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Abstract: ‘Candidatus Liberibacter asiaticus’ (CLas) is a bacterium that causes Huanglongbing, also
known as citrus greening, in citrus plants. ‘Candidatus Liberibacter solanacearum’ (Lso) is a close
relative of CLas and in the US it infects solanaceous crops, causing zebra chip disease in potato.
Previously, we have identified the Lso hypothetical protein effector 1 (Lso-HPE1). This protein uses
a signal peptide for secretion; disrupts programmed cell death; and interacts with tomato RAD23c,
d, and e proteins, but not with RAD23a. In this study, we evaluated whether CLIBASIA_00460, the
CLas homolog of Lso-HPEL1 interacted with citrus RAD23 proteins and disrupted their programmed
cell death. Based on the yeast two-hybrid assay results, CLIBASIA_00460 interacted with citrus
RAD23c and RAD23d, but not with citrus RAD23b. These results were confirmed using bimolecular
fluorescence complementation assays, which showed that these interactions occurred in cell puncta,
but not in the nucleus or cytoplasm. Additionally, CLIBASIA_00460 was able to disrupt the PrfP1416V_
induced hypersensitive response. Therefore, based on the similar interactions between Lso-HPE1
and CLIBASIA_00460 with the host RAD23 proteins and their ability to inhibit cell death in plants,
we propose that these effectors may have similar functions during plant infection.
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1. Introduction

‘Candidatus Liberibacter asiaticus” (CLas) is the causative agent of citrus greening
or Huanglongbing (HLB), the most devasting disease of citrus fruits [1,2]. This disease
arrived in Florida in the early 2000s and has spread throughout the citrus-producing areas
of Florida, California, and Texas. Since 2005, HLB has reduced citrus production by 75%,
taking an unprecedented toll on major fruit production [3]. Typically, during the early years
following the arrival of the disease, infected trees were destroyed. Currently, there is no
treatment for trees infected with HLB.

CLas is a Gram-negative x-proteobacterium [4,5], and is the causative agent of HLB in
the USA. Two other bacteria, ‘Ca. L. africanus’” and ‘Ca. L. americanus’ [6,7] also cause HLB
throughout the world, but CLas is the most prevalent and virulent of these pathogens [4].
CLas colonizes the phloem sieve elements of citrus plants. In nature, CLas is transmitted to
plants through feeding by the Asian citrus psyllid, a phloem-feeding insect. HLB symptoms
include leaf mottling, discolored fruit, and aborted seeds, eventually leading to the death
of the entire tree [8].

In the last 20 years, other Liberibacter species have emerged as pathogens affecting many
crops in different parts of the world. For example, ‘Candidatus Liberibacter solanacearum’
(Lso) haplotypes A and B affect potato, tomato, and other solanaceous crops in the Americas,
causing zebra chip disease in potato [9]. In New Zealand, only haplotype A is present.
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Lso haplotypes C, D, and E affect carrot and celery in Europe, North Africa, and in the
Middle East [10-13]. Other Lso haplotypes have also been identified elsewhere, infecting
other plant species [14,15]. More recently, Lso was found to be associated with cottony
ash psyllids and could be responsible for the ash tree decline in Canada [16]. Similar to
other Liberibacter pathogens, Lso is a phloem-restricted bacterium that is transmitted by
psyllids. Given that the diseases that are caused by Lso develop faster than those which are
not, we propose to use Lso as a model pathosystem to investigate the diseases caused by
Liberibacter pathogens.

The complete genomes of several Liberibacter species have been sequenced through
metagenomic [17-21] and transcriptome analyses [22,23], paving the way for functional
genomics studies. Specifically, several research groups have investigated the biological func-
tions of the Liberibacter-encoded proteins in relation to their role in plants [24]. Liberibacter
are intracellular pathogens that lack the type III, IV, or VI secretion systems (T3SS, T4SS,
and T6SS, respectively), which are well known for injecting effector proteins into the host’s
cells. As a result, the general Sec secretion machinery is believed to be responsible for
the secretion of the Liberibacter effectors [25]. When using Escherichia coli as a surrogate
system, several Liberibacter proteins have been shown to potentially be secreted by the Sec
system [26]. Most of the Sec-dependent secreted proteins that are encoded by Liberibacter
bacteria are annotated as hypothetical proteins.

