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ABSTRACT

We present the webserver 3D transcription factor
(3DTF) to compute position-specific weight
matrices (PWMs) of transcription factors using a
knowledge-based statistical potential derived from
crystallographic data on protein–DNA complexes.
Analysis of available structures that can be used to
construct PWMs shows that there are hundreds of
3D structures from which PWMs could be derived,
as well as thousands of proteins homologous to
these. Therefore, we created 3DTF, which delivers
binding matrices given the experimental or modeled
protein–DNA complex. The webserver can be used
by biologists to derive novel PWMs for transcription
factors lacking known binding sites and is freely ac-
cessible at http://www.gene-regulation.com/pub/
programs/3dtf/.

INTRODUCTION

Position-specific weight matrices are an important tool to
analyze regulatory DNA sequences with regard to inter-
acting transcription factors. Often, position-specific
weight matrices (PWMs) are derived from alignments of
known binding sites for certain transcription factors
(TFs). Such binding sites may have been determined
individually, e.g. for a particular target gene of inter-
est, or on a genome-wide scale using a chromatin-
immunoprecipitation (ChIP) assays. Building a PWM
from known binding site sequences faces difficulties
when only few or no binding sites have been described
or when ChIP data are not available. An alternative ex-
perimental method, the Protein Binding Microarray, has
been developed by Bulyk et al. (1) and uses microarray

technology followed by statistical analysis to define the
binding pattern for a TF of interest.

Previously, we developed a method to compute a PWM
using solely information about the structural protein–
DNA complex. This further extends the scope of TFs
for which a PWM can be obtained, possibly even
without requiring any additional experimental efforts,
e.g. when the structural complex of interest is already
available or by estimating a structure by homology
modeling. The method has been described in (2) and
the force field for protein–DNA binding energy calcula-
tion in (3). The protein–DNA binding affinity is
calculated using a statistical potential (3) calibrated on
known protein–DNA bound complexes available from
the PDB database. Briefly, we generate all possible
single point substitutions of the DNA chain in the
protein–DNA crystallographic complex using a rigid
rotamer library that aims to minimize possible steric con-
flicts upon nucleotide substitutions. As a result, the
protein–DNA binding affinity is computed for each
complex of the protein with the altered DNA.
Following this a DNA mutation matrix is constructed
where all DNA residues that are not mutated are
marked with zeros and the mutated residues are marked
with one. The matrix multiplied with a vector of the still
unknown weights of the DNA residues (this is the PWM
vector) gives the binding affinity vector calculated in the
previous step. By solving this simple linear equation
system, we obtain the PWM of the particular transcrip-
tion factor. For details please refer to the original publi-
cation (2). Here, we report on a webserver, 3D
Transcription Factor (3DTF), which enables researchers
to easily carry out the necessary computational analysis
to build custom 3D structure-based PWMs.

There are several studies and web servers addressing
similar issues and complementing our approach. Most
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closely related is the 3dfootprint database (4) which
derives the sequence specificity of DNA-binding proteins
on the basis of counting molecular contacts contributing
to recognition. Here, both the method of estimating
binding strength as well as calculating PWM are different
from our approach and thus presents an alternative and
complementary 3D-based methodology. The same group
developed a server to model protein–DNA complexes
(5). There are other ways to infer protein–DNA inter-
actions, for example, direct and indirect readout energy
(6), Rosetta forcefield (7) and using compressed sensing
methods (8). These methodologies can be directly
incorporated into the 3DTF server, provided that the
energy calculations are sufficiently fast.

THE 3DTF WEBSERVER

Themethodwas implemented as a standalone tool perform-
ing automated processing of a protein–DNA complex,
invoking third party programs and returning the
computed PWM. Before calculating the energies, 3DTF
analyzes the protein–DNA interface and can automatically
identify the binding site on the DNA in the complex.
Automatic detection works when the binding interface
can be determined unambiguously and appears to have
less than 30 nt positions. The scripts for the server are
heavily optimized, allowing calculation of a typical matrix
of 10–12 positions in less than aminute. Convergence of the
full model (which includes an additional weight for each
position) requires longer calculations, which can be
invoked by a special option in the submission page.

3DTF has an easy to use interface that enables the user
to perform three major task modes related to PWM cal-
culation. For all three task modes, the required input is a
structure model in PDB format, containing one protein
chain and two complementary DNA chains. Additional
parameters can be set in the Task mode 3, described
further below. An example file with the proper format is
available on the website.

