
was used to analyze the copy number of HRisk and LRisk in
TCGA-HCC samples. We first calculate the FGA, FGL, and FGG
scores to evaluate differences in chromosomal instability between
the two risk groups. We found the LRisk group had significantly
lower copy number loss or gain than HRisk, so it was obvious that
LRisk had better chromosomal stability than HRisk (all, p < 0.001;
Figure 8B). Next, we analyzed the copy number in different
specific regions in LRisk and HRisk groups. The most frequent
arm-level aberrations in the HRisk group identified were 13q,
11q, 4q, etc., for copy number loss, and significantly amplified
regions in the HRisk were 1q, 8q, 3q, etc. (Figure 8A). Therefore,
we decided to further explore the relationship between the copy
number variations of specific DDR genes. The relationship
between genes in eight core DDR pathways and their copy
number alterations were calculated by Spearman analyses. The
GISTIC calls of 38 DDR genes (R < −0.2 or R > 0.2) are shown in
Figure 8C, and the corresponding expression of DDR genes are
shown in Figure 8D. These results suggest that HRisk existed
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higher levels of copy number alterations, and both were
associated with overexpression of DDR genes.

DISCUSSION

HCC remains a major public health concern in the world.
Although continuous achievements in early detection,
multimodal therapy, and surgery resection, the mortality is

still high (Siegel et al., 2013). Additionally, an effective
prognostic signature is very important for the prediction and
individualized treatment of HCC. The DDR process is often
exaggerated in HCC and affects the tumor development and
therapeutic response of HCC patients. As a previous study, Li
et al. has developed a seven-gene signature related to the DNA
repair process to predict the prognosis of HCC (Li et al., 2019).
Hence, it is of significance to construct a prediction model based
on the expression profiles of DDR-related gene expression.

FIGURE 7 | Analysis of mutation characteristics in HRisk and LRisk. (A) Oncoprint showing the mutational landscape of mutations with mutated greater than 10%
in TCGA-HCC. Mutations of TP53 and CTNNB1 were significantly mutated in HRisk (Fisher’s exact test, p < 0.001) and LRisk (Fisher’s exact test, p = 0.009) groups,
respectively. (B) Barplots showing the similar distribution of TP53 and CTNNB1 mutation between two riskgroups in TCGA cohort (TP53: 46.3 vs. 12.5%, p < 0.001;
CTNNB1: 17.7 vs. 31.8%, p = 0.007), ICGC cohort (TP53: 51.7 vs. 18.8%, p < 0.001; CTNNB1:35.0 vs. 41.9%, p = 0.2883), and LIHC-CN cohort (TP53: 73.4 vs.
43.8%, p < 0.001; CTNNB1: 17.7 vs. 21.2%, p = 0.5439), respectively. (C) Kaplan–Meier curve analysis of overall survival is shown for patients classified according to
TP53 mutation status and the riskgroup in three cohorts. TP53w, TP53-sequence wild type; TP53m, TP53-sequence mutant type.
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FIGURE 8 | Integrative analysis of copy number alteration and gene expression profiling. (A)Copy number gains and deletions identified by GISTIC2.0 in HRisk and
LRisk. (B) Distribution of fraction genome altered (FGA) and fraction genome loss/gain (FGG/FGL). Bar charts are presented as the mean ± standard error of the mean.
(C) Heatmap of GISTIC calls of 38 DDR genes. (D) Heatmap showing the overexpression pattern of 38 DDR genes.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 85706013

Chen et al. DDR Prognosis Model in HCC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


In this study, we built and validated a robust 23 DDR-related
gene pair signature for HCC patients’ prognosis and precise
treatment. The prognostic model was validated in the
dependent TCGA, GSE14520, ICGC-JP, and LIHC-CN
cohorts. We divided the HCC patients in each cohort into
HRisk and LRisk according to the median cutoff of riskscore.
Patients in the LRisk group had significantly longer OS than that
in the HRisk group. The signature also demonstrated to be an
independent risk factor for OS in HCC patients in four cohorts.
Furthermore, subgroup analyses showed that the prognostic
model could predict the outcomes of patients in different
subgroups. The nomogram-integrated TNM stage and
riskscore was established, which proved to be a better
predictor than the TNM stage alone. These advantages could
be helpful to make clinical decisions and make nomograms a
superior tool for predicting prognosis.

Hepatitis B virus (HBV) is associated with the rapid
progression of HCC, and its viral load has an adverse effect
on overall survival (Yu and Kim, 2014). Studies have found that
high HBV viral expressionmay stimulate the immune response in
cervical cancer and favored the patient clinical outcome (Lu et al.,
2019). In our study, we compressed the expression of four HBV
oncoproteins into a comprehensive PCA-based score, HBVpca.
96 HBV-associated HCC patients in the TCGA cohort, while 43
patients in the LRisk group had a higher HBV viral load than
those in the HRisk group. These results indicated that high HBV
viral expression is significantly associated with a better prognosis,
which is similar to the previous study. Then, we used the ssGSEA
algorithm to analyze the immune infiltration between HRisk and
LRisk. Although analysis of ssGSEA did not suggest significant
greater levels of immune cell infiltrates in the LRisk group, we
found that the LRisk group might be more beneficial from
checkpoint blockade. The HBV genome can encode the four
proteins, which include S, X, C, and P (Yang et al., 1995). There
are extensive interactions between the HBV genome and the DDR
pathway (Lee et al., 1995). Several findings suggest that HBV viral
expression could disrupt the DNA repair pathways of infected
hepatocytes (Ko and Ren, 2011; Ricardo-Lax et al., 2015;
Schreiner and Nassal, 2017). For example, the hepatitis B virus
X protein (HBx) is known to be a multifunctional protein
encoded by HBV, playing a pivotal role in the development of
viral-induced liver cancer (Becker et al., 1998). HBxmight disturb
several key cellular processes such as cell cycle, DNA repair,
oxidative stress, transcription, protein degradation, signal
transduction, and apoptosis. In some cases, components of the
DDR network may be antiviral and have detrimental impacts on
viral replication (Luftig, 2014; Weitzman and Fradet-Turcotte,
2018). In this study, HCC patients in the TCGA cohort were
differentiated into two groups based on DDR-related gene
expression profiles which showed different DDR patterns.
HRisk group presented upregulated DDR-relevant pathway
and cell cycle process, so we speculate DDR pathway might
have interrupted the replication cycle of HBV proteins in
HRisk so that the LRisk group have a higher HBV expression
level was observed.