In a previous work, we identified Lso-HPE1 (ADR52633.1), an effector that is encoded
by Lso. Lso-HPEL is a Sec-dependent secreted protein that is able to suppress a hypersensi-
tive response (HR) when induced by either BAX or PrfP1416V in Nicotiana benthamiana [27].
The screening of a tomato yeast two-hybrid library identified tomato RAD23e as an inter-
actor of Lso-HPEI1 [28]. RAD23 proteins are involved in shuttling ubiquitinated proteins
to the proteasome for them to undergo degradation. Tomato encodes four RAD23 genes
(RAD23a, RAD23c, RAD23d, and RAD23e) and Lso-HPE1 can interact with tomato RAD23c,
RAD23d, and RAD23e, but not with RAD23a. While Lso-HPE1 is well conserved among
the different Lso haplotypes, the CLas homolog protein identified, CLIBASIA_00460, shares
34% identity with Lso-HPE1 and has 55% similarity with it. These values increase to 46%
and 60% for identity and similarity when compared to the mature protein, i.e., when the
signal peptide is removed [27]. No homologs of Lso-HPE1 were found in ‘Ca. L. africanus’
or ‘Ca. L. americanus’.

The purpose of this study was to evaluate whether CLIBASIA_00460, the CLas protein
homolog of Lso-HPE1, could also suppress HR induced by PrfP'*16V in N. benthamiana, and
if it could interact with citrus RAD23 proteins.

2. Results

A 98-amino-acid-long putative Lso-HPE1 homolog was identified in the CLas genome,
CLIBASIA_00460 (WP_012778427) [27]. BLAST searches using CLIBASIA_00460 as a query
returned as match CLas hypothetical proteins (WP_012778427) and Lso-HPE1 proteins from
different Lso haplotypes. However, no similar proteins were identified in ‘Ca. L. africanus’,
‘Ca. L. americanus’, ‘Ca. L. europaeus’, or L. crescens. CLIBASIA_00460 has a predicted
signal peptide [26,29,30]. CLIBASIA_00460 protein sequences are identical in the 62 CLas
assembly accessions available in NCBI. These accessions correspond to CLas specimens
collected from different geographical regions.

While CLas CLIBASIA_00460 is shorter than Lso-HPE1 proteins as it lacks the last
21 amino acids, the C-terminal region of the protein is highly conserved (Figure 1). Both
mature proteins have a predicted subcellular localization in the nucleus and the cytoplasm
(Table S1), which is in accordance with the localization observed in expression assays [29].
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Figure 1. Alignment of the LsoA and LsoB HPE1 and CLIBASIA_00460 proteins. The signal pep-
tide is boxed. The amino acid residues are colored according to their physiochemical properties:
red = small (small + hydrophobic including aromatic — Y), blue = acidic, magenta = basic — H, and
green = hydroxyl + sulfhydryl + amine + G. The consensus symbols are as follows: an asterisk (*)
indicates positions which have a single, fully conserved residue; a colon (:) indicates conservation
between groups with strongly similar properties; and a period (.) indicates conservation between
groups with weakly similar properties.

2.1. Suppression of Plant Cell Death

The transient expression of the mature CLIBASIA_00460 in N. benthamiana did not
induce cell death (average score of 0.03). However, the CLIBASIA_00460 mature protein
was able to suppress PrfP141%V_induced cell death in co-infiltration assays (average score
of 0.18). The average score for PrfP1416V when it was expressed alone was 0.55 (cell death
control), and when it was co-infiltrated with AvrPto, the score was 0 (suppression of cell
death control) (Figure 2).