In Task mode 1, the user can check whether the provided
structure model is suitable for PWM calculation. Here,
3DTF parses the necessary information, such as chains
and types of chains, from the PDB file. It also automatic-
ally determines the segment of DNA in close contact with
the protein component. The Task mode 1 output is a plain
text page that shows the detected protein and DNA chains
as well as the parsed-out sequence of the binding site. This
output part is followed by a detailed description of the
bases contacted by protein with reference to corresponding
chains, chain IDs and individual base identifiers. Failing
conditions in Taskmode 1 include absence or corruption of
chains, e.g. if the file does not contain a DNA chain,
unpaired bases in the binding site or unconventional base
numbering in either strand.

Aside from testing of the PDB file, Task mode 1 is also
of interest for users who wish to anticipate how the
provided information is going to be processed. It should
be noted that the information compiled in the Task mode
1 output is also incorporated in the output of Task mode
2, but the latter requires more complex calculations.

Task mode 2 as well as Task mode 3 calculate a PWM
for a given protein–DNA complex. In Task mode 2,
3DTF computes the binding profile on the basis of the
automatically defined DNA segment (see Task mode 1).
For Task mode 3, the user can specify chains, start base
numbers and desired length of the binding site in order to
enforce a particular binding site to be modeled. This
provides greater flexibility to obtain custom PWMs
based on prior knowledge.
Task mode 3 is important when the binding interface

cannot be defined unambiguously from the structure (for
example, when there is more than one binding site), thus
disqualifying the structure from being used via Task 2.
Another possible application of this user-defined mode is
to calculate matrices for long binding sites. A long site can
be divided into shorter segments to be handled by 3DTF.
PWMs from each segment can then be concatenated into a
larger model. This yields the same result as calculating the
whole matrix, since within the applied model of protein/
DNA interactions energy contributions of positions are
independent from one another. An example output of
3DTF is shown in Figure 1.

ANALYSIS OF 3D STRUCTURE-BASED PWMS

A few changes to the published algorithm were imple-
mented in 3DTF. To ensure better convergence of
results, generation of random sequences was modified to
guarantee that at each position any of four bases appears
at least once. With this modification, the calculated
matrices converge already with 4N (N is the number of
positions) sequences, as the applied model is additive with
respect to positions (9). To avoid possible problems with
perturbations in modeled DNA structures, we set the
required number of sequences to 4N+5.
The method is able to derive more information than

only positional nucleotide preferences, because the
calculated energies reveal the relative importance of each
position of the matrix compared to other positions
(10). Notably, specificity of a motif position for certain
nucleotides does not necessarily imply that the position
contributes more to the binding energy than less specific
ones. Calculations carried out by 3DTF yield information
beyond the classical PWM. The average energy contribu-
tion of each position is estimated by the logarithm of the
sum of Boltzmann factors of each base (LSBF) as

LSBF ¼ log
X

b¼A,G,T,C

expð�Eb=betaÞ

 !
ð1Þ

where Eb is the energy contribution of base b in respective
position and beta=kBT. This quantity shows the
expected correlation with the information content of a
motif position (11,12), although the contributions from
positions of maximal specificity (1 0 0 0, for example)
may be very different (Figure 2A). In all our examples,
the more informative positions located at the core of the
binding site.
The LSBF is included in the output matrix as recom-

mended weighting for positions, where it can be found in
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the rightmost column appended to the consensus. These
weights of the positions can be used in the PWM-based
site search procedures, similar to the information vector
used in the MATCH program (12). An example with
LSBF values is shown in Figure 1 for the matrix of
Arabidopsis thaliana ERF2 modeled on 1GCC,
ATERF1. All frequencies and weights are normalized to
1000. The last value of the first matrix row (195.3) is the
sum of unnormalized LSBFs.

AVAILABLE TEMPLATES

The PDB (13) harbors a large number of high-quality
structures that can be used to derive PWMs. At the time
of writing this manuscript, we found 375 structure
files (PDB files) with a transcription-related protein

bound to DNA, 190 of them for TFs from human,
mouse, rat. Data in PDB can be highly redundant—
many entries in fact are related to similar transcription
factors. Therefore, to understand, which part of all
transcription factors can be described with our
approach, we estimated the possibility of finding a hom-
ologous 3D structure for transcription factors belonging
to distinct classes. The TF classification was taken from
(14), whereas the assignment of homology was obtained
from the protein model portal (PMP) (15) using UniProt
IDs of TFs. Results of our analysis are compiled in
Supplementary Table S1. Altogether, 47% of TF class
representatives can be modeled and assigned a PWM
based on homologs in PDB having 50% sequence
identity. This fraction rises to 70% if the sequence
identity threshold is set to 30%.

