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Abstract: We developed a cavity ringdown spectrometer by utilizing a step-scanning and dithering
method for matching laser wavelengths to optical resonances of an optical cavity. Our approach is
capable of working with two and more lasers for quasi-simultaneous measurements of multiple gas
species. The developed system was tested with two lasers operating around 1654 nm and 1658 nm
for spectral detections of 12CH4 and its isotope 13CH4 in air, respectively. The ringdown time of
the empty cavity was about 340 µs. The achieved high detection sensitivity of a noise-equivalent
absorption coefficient was 2.8 × 10−11 cm−1 Hz−1/2 or 1 × 10−11 cm−1 by averaging for 30 s. The
uncertainty of the high precision determination of δ13CH4 in air is about 1.3‰. Such a system will be
useful for future applications such as environmental monitoring.

Keywords: cavity ringdown spectroscopy; optical sensing; simultaneous detection of multi compo-
nents; methane isotope ratio

1. Introduction

Methane (CH4) is an important biosignature gas that provides key clues for the
existence of life on extraterrestrial planets, such as Mars [1]. Methane is also an important
greenhouse gas [2], energy resource [3], and microbial metabolites product [4] in ambient
air. The processes of CH4 production and consumption can be understood through the
analysis of its isotopes, so as to obtain CH4 source information. For example, more negative
δ13C and δD values indicate biological sources, while more positive δ13C and δD values
indicate heat sources [5].

One type of widely used instrument for measuring trace gases and isotopes is isotope
ratio mass spectrometry (IRMS) with an accuracy of ±0.2‰ for δ13CH4 [6]. However, its
in-situ application is limited due to its large size, high cost and complicated operation
process [7]. In recent years, with the development of diode lasers, such as those used in
fiber-optical tele-communication and longer wavelength interband and quantum cascade
lasers, laser-spectroscopy-based sensors have become a more attractive tool for trace gas
detection and its isotopes analysis. It offers high sensitivity, small size, fast response,
and high selectivity [8–15] in spectroscopic gas sensing. In particular, cavity ringdown
spectroscopy (CRDS) can achieve an effective absorption path length of tens of kilometers
by using a high-finesse optical cavity, which greatly improves the detection capability of
trace gas sensing [16]. CRDS has been extensively applied in atmospheric greenhouse gas
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detections [17–19], aerosol particle extinction measurements [20,21], spectral line param-
eters measurements [22–24], and human breath diagnosis [25–27]. Because of the high
sensitivity of CRDS, it is very suitable for high-precision stable isotope analysis. One early
CRDS methane isotope measurement was in the mid-infrared wavelength region, due to
the stronger absorption line intensity in the mid-infrared region. Dahnke et al. measured
the absorption of 12CH4 and 13CH4 near 3 µm, and its measurement precision for δ13C in
ambient air was±11‰ [28]. With the development of longer wavelength quantum cascade
lasers, it became possible to apply CRDS on the strong fundamental vibrational transitions
of 12CH4 and 13CH4 at 7.5µm, as reported by Abhijit Maity et al. for δ13CH4 measurements
in the atmosphere and human breathing [29]. In the near-infrared region, the line intensity
of methane is about two orders of magnitude weaker than that in the mid-infrared region.
However, much higher reflectivity mirrors available for the near-infrared region increase
the effective optical path length of absorption, which can largely compensate for weaker
line intensity. In addition, near-infrared lasers and optical components are cheaper and
more robust; hence, trace gas and isotope measurements based on near-infrared (NIR)
continuous-wave cavity ringdown (CW-CRDS) have attracted attention. Chen et al. used
a pair of high-reflection mirrors exceeding 99.9993% to build a CRDS system with an
equivalent absorption optical length of 93.3 km and achieved high-precision measurements
of δ13CH4 in the air [30]. A commercial instrument made by Picarro is also based on NIR
CW-CRDS. In addition to being used in ambient air [31], it also provides insights into the
aquatic carbon cycle process [32].