. Pif+ AviPto

Prf + CLIBASIA_00460 CLIBASIA 00460

Figure 2. Symptoms associated with transient expression in Nicotiana benthamiana leaves after
agroinfiltration. The picture was taken seven days after infiltration. PrfP1416V 4lone (Prf) induced cell
death, while the co-infiltration of PrfP1416V_AyrPto, the co-infiltration of PrfP1416V_CLIBASIA_00460,
or the infiltration of CLIBASIA_00460 alone did not induce cell death.

2.2. Identification of RAD23 Proteins Encoded in the Citrus Genome

Citrus RAD23 proteins were identified using BLAST searches employing tomato and
Arabidopsis thaliana RAD23 as the query. We searched two citrus genomes, Citrus clementina
and C. sinensis, to find similar proteins. In each species, three RAD23 genes were identified
(RAD23b, RAD23c, and RAD23d). The phylogenetic tree constructed using the Solanum
lycopersicum, A. thaliana, and C. sinensis proteins shows two RAD23 clades (Figure 3). Clade
1 clusters A. thaliana RAD23a and b; C. sinensis RAD23b; and S. Iycopersicum RAD23a
proteins. The second clade, Clade 2, clusters A. thaliana RAD23c and d; S. lycopersicum
RAD23c, d, and e; and C. sinensis RAD23c and d proteins. A multiple sequence alignment of
the RAD23 domain interacting with Lso-HPEI1 is shown in Figure 4; the complete alignment
of the RAD23 proteins is shown in Figure S1 (a phylogenetic analysis of this family can
be found in [31]). Based on the bioinformatic analyses, all S. lycopersicum and C. sinensis
RAD23 proteins were predicted to be localized in the nucleus and cytoplasm (Table S1).
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Figure 3. Phylogenetic tree of the RAD23 proteins. The tree was obtained using the “one click” mode
in phylogeny.fr.
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CSRAD23B MKLTVKTLKGSHFEIRVQPSDTVMAVKKNIEDVQGKDNYPCGQQL LIHNGKVLKDETTLA 60
CsRAD23c MKVEVKTLKGTHFEIEVKPEDKVSDVKKNIETVQGSDVYPASQQM LIHQGKVLKDVTTLE 60
S1RAD23D MKIFVKTLKGTHFEIEVKPEDTVADVKKSIETVQGQDVYPAAQOM LIHQGKVLKDPTTLE 60
S1RAD23E MKIFVKTLKGTHFEIEVKPEDSVADVKKNIESVQGQDVYPAAQQM LIHQGKVLKDTTTLE 60
S1RAD23C MKIFVKTLKGSHFEIEVKPEDTVADVKKNIETVQGSDVYPAAQQM LIHQGKVLKDGTTLE 60
CsRAD23D MKIFVKTLKGTSFDVEVKPEDTVFDVKMKIETVQGSDVYPAAQQM LIYQGKVLKDDITLE 60
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Figure 4. Alignment of the S. Iycopersicum and C. sinensis RAD23 proteins. The names of the sequences
in Clade 1 are in blue; those in Clade 2 are in red. Amino acid residues are colored according to their
physiochemical properties: red = small (small + hydrophobic including aromatic — Y), blue = acidic,
magenta = basic — H, and green = hydroxyl + sulfhydryl + amine + G. Consensus symbols are as
follows: an asterisk (*) indicates the positions which have a single, fully conserved residue; a colon
(:) indicates conservation between groups of strongly similar properties; and a period (.) indicates
conservation between groups of weakly similar properties. The motif interacting with Lso-HPE1
is identified using a line; the symbols below the line are as follows: a question mark (?) indicates
the positions with amino acid substitutions with similar physiochemical properties between clades,
and an exclamation mark (!) indicate the positions with amino acid substitutions with different
physiochemical properties between clades.

2.3. Yeast Two-Hybrid Interaction between CLIBASIA_00460 and Citrus RAD23

To evaluate whether CLIBASIA_00460 interacted with citrus RAD23 proteins, yeast
two-hybrid assays were performed. The CLIBASIA_00460 mature protein interacted with
the C. sinensis RAD23c and RAD23d proteins but did not interact with the C. sinensis
RAD23b protein (Figure 5).