Figure 1. Outputs of Task modes 2 and 3 are plain text pages that feature the sequences, for which binding energies have been computed, a tabular
description of the derived PWM as well as a PWM logo. The PWM can further be downloaded in the TRANSFAC-like format. In 3DTF, the
consensus column is complemented with calculated binding energy contributions of each position (see below). The Task mode 2 output encompasses
in addition the results of evaluating the input PDB file as described for the Task mode 1.

Figure 2. (A) LSBF versus information content of the position (from data in Application example 1). (B) PFM pairwise similarity of matrices
derived from models versus pairwise sequence identity of modeled proteins.
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One can attempt tomodel theTF–DNAcomplex starting
from an unbound TF structure (16). This would increase
the fraction of TF representatives suitable for modeling
to 67 and 86%, respectively, at 50 and 30% sequence
identity thresholds. At least one representative of 21 out
of 33 classes can be processed (50% sequence identity).
Hence, the already existing data have great potential to
increase the coverage of TFs with known binding profile.

APPLICATION EXAMPLE 1

We used 3DTF to derive PWMs for plant transcription
factors. Using the template 1GCC, we modeled 48
A. thaliana proteins that have sequence identity to
ATERF-1 ranging from 30% to 100%. The list of proteins
is given in Supplementary Table S2 and Blast sequence
alignment to 1GCC sequence in Supplementary Table
S3. Visualization of homology models (Supplementary
Figure S1) shows that as a rule the amino acid substitu-
tions appear on the loop regions, i.e. one can expect that
the fold and the binding mode are conserved while the
binding specificity is altered.

Figure 2B shows that binding matrices produced with
3DTF highly depend on the sequences of the proteins. The
similarity between PWMs calculated for ATERF-1
homologs and the PWM of the template protein increases
with the protein sequence identity. The motif similarity
index was calculated as in (17), without any shifts along
positions, since the matrices in this example have the same
length and equivalent positions in 3D. This example was
designed to show the ability of the approach to deliver
divergent PWMs using the same protein–DNA complex
as a modeling template.

APPLICATION EXAMPLE 2

We performed calculation of PWMs for all transcription
factors in TRANSFAC that have a link to a PDB entry
with bound DNA. There were 18 factors with both the
PDB link and documented binding sites as well as
with defined TRANSFAC PWM. We performed the
3DTF calculations for these factor–DNA complexes and
compared energies calculated for random sequences with
the energies for the known binding sequences collected
in TRANSFAC. As summarized in Table 1, calculated
energies for reported binding sequences tend to be on the
lower end of the spectrum of binding energies, validating
the appropriateness of the forcefield used in our method.
The average ranks of energies for known sites show that the
applied calculations assign to them low energy values as
compared to random sequences. An exceptional case is
2EZD, where the structure contained only a truncated
form of HMGIY consisting of the second and third
DNA binding domains. A more detailed example is
shown in the supplement (Supplementary Figure S2) with
energies calculated for binding sequences of C/EBPbeta
using PDB entry 1GTW.

Furthermore, we compared 3DTF PWMs obtained for
PDB entries listed in Table 1 to PWMs defined for corres-
ponding TRANSFAC TFs. Similarities between two

PWMs were expressed as the Pearson correlation coeffi-
cient (PCC) of their binding site scores similar to the
approach described in (18). The two PWMs were
arranged with an overlap of at least five positions.
Scores were calculated for a random sequence over the
entire segment covered by both PWMs. A sample of
2000 random score pairs was drawn for every possible
overlapping arrangement and PWM orientation. The
random score pairs were used to calculate the PCC by
the following formula, where X and Y are the vectors of
n=2000 random scores for each motif and �x and �yare
respective sample mean scores.