This paper reports the development of a CRDS instrument which is capable of high-
precision measurements of two species quasi simultaneously. The present instrument
operates with dual lasers at wavelengths of ~1654 nm for 12CH4 and ~1658 nm for isotope
13CH4 measurements in this work. In the following sections, we will provide a detailed
description of the system and an application demonstration of the system for isotope ratio
measurements of CH4 in air.

2. Experimental System

The schematic of our developed system is presented in Figure 1. Two near-infrared
distributed feedback (DFB) diode lasers (from NEL) were utilized for spectral detections of
12CH4 and its isotope 13CH4 in wavelength regions of 1654 nm and 1658 nm, respectively.
Two laser drivers (SRS, model LDC501) were used to control the operation temperatures
and currents of the two diode lasers. These operation parameters were adjustable by
a computer via a GPIB interface. The laser wavelength can be quickly modulated via
its operation current by a triangle-waveform signal from a function generator (Siglent,
model SDG1032X). Both laser outputs were combined by a fiber combiner and then passed
through an optical isolator (FOPTO, model PIISO-1654-D-L-05-FA), which is used to block
the light back-reflected by the ringdown cavity from entering the laser and to minimize any
influence of the optical feedback effect on the laser stability. An acousto-optic modulator
(Brimrose, model AMM-55-8-70-1630-2FP) is used to switch off the 1st-order deflected laser
beam into the cavity during the measurements of ringdown signals. The input laser beam
geometry was mode-matched to the longitudinal modes of the optical cavity by using
a lens.

The optical ringdown cavity consisted of a pair of highly reflective plano-concave
mirrors (Layertec, reflectivity > 99.995%, radius of curvature 1000 mm). The cavity was
sealed by separate window quartz substrates at both ends, so that the cavity mirrors will
not experience any differential pressure stress for better stability. The cavity was vacuumed
and heated to around 200 ◦C for 48 h to desorb the gas adsorbed on the inner wall of the
cavity before setting up the system. A high-vacuum turbo pump (Pfeiffer, model HiCube
80 Eco) was used to extract the gas in the cavity to a pressure as low as 10−3 Pa.
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Figure 1. Schematic of the experimental setup with two lasers. FC, fiber-optic combiner; OI, opti-
cal isolator; AOM, acousto-optic modulator as an optical switch; PD, photodiode detector; DAQ,
data acquisition.

The transmitted optical signal from the ringdown cavity was collected into a single-
mode optical fiber by a lens and received by a photodetector (Femto, model LCA-S-400K-
IN-FS). Based on a preset threshold level for the transmitted signal, a trigger signal was
generated to drive the AOM to turn off the 1st-order deflected laser beam and obtain
a ringdown process of the signals. No noticeable impact on the ringdown decay time
was observed when the threshold was set at different levels. A 16-bit data acquisition
device (NI, model USB-6356, 1.25 MS/s data sampling rate) was used for acquiring cavity
ringdown signals.

3. Methods
3.1. Step-Scanning Laser Frequency for Achieving Cavity Optical Resonances

Optical resonance between input laser radiation and an optical cavity occurs when the
round-trip optical path length of the cavity is approximately an integer multiple of the laser
wavelength. Therefore, we could tune and dither the laser wavelength for achieving an
optical resonance [33,34] instead of an active stabilization of the laser wavelength. During
an optical resonance process, the low-power laser radiation will be effectively coupled
through the highly-reflective mirror into the cavity so that subsequent cavity ringdown
decay could be facilitated by switching off the input laser beam [35–37] or moving the laser
wavelength off resonance with the cavity [11]. In this study, we use a fixed-length cavity
and step-scan the laser wavelength in combination with a small wavelength dithering.
The periodic resonance frequencies of a fixed-length cavity serve as an accurate frequency
scale for the measurement spectra. The longitudinal mode frequencies of the ringdown
cavity are:

νN = ν0 + N × FSR, (1)

where ν0 is the offset starting frequency of the cavity mode, N is an integer number for
the cavity mode, and FSR is the free spectral range (i.e., periodicity of the resonance
frequencies) of the cavity.