SD-Leu-Trp SD-Leu-Trp-His
BD AD 102

CLIBASIA | CsRAD23b
00460

CLIBASIA | CsRAD23c
00460

CLIBASIA | CsRAD23d
00460

Lam Sv40

p53 SV40

Figure 5. Evaluation of the interaction between the CLIBASIA_00460 mature protein and the citrus
RAD23 proteins using directed yeast two-hybrid assays. pGBKT7 (BD) constructs were used as
bait, and pGADT7 (AD) constructs were used as prey in the yeast two-hybrid assays. Lam + SV40
indicates the negative control for the yeast-two hybrid assays; p53 + SV40 indicates a positive control
for the yeast two-hybrid assays.
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2.4. Validation of Interaction by Bi-Molecule Fluorescence Complementation

The interaction between CLIBASIA_00460 and the C. sinensis RAD23 proteins was val-
idated using Bi-molecule fluorescence complementation (BiFC). To validate the interaction
between the CLIBASIA_00460 mature protein and C. sinensis RAD23, YFP fluorescence
signals in infiltrated leaf cells were visualized using fluorescence microscopy. In accordance
with the results obtained in the directed Y2H assays, fluorescence signals were observed
in the leaf cells that were co-infiltrated with the proteins CsRAD23c:YN and CLIBA-
SIA_00460:YC, or CsRAD23d:YN and CLIBSIA_00460:YC, but no signal was observed
in those where CsSRAD23b:YN and CLIBASIA_00460:YC were co-infiltrated (Figure 6). The
interaction between CsRAD23c:YN or CsRAD23d:YN and CLIBASIA_00460:YC produced
discrete signals, but no signal was observed in the nucleus and cytoplasm. The mature
CLIBASIA_00460, upon transient expression, was localized at the nucleus and cytosol of
the epidermal cells (Figure S2).

Bright Field Merge

CsRAD23b:YN
CLIBASIA_00460:YC

CsRAD23b:YN
Empty:YC

CsRAD23¢:YN
CLIBASIA _00460:YC

CsRAD23c:YN
Empty:YC

CsRAD23d:YN
CLIBASIA_00460:YC

CsRAD23d: YN
Empty:YC

Figure 6. Bi-molecule fluorescence complementation analysis of mature CLIBASIA00460 and citrus
RAD23b, ¢, and d interaction in N. benthamiana epidermal cells that are infiltrated with a 1:1 ratio of
agrobacteria containing YC:CLIBASIA_00460 and YN:RAD23b, c, or d. Also shown are the negative
controls which were obtained using infiltration with a 1:1 ratio of agrobacteria containing YC:empty
and YN:RAD23Db, ¢, or d. The images were taken between 72 and 80 h post-infiltration. Scale
bar =50 um.

3. Discussion

RAD23 proteins are involved in the turnover of plant proteins, which is an essential
component of a plant’s defenses [32]. At present, these proteins are emerging as key targets
of bacterial effectors. For example, the phytoplasma effector SAP54 targets the host plant’s
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RAD23 proteins, leading to the degradation of the MADS-domain transcription factors and
the development of typical symptoms associated with phytoplasma infection [33]. In our
previous study, we identified the effector Lso-HPE1, which can modulate a plant’s defense
mechanisms and interact with S. lycopersicum RAD23 proteins. Further, we showed that in
Lso-infected plants that overexpress Lso-HPE1, Lso detection could be performed earlier
and that symptoms of Lso also develop earlier compared to in wild-type infected tomato
plants. Therefore, we hypothesized that CLas could encode a protein effector similar to
Lso-HPE1 that could interact with citrus RAD23 proteins.

The search for CLas homologs of Lso-HPE1 identified CLIBASIA_00460, which was
predicted to be secreted via the Sec system. The search for homologs of Lso-HPE1 did
not identify similar proteins in the other Liberibacter pathogens that cause HLB or in the
culturable L. crescens. A reciprocal search using CLIBASIA_00460 as a query confirmed
these results. Thus, it appears that while CLIBASIA_00460 might not be essential for citrus
infection, it could be linked to the higher aggressivity of CLas. Alternatively, the other
Liberibacter pathogens pathogens could rely on a different effector protein with a similar
function to that of CLIBASIA_00460.