PCCðX,YÞ ¼

P
i¼1,n

ðxi � �xÞðyi � �yÞ

P
i¼1,n

ðxi � �xÞ2
P
i¼1,n

ðyi � �yÞ2

The highest PCC out of all possible configurations was re-
ported. We calculated similarities between (i) the 3DTF
PWM and the TRANSFAC matrices homologous to the
PDB protein, (ii) the 3DTF PWM and TRANSFAC
matrices linked to other transcription factors listed in
Table 1 and (iii) the TRANSFAC matrices associated
with the same TF protein. The correlation values show
that 3DTF PWMs are in most cases more similar to
motifs of the homologous TF than to other motifs
(Table 1, columns A and B). In the case of 1IF1 and
2DGC, 3DTF was not able to derive a PWM that
would be similar to the PWMs reported in TRANSFAC
for the corresponding TF. Furthermore, in several cases,
we observe that PWMs produced by 3DTF achieve a level
of similarity that is comparable to the similarity among
multiple PWMs of the same TF (Table 1, columns A
and C), e.g. for 1IGN, 1HCP, 1UBD or 1GTW.
For comparison, we carried out the same calculations for

matrices computed by the 3DPWMmethod (4). The results
were similar to those obtained with 3DTF. The similarity
of the 3DPWM motif to matrices of the same TF was in
most cases higher than to other motifs but often lower than
the similarity between TRANSFAC motifs of that TF.
This suggests that such results are connected to the
structure-based methods. Further, 3DPWM matrices
were often more similar to homologous TRANSFAC
matrices than the corresponding 3DTF matrix. However,
the PCC values in comparisons to TRANSFAC matrices
were also higher. To highlight this, we divided PCCs of
3DPWM or 3DTF matrices and homologous
TRANSFAC matrices by the PCCs calculated with other
TRANSFAC matrices. The results are reported in Table 2
(A/B columns). Here, 3DTF more often achieved a higher
ratio than 3DPWM, which suggests that 3DTFmotifs tend
to be more specific for the particular TF. The reason could
be a general bias in either approach to infer more or less
informative matrix positions. In the 3DTF approach, this
can be controlled, e.g. by adjusting the temperature in the
Boltzmann equation.
We also performed calculations with experimental data

available from Uniprobe database (19) holding PWMs
derived from protein binding microarrays (1). We
checked all 418 Uniprobe database entries (April 2012)
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for links to relevant PDB entries. There were 35 that have
associated PDB file for reported TF bound to DNA. Five
among these had repeated experiments for the same tran-
scription factor, so we can assess the reproducibility of
experiment-derived PWMs. This last comparison gave
high consistency between experiment-derived PWMs,
with similarities, calculated as described above, from

0.830 (UP00321/UP00398 for Rap1, Saccharomyces
cerevisiae, P11938) and 0.993 (UP00013/UP00408 for
Gabpa, Mus musculus, Q00422). On average,
3DTF-derived PWMs were less similar to respective
Uniprobe PWMs, as in comparisons with TRANSFAC
data, possibly indicating importance of several factors
such as 3D modeling quality or differences in experimental

Table 1. Ranking of binding sequence energies for a set of TFs with assigned PDB entry and correlation between 3DTF and TRANSFAC

PWMs

PDB ID Transcription
factor

Average rank
of site energies
versus random (%)a

A. 3DTF PWM
versus homolog
TRANSFAC PWMsb

B. 3DTF PWM
versus other
TRANSFAC PWMs

C. Homolog
TRANSFAC PWMs

1XBR Brachyury 0 0.61
c 0.38±0.09

1CF7 E2F4 3.5 0.44 0.30±0.10
1SRS SRF 1.5 0.58±0.03 0.29±0.11 0.80±0.06
1IF1 IRF-1 9.5 0.30±0.04 0.31±0.07 0.76±0.08
1IGN RAP1p 4.3 0.67±0.06 0.25±0.07 0.69±0.10
1HDD En 3.6 0.61 0.32±0.12
1HCP ER 0.1 0.66±0.08 0.35±0.11 0.70±0.08
2DGC GCN4 8.4 0.36±0.10 0.32±0.12 0.73±0.07
1MDY E2A 1.3 0.53±0.06 0.28±0.08 0.82±0.05
1FOS AP-1 4.3 0.54±0.07 0.36±0.13 0.89±0.06
1TUP P53 0 0.49±0.05 0.37±0.10 0.69±0.12
2EZD HMGIY 22.6 0.46±0.06 0.24±0.16 0.45±0.12
1UBD YY1 1.6 0.67±0.12 0.34±0.10 0.74±0.09
1YTB TBP 14.0 0.55±0.07 0.28±0.11 0.70
1APL MATalpha2 9.7 0.58±0.16 0.35±0.08 0.43
2BOP E2 1.8 0.57±0.04 0.23±0.08 0.91±0.04
1BY4 RXRalpha 2.9 0.47±0.10 0.37±0.13 0.48±0.06
1GTW C/EBPbeta 1.3 0.70± 0.04 0.30±0.10 0.81±0.06