As the CRDS cavity uses highly-reflective mirrors, the bandwidth of an optical reso-
nance is very narrow (~kHz). The exact resonance frequency of the cavity is susceptible
to mechanical vibrations and temperature fluctuations from the external environment.
Furthermore, the stability of DFB-type diode lasers (as used in this work) is typically in
the order of ~MHz. Therefore, we modulated the laser wavelength slightly to achieve the
optical resonance. The magnitude of the modulation is about FSR/4. This will ensure
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that the laser radiation interacts with a unique cavity mode and does not interfere with an
adjacent cavity mode during the spectral scanning process [38].

We can feedback control the laser wavelength by probing the position of a mode
matching during the triangle dithering and by adjusting the laser operation current to
create resonance around the middle region of dithering, as shown in Figure 2. After
multiple ringdown events have been measured, the laser current is step advanced by an
amount corresponding to a laser frequency change in the vicinity of the consecutive cavity
resonance, and the cycle is repeated until a preset range of spectral points has been acquired.
The flow chart of this laser wavelength control scheme is shown in Figure 3. The steps on
the left-hand side in Figure 3 form the main loop. The tracking loop is for centering the
laser wavelength onto cavity resonances, whereas the searching loop is for moving the
laser current until a CRD event happens within the triangle dithering. The temperature of
the laser is maintained constant to an accuracy of ~1 mK. The triangular signal for current
dithering was set at ~100 Hz, with an amplitude for making a laser frequency change of
about 1/4 of the FSR. This small modulation amplitude ensures that the laser interacts with
only one longitudinal cavity mode at a time and ringdown events can occur efficiently.
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Figure 2. Mode matching the laser wavelength to the resonance of an optical cavity by feedback
controlling the laser operation current so that the resonance occurs in the middle region of a small
dithering of laser current.
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In order to verify and demonstrate the feasibility of the scheme, a spectrum was
measured that continuously recorded 20 ringdown events at each scan step of the laser
wavelength for consecutive cavity resonance frequencies. Figure 4 shows a step-scanned
absorption feature of 13CH4 at 1658.689 nm, demonstrating that the laser frequency scan
and CRDS measurements over an absorption feature were reliable.
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Figure 4. Recording of a step-scanned spectrum across an absorption line of 13CH4 at 1658.689 nm. At
each laser frequency set to a consecutive cavity resonance frequency, 20 ringdown events were measured.

3.2. Simultaneous Multi-Wavelength Operation with Two or More Lasers

A single DFB diode laser has a limited wavelength coverage range. Therefore, multiple
lasers might be required for spectral measurements of different absorption features or
different gas species [39]. One approach is to use an optical switch for the selecting light
output from one of the multiple laser sources. In this paper, we report a new method. We
track the wavelengths of all the lasers relative to the cavity resonance frequencies of a
fixed-length cavity and bring only one laser at a time to resonance with the cavity while all
the other lasers are kept off-resonance with the cavity. The highly-reflective cavity mirrors
block all the light of the non-resonant lasers. Therefore, the detectable cavity transmission
is from a single laser only.

Figure 5 shows cavity transmission with two lasers. When both laser frequencies are
modulated simultaneously around cavity resonance, cavity transmission signals interfere
with each other, as shown in Figure 5a, and the ringdown signals can overlap. By keeping
one laser off resonance and modulate only one of the lasers across the cavity resonance,
a clear single-wavelength ringdown event can be created and measured, as shown in
Figure 5b,c. We used the wavelength tracking scheme explained before and shown in
Figure 3 to identify the operation conditions for each of the lasers at resonance with the
cavity. For setting lasers off resonance with the cavity, we offset its operation current
corresponding to a frequency shift of FSR/2. Quasi simultaneous detection at two or more
different wavelengths is achieved by alternating one laser on resonance and all the other
lasers off resonance with the cavity.
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Figure 5. (a) Ringdown signals when both lasers are in resonance with the cavity within a short period
of time, causing interference. (b) and (c) Ringdown signal when only one laser is dithered around
cavity resonance while the other laser is set off resonance with the cavity. The signal fluctuation is
caused by frequency fluctuation of the DFB diode lasers.