While the HPE1 protein encoded by different Lso haplotypes is highly conserved, it
is not identical. The differences in the sequences could be associated with the difference
in host range among the haplotypes [27], or a difference in virulence [34,35]. However, all
CLas CLIBASIA_00460 proteins are identical in the 62 assembly accessions available from
NCBL. These accessions were obtained by sequencing CLas-infected samples from different
geographical regions.

Our search for citrus RAD23 proteins identified three genes in C. sinensis and C. clementina.
The phylogenetic analysis determined that the C. sinensis RAD23b protein clustered with
A. thaliana RAD23a and b (Clade 1 in Figure 2). This clade also contained S. lycopersicum
RAD23a. The other two C. sinensis RAD23 proteins, RAD23c and d clustered with A. thaliana
RAD23c and d, as well as S. lycopersicum RAD23c, d, and e (Clade 2). Previous phylogenetic
analyses of RAD23 proteins identified two separate clades in higher plants which arose
after the evolution of seed plants but before the monocot/eudicot split [31].

The CLIBASIA_00460 mature protein interacted with C. sinensis RAD23c and d in a
yeast two-hybrid assay, but not with C. sinensis RAD23b. These results were confirmed
using BiFC. An analysis of Lso HPE1 and S. lycopersicum RAD23 proteins also identified
the interaction between the effector protein and the RAD23 proteins in Clade 2, but not
in Clade 1 [28]. A mutant analysis determined that in A. thaliana, at least one functional
RAD23 gene is required for plant viability, independent of the RAD23 subfamily [31].
While these proteins might have overlapping functions, it was determined that each
RAD23 protein had some specific roles—for example, RAD23a during embryogenesis;
RAD23b in leaf phyllotaxy, root growth, apical dominance, and fertility; and RAD23c in
fertilization [31]. Based on our results, the RAD23 proteins in Clade 2 might be targeted by
Liberibacter effectors, and this interaction could be involved in pathogenicity. Interestingly,
the phytoplasma effector SAP54 also interacts with the A. thaliana RAD23 proteins in Clade
2, but not in Clade 1. In light of these results, we hypothesize that RAD23 Clade 2 might
play a role in plant defenses.

The CLIBASIA_(00460 mature protein had a different localization in transient expres-
sion experiments, as reported here (Figure S52) and in other studies [29,36], than when its
interaction with C. sinensis RAD23 proteins was assessed using BiFC. Indeed, the mature
effector showed a nuclear and cytoplasmic localization in transient expression experiments,
while fluorescent signals were only observed in the puncta in the BiFC experiments. Thus,
the subcellular localization pattern was changed when CLIBASIA_00460 interacted with
C. sinensis RAD23c or RAD23d proteins. Lso-HPEL1 also interacted with S. lycopersicum
RAD23 proteins, but there was no change in the localization of the proteins; the inter-
action occurred in the nucleus and cytoplasm [28]. This difference in the localization of
CLIBASIA_00460 when interacting with the C. sinensis RAD23 proteins was unexpected
because the mature Lso-HPE1 and CLIBASIA_00460 proteins, as well as the different
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RAD23 proteins, were predicted to be localized in the nucleus and the cytoplasm. Pre-
viously, the mature CLIBASIA_00460 was shown to be distributed in the cytosol and to
accumulate in small vesicles and in elongated shapes [36]. Meanwhile, another study
determined that CLIBASIA_00460 was localized in the nucleus and the cytoplasm based
on transient expression analyses, but that the subcellular distribution of the protein was
affected by temperature, i.e., when the temperature increased to 32 °C, the nuclear accumu-
lation decreased [29]. Overall, these studies show that the localization of CLIBASIA_00460
can be affected by abiotic conditions, and this should be taken into consideration when
evaluating the development of HLB under different conditions. Previously, the effect of
temperature on subcellular distribution was not observed for Lso-HPE1 [28]. Lso-HPE1
and CLIBASIA_00460 mature proteins share 60% amino acid sequence similarity; these
differences could be linked to the differences in protein localization associated with temper-
ature or the interaction with RAD23 proteins. Indeed, these Liberibacter genes could have
evolved host-specific functions, so the role of CLIBASIA_00460 in citrus infection should
be investigated.