In column B, higher PCCs than those achieved by 3DPWM (Table 2) are highlighted bold.
aAverage rank of known sites is calculated from the ranks of energies to known sites in the list of ordered binding energies to 1000 random DNA
sequences.
bCorrelation coefficients were calculated as described in the main text.
cCorrelation values and/or standard errors may be missing due to lack of data.

Table 2. Correlation between 3DPWM and TRANSFAC PWMs for a set of TFs with assigned PDB entry

PDB ID A. 3DPWM
versus homolog
TRANSFAC PWMs

B. 3DPWM
versus other
TRANSFAC PWMs

C. Homolog
TRANSFAC PWMs

A/B 3DPWM A/B 3DTF

1XBR 0.55 0.42±0.11 1.31 1.61
1CF7 0.73 0.21±0.08 3.52 1.47
1SRS 0.65±0.04 0.28±0.08 0.80±0.06 2.31 2.00
1IF1 0.58±0.06 0.41±0.12 0.76±0.07 1.40 0.97
1IGN 0.57±0.04 0.29±0.09 0.68±0.10 1.94 2.68
1HDD 0.69 0.38±0.15 1.82 1.91
1HCP 0.70±0.10 0.40±0.12 0.71±0.06 1.76 1.89
2DGC 0.35±0.09 0.30±0.10 0.73±0.06 1.16 1.13
1MDY 0.69±0.06 0.29±0.08 0.82±0.05 2.33 1.89
1FOS 0.50±0.02 0.35±0.10 0.89±0.06 1.40 1.50
1TUP 0.47±0.07 0.33±0.12 0.69±0.11 1.43 1.32
2EZD 0.59±0.06 0.32±0.11 0.44±0.11 1.83 1.92
1UBD 0.74±0.09 0.41±0.10 0.74±0.09 1.82 1.97
1YTB 0.65±0.02 0.31±0.12 0.69 2.11 1.96
1APL 0.62±0.04 0.38±0.09 0.43 1.66 1.66
2BOP 0.63±0.02 0.29±0.10 0.90±0.03 2.19 2.48
1BY4 0.52±0.08 0.42±0.15 0.48±0.05 1.22 1.27
1GTW 0.57±0.03 0.32±0.09 0.81±0.06 1.78 2.33

Columns A–C correspond to the same columns in Table 1 with PCC values for 3DPWM. The two rightmost columns contain the PCC of column A
divided the PCC of column B of respective table row (Table 1 for 3DTF values). In column A, higher PCCs than those achieved by 3DTF (Table 1)
are highlighted bold.
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conditions. One should also keep in mind possible
inconsistencies in mapping binding factors identities from
one experiment to another. In some cases, 3DTF-derived
PWMs were extremely similar to Uniprobe matrices, for
example, Egr1 with PCC of 0.875 and Gabpa with PCC
of 0.819. The results on Tables 1–2 also show that
structure-derived PWMs show a clear preference to be
similar to appropriate experiment-derived PWMs.

CONCLUSIONS

The 3DTF webserver provides a possibility to derive DNA
binding profiles based on the 3D structure of the protein/
DNA complex. There are many structures in PDB that
can be used for this purpose. More importantly, PDB
structures can be used as templates for homology
modeling of thousands of transcription factors having
similar fold, but with very different binding specificities.
Therefore, we expect that the webserver will be used to
generate PWMs for families of transcription factors as
well as for specific TFs provided that 3D structures are
modeled accurately.

We showed that the method used here successfully
reproduces strong binding of TFs to sequences of known
binding sites. Therefore, we expect that this and similar
structure-based PWM models (4) can further be used to
develop novel matching algorithms outperforming
existing methods. PWMs produced by 3DTF are
correlated with known TF motifs, so that the webserver
provides for a valid, alternative path for researchers to
obtain PWMs of interest. The 3DTF server will be
further developed to use more adequate or updated
forcefields that should make its predictions more accurate.

SUPPLEMENTARY DATA
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Supplementary Tables 1–3 and Supplementary Figures
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