4. Results and Discussion
4.1. Measurements of the Cavity’s FSR Serve as a Frequency Scale of Spectral Scans

The FSR value of an optical cavity is related to its optical path length. By directly
measuring the cavity length, one can estimate its FSR. For example, a two-mirror cavity of
0.5 m length has an FSR of ~300 MHz. In practice, the error of such estimation is relatively
large. A better way of determining the FSR is to simultaneously record a reference spectrum
of well-known transition frequencies and the cavity transmission. The frequency interval
and the corresponding number of cavity resonances enable the determination of the FSR
via a straight-line fitting of Equation (1). By using widely separated spectral features, the
accuracy of FSR can be improved further as needed. This process is illustrated in Figure 6.
The absorption spectral frequencies of CH4 in the range of 6365.19–6365.81 cm−1 are from
the HITRAN2016 database. The choice of this wavelength range is based on the fact that
there are multiple absorption peaks in a smaller wavelength range, and it is within the
operation range of the diode laser used.
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We repeated such measurements many times for 500 min. The FSR values and the
slow drift of one cavity resonance frequency (i.e., cavity length) are displayed in Figure 7.
The estimated average FSR value was (4.412 ± 0.006) × 10−3 cm−1, and the correspond-
ing cavity length was 113.33 ± 0.15 cm. The good matching between the measurement
spectrum and its modeling (see Figure 6) confirms that there are no missing spectral data
points in the step-scanned spectrum over the cavity resonances. Figure 7b shows a drift
of the cavity length and the associated exact resonance frequencies which varied during
the 500 min (~8 h), as they were affected by the variation of room and cavity temperature.
Please note that the large step change of about 0.0044 cm−1 (one FSR) is due to a shift in
mode assignment to an adjacent longitudinal mode. As each spectrum is recorded within
a short time, and only the spacing (FSR) between the spectral data points is relevant, the
slow drift of the cavity has no impact on spectral measurements of gas concentrations.
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4.2. Instrument Sensitivity

The detection sensitivity, or the minimum detectable absorption coefficient (αmin), of
the system is usually characterized by the noise-equivalent absorption coefficient (NEA),
which is the smallest change in the absorption coefficient that can be detected in a unit
time [40]. Averaging over time could reduce the detection noise, until the drift in detection
becomes dominant [41]. Allan variance analysis is a useful tool for evaluating the long-
term stability of the system, its detection limit, and its optimal integration time [42]. We
evaluated the system performance by continuous measurements at one resonance frequency
of the empty ringdown cavity evacuated by a turbopump. The ringdown time of the empty
cavity was about 340 µs. As shown in Figure 8, the Allan variance plot shows that the
optimal average number CRDS measurements is 270 times, which corresponds to the
integration time of 30 s. The data rate was 9 measurements per second. The NEA of the
system is estimated to be 2.8 × 10−11 cm−1 Hz−1/2 (at the position of 9 measurements in
Figure 8) and αmin is 1×10−11 cm−1 after reaching the optimal integration time of 30 s (at
the position of ~270 measurements in Figure 8).
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4.3. Large Range of Absorption Measurements