Because of the differences in the localization of CLIBASIA_00460 when it was inter-
acting with RAD23 proteins, we evaluated whether this effector was able to disrupt a HR
induced by PrfP1416V_ The transient expression assays showed that the CLIBASIA_00460
mature protein was able to efficiently disrupt PrfP1416V-induced HR. Furthermore, the ex-
periments showed no evidence that the effector induced cell death. Previously, Liu et al. [29]
conducted an immune response study of CLIBASIA_00460 in which they overexpressed
the mature protein via a Potato virus X (PVX)-based expression vector in N. benthamiana
samples. They reported that the PVX- CLIBASIA_00460 mature protein induced no visible
symptoms in the infiltrated leaves, but from five to six days after infiltration, crinkling and
veinal chlorosis were observed in the systemically infected leaves, which later evolved to
chlorosis and tiny necrotic spots [29]. Because PVX gRNAs accumulated at a higher level in
the PVX-infected plants than in the PVX-CLIBASIA_00460-infected plants, the authors spec-
ulated that the observed symptoms might not be related to the over-multiplication of PVX
but instead to a heterologously expressed effector, and suggested that CLIBASIA_00460
could have a pathogenic role in planta.

The Lso-solanaceous and CLas-citrus pathosystems present striking similarities and
differences; however, few works have performed transversal analyses on them. Maybe
these analyses could help uncover the key proteins involved in the infection of the host
plants by these pathogens.

4. Materials and Methods
4.1. Insect Colonies and Tomato Plants

Nicotiana benthamiana plants were grown from seed in pots with Sun Gro Sunshine
LP5 mix (Bellevue, WA, USA) and fertilized twice a week with Miracle-Gro Water-Soluble
Tomato Plant Food, at the label rate (18-18-21 NPK; Scotts Miracle-Gro Company, Marysville,
OH, USA). One-week-old seedlings were transplanted to individual pots and were main-
tained under the same conditions.

Diaphorina citri adults were collected from citrus groves located at the Texas A&M
Agrilife Research and Extension Center at Weslaco and transported to the laboratory. The
presence of CLas was determined from at least 20 insects following the TagMan qPCR
procedure described in Li et al. [37]. Samples showing high CLas infection (CT < 25) were
used for the cloning of CLIBASIA_00460.

4.2. Sequences Analysis

All the sequence accession numbers used are provided in the text. Homologous
sequences were found using BLAST searches (https:/ /blast.ncbi.nlm.nih.gov/Blast.cgi,
access date 6 January 2022). A BLASTP search analysis was performed to identify the most
similar proteins of Lso-HPE1 in the CLas genome. Then, the CLas protein was used as a
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query to search for similar proteins in other Liberibacter genomes. The prediction of a signal
peptide was performed using SignalP-6.0 [38].

RAD23 homologs were identified by BLASTP searches in citrus using A. thaliana and
S. Iycopersicum RAD23 sequences. The phylogenetic analysis was performed using the “one
click” mode in phylogeny.fr [39]. Briefly, the sequences were aligned with MUSCLE [40]
and the alignment was curated with Gblocks [41]. The tree was built with PhyML [42] and
drawn with TreeDyn [43].

Multiple sequence alignments of Lso-HPE1 and CLas CLIBASIA_(00460 proteins and
of the tomato and citrus N-terminal RAD23 protein sequences to identify conserved amino
acids were performed using Clustal Omega in EMBL-EBI [44]. The subcellular localization
of RAD23 and of the mature Lso-HPE1 and CLIBASIA_00460 proteins was predicted using
DeepLoc 2.0 [45].