GSEA showed core DDR-related pathways (base excision
repair, mismatch repair, homologous recombination), cell

cycle, DNA replication, spliceosome, and p53 signaling
pathway were distinctly enriched in HRisk. Patients in the
DDR-activated subgroup were significantly related to the
inferior prognosis. We also found several significant alterations
of molecular characteristics between HRisk and LRisk groups.
Common somatic changes include mutations p53 and beta-
catenin are frequently detected repeatedly in HCC, resulting in
activation of the Wnt signaling pathway and dysregulation of the
cell cycle, respectively (Jacobs and Norton, 2021). TP53 is the
most frequently mutated in HCC, and patients with TP53
mutations had a poorer prognosis compared with patients
with wild-type TP53 (Villanueva and Hoshida, 2011). We
observed that the TP53 gene was more frequently mutated in
the HRisk. In contrast to the TP53 gene, a larger proportion of
LRisk carried CTNNB1 mutations. CTNNB1 mutations in HCC
were mutually exclusive with TP53 (Calderaro et al., 2017), and
mutation-induced activation of CTNNB1 expression is the
dominant cause of Wnt activation (Takagi et al., 2008). In
addition, LRisk had a significantly higher score of Wnt
activation-relevant signature, which may be activated by
mutated CTNNB1. LRisk group was significantly involved in
many metabolism pathways, including lipid metabolism, drug
metabolism, carbohydrate metabolism, and amino acid
metabolism relevant pathways, indicating that patients in the
LRisk group hold a normal metabolic process (e.g., fatty acid,
gluconeogenesis, and histidine) of liver and the activation of
metabolism relevant signatures is associated with a favorable
prognosis in patients. These findings are in keeping with a
previous proteogenomics study, which proved that CTNNB1-
mutated tumor was concentrated with various metabolic
processes, including amino acid metabolism, glycolysis/
gluconeogenesis, and drug metabolism (Gao et al., 2019).
Along with mutations, chromosomal abnormalities are
frequent genetic events in HCC (Schulze et al., 2016). In
particular, broad genomic deletions have been noted for 1p,
4q, 6q, 8p, 13q, 16p, and 17q and gains for 1q, 6p, 8q, 17q,
and 20q (Jacobs and Norton, 2021). We found that HRisk had
significantly higher copy number alterations than LRisk,
suggesting that HRisk existed a deeper degree of chromosomal
instability. Somatic copy alterations (SCNAs) are widespread in
human cancers that promote tumor initiation and progression
(Beroukhim et al., 2010). Higher levels of SCNAs are associated
with an increased expression level of the cell cycle (Davoli et al.,
2017). Our results indicated that the HRisk group with a
significantly higher cell proliferation signature is related to
higher SCNA levels of DDR genes and expression. Altogether,
our study provides a comprehensive overview of molecular
characteristics between HRisk and LRisk.

Although there are several therapeutic options for HCC,
chemotherapy is one of the most important treatment
modalities for advanced HCC. However, the efficacy of
chemotherapy remains unsatisfactory, so it is necessary to
identify a signature to better predict chemotherapy responses
of HCC patients. Interestingly, the two groups had different
sensitivity to common chemotherapy for treating HCC.
Potential drugs for HRisk and LRisk patients were then
investigated. Cyclin-dependent kinases provided by a family of
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serine kinases primarily control the eukaryotic cell cycle
(Aprelikova et al., 1995). Both CDK9_5038 and CDK9_5576
are CDK9 inhibitors. Bleomycin is classified as an “antitumor
antibiotic” drug, and the drug works by binding to DNA that
could generate lesions on both strands of DNA (Chen and Stubbe,
2005). The epidermal growth factor receptor (EGFR) plays a
central role in the development and progression of different
cancers. Afatinib and gefitinib are the currently available
EGFR-tyrosine kinase inhibitors (EGFR-TKIs), which have
been approved so far for non-small cell lung patients. In this
study, patients in HRisk may be more sensitive to CDK9
inhibitors and Bleomycin, while patients in LRisk may be
more sensitive to EGFR-TKIs, which should be validated in
future clinical trials.

There are several limitations to our study. First, although our
research was validated by other independent cohorts, they were
all retrospective data. Second, highly heterogeneous, intratumoral
heterogeneity in HCC might have an impact on the DRGP
riskscore in each tumor, so its significance for clinical
translation therapy needs to be further confirmed. Moreover,
we determined several drugs that have different sensitivity in
HCC patients. However, investigations about the antitumor
effects of some drugs are lacking.

CONCLUSION

A signature based on the 23 DDR-related gene pairs was
successfully constructed, which stratifies HCC patients into
two riskgroups with different survival outcomes. Enrichment
analysis, CNV, gene mutation, and tumor immune
environmental analyses were conducted between HRisk and
LRisk. The prediction of therapy sensitivity may be helpful to
clinicians in selecting patients that could benefit from further
treatments. These findings may provide a novel prognostic
signature for HCC from a DDR perspective and enhance
biological understanding and clinical strategies in HCC.
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