The trace CH4 detection capability of the system is proved by measuring the residual
CH4 in the cavity when the cavity is flowed with CH4 gas sample and continuously
evacuated to maintain the pressure in the cavity at 0.07 pa. Such a measurement result
is shown in Figure 9. The partial pressure of methane in the cavity is estimated to be
4.55 × 10−5 pa by fitting the measured absorption spectrum of three unresolved CH4
absorption lines. The residual noise level indicates that the detection limit of methane
partial pressure is less than 10−6 pa. Figure 10 shows the measured spectrum of methane
with an estimated partial pressure of 0.1 pa when the total pressure of CH4 and N2 in the
cavity is 1 pa. The small rectangular box in Figure 10b shows that the absorption coefficient
corresponding to this absorption line is in the order of 10−10 cm−1. This demonstrates
that the instrument is capable of measuring a large range of absorption coefficients from
~10−6 cm−1 to ~10−10 cm−1. By selecting absorption features of different line strengths,
the instrument could cover a large concentration range of CH4 measurements.
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4.4. CH4 Isotope Analysis

The abundance of stable isotopes is usually expressed by the value of the parameter δ,
which is defined as the deviation from the value of the international reference standard
Vienna Pee Dee Belemnite (VPDB) for carbon isotopes:

δ13C =

((13CH4/12CH4
)

sample

(13CH4/12CH4)VPDB
− 1

)
× 1000 ‰. (2)

The 12CH4 has an absorption feature in the near infrared region around wavelength
1.6537 µm (or frequency 6046.98 cm−1), whereas the isotope 13CH4 has its absorption
feature around 1.6586 µm (or frequency 6029.10 cm−1). We have employed two DFB-type
diode lasers for their spectral detections, respectively. Figure 11 shows measurement
spectra of 12CH4 and 13CH4 in ambient air using the dual-wavelength detection method
presented in the previous sections. The pressure in the cavity was controlled at 10,000 pa
and the temperature was stabilized at 299 ± 0.01 K. Each data point of the 12CH4 spectrum
in Figure 11a was the result of a single ringdown event, and the much weaker 13CH4
spectrum averages 20 ringdown events into one data point in Figure 11b. We repeated
such spectral measurements 2000 times and performed an analysis of Allan deviation on
δ13CH4 values, as shown in Figure 12. The results indicate that the instrument is capable of
a precision of 1.3‰ on δ13CH4 by averaging the measurement results of 100 spectra. One
factor that affects the precision of isotope measurement was a large temperature gradient
(0.2 K) in the cavity. This was based on the temperature difference measured between
the two ends of the cavity. It is expected to achieve higher accuracy if the temperature
uniformity was better.
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5. Conclusions

This paper presents a CRDS system that combines a scheme for matching laser wave-
lengths to optical cavity resonances and dual-laser spectral measurements. A scanning
algorithm is applied to step-scan and track the laser wavelength to the optical cavity
resonance. In order to avoid the mutual interference of ringdown signals between the
two lasers, we operated the laser coupling to the cavity in a time-multiplex fashion. The
highly reflective cavity mirrors helped to block off non-resonant lasers. We determined the
free spectra range (FSR) of the fixed-length cavity by counting the steps of a step-scanned
CH4 spectrum with known spectral line positions in the region of 6365.19–6365.81 cm−1.
The FSR interval serves as a frequency scale of measurement spectra. The αmin and NEA
of the system are 1 × 10−11 cm−1 and 2.8 × 10−11 cm−1 Hz−1/2, respectively. By select-
ing absorption features of different strengths, measurements can detect a wide range of
methane concentrations. The dual-laser measurements (1654 nm and 1658 nm) achieved
a high-precision determination of atmospheric δ13CH4 (1.3‰). This optical instrument
will be useful for future environmental monitoring applications and can be extended for
other gas species by using additional lasers operating at different wavelengths. A recent
innovative development exploited quartz tuning forks (QTFs) as a photodetector based on
a light-induced thermo-elastic effect [43]. It offers advantages of high sensitivity and no
wavelength limitation for future optical measuring systems, as reported for an ultra-high
sensitive detection of carbon monoxide using a mid-infrared quantum cascade laser [44].
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