4.3. Directed Yeast Two-Hybrid (Y2H)

For the directed Y2H assay, the sequence encoding the mature protein (without signal
peptide) of CLIBASIA_00460 (accession number: ACT55680) was amplified from CLas-
infected Asian citrus psyllid DNA and cloned into the pGBKT? vector as bait. The full-
length C. sinensis RAD23b, ¢, and d coding sequences were amplified from citrus cDNA
and cloned, separately, into the pGADT7 vector as prey. Primers are listed in Table S2.

The desired pairs of prey and bait constructs were co-transformed into Y2H Gold yeast
(Takara, San Jose, CA) and plated on the SD-Leu-Trp (DDO) medium, following Takara’s
instructions. Yeast clones with paired constructs that grew on the DDO were resuspended
in 100 pL of sterile water, then 10 pL droplets of the culture dilutions were transferred onto
DDO and SD-Leu-Trp-His (TDO) plates.

4.4. Bi-Molecular Fluorescence Complementation (BiFC)

The CLIBASIA_00460 coding region for the mature protein and the full-length CDS
of the citrus RAD23b, ¢, and d genes were amplified. PCR was performed using Phusion
High-Fidelity DNA Polymerase and the gene-specific primers are described in Table S2. The
purified amplicons were TOPO cloned into pENTR and pDONR-201 vectors, according to
the manufacturer’s directions (Thermo Fisher Scientific, Waltham, MA, USA), and verified
by sequencing. The purified pDONR-201 vectors containing citrus RAD23b, ¢, and d
were used to subclone into pEarleyGate-201-YN vector, and pENTR vector containing
CLIBASIA_00460 was used to subclone into pEarleyGate202-YC vector using LR Clonase II.
The full-length YFP function is complemented when targeted proteins physically interact
with each other, as described by Lu et al. [46]. The resulting constructs were transformed
into Agrobacterium tumefaciens strain LBA4404 by electroporation.

Transformed A. tumefaciens were grown at 28 °C for 1624 h in LB medium containing
10 mM morpholineethanesulfonic acid (MES) pH 5.6 and 20 uM acetosyringone (AS). The
cultures were pelleted and resuspended in a freshly prepared infiltration buffer (10 mM
MgCl12, 10 mM MES, and 200 pM AS) to a final OD600 = 1.2. Cells were incubated in
the dark for at least 4 h at room temperature. Agrobacterium carrying BiFC constructs
(co-infiltration at v/v ratio = 1:1) were infiltrated into the intercellular spaces of leaves of
4-week-old N. benthamiana plants using a needleless syringe. The plants were kept at room
temperature for 48 to 80 h. After infiltration, the leaves were examined using a fluorescent
microscope (Axio Imager Al microscope, Carl Zeiss Microscopy, White Plains, NY, USA)
with a FITC (488 nm, green) filter for YFP signals.

4.5. Agrobacterium Tumefaciens-Mediated Transient Expression

The CLIBASIA_00460 coding region for the mature protein was cloned into the pEG101
plasmid and transformed into A. tumefaciens, as described in Levy et al. [27]. For the tran-
sient expression experiments, bacteria were grown in 3 mL of LB supplemented with
kanamycin (50 ug/mL), 10 mM morpholineethanesulfonic acid (MES) and 20 uM acetosy-
ringone for 24 h at 28 °C and 250 rpm. The cells were pelleted and resuspended in an
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infiltration buffer: 10 mM MES, 10 mM MgClI2, and 200 uM acetosyringone. The cells were
resuspended at an optical density at 600 nm of 0.7 for those carrying CLIBASIA_00460
or AvrPto, and 0.25 for those carrying PrfP1416V  Agroinfiltrations were performed using
disposable syringes into 5-week-old N. benthamiana leaves. After infiltration, the plants
were maintained on light shelves at room temperature (21-24 °C). The HR was scored
on a scale of 0 (no reaction) to 1 (HR reaction) for each infiltration. The co-infiltration of
AvrPto and PrfP1#16V was used as a negative control. The experiment was repeated twice,
each time infiltrations were performed in 3 leaves per plant and there were three plants
per experiment.

Supplementary Materials: The following supporting information can be downloaded at: https:
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