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Abstract. An Mr 63-kD sea urchin sperm flagellar 
membrane protein has been previously implicated as a 
possible receptor for egg jelly ligand(s) that trigger the 
sperm acrosome reaction (AR). The cDNA and 
deduced amino acid sequences of the 63-kD protein 
are presented. The open reading frame codes for a 
protein of 470 amino acids which contains a putative 
signal sequence of 25 residues. Western blots using 
antibodies to two synthetic peptides confirm the se- 
quence to be that of the 63-kD protein. The mRNA is 
•2,300 bases in length and the gene appears to be 

single copy. The protein is released from sperm mem- 
brane vesicles by treatment with phosphatidylinositol- 
specific phospholipase C, showing that it is anchored 
to the flagellar membrane by glycosylphosphatidyl ino- 
sitol (GPI). Although we cannot demonstrate involve- 
ment of the 63-kD protein in the AR, it is of potential 
interest because it shares significant similarity with the 
developmentally expressed proteins crumbs, notch and 
xotch as well as human uromodulin over a region that 
includes two separate EGF repeats. 

S 
PERM-EGG interactions during fertilization provide im- 
portant models for studying such basic cellular phe- 
nomena as chemotaxis (Ward et al., 1985; Ralt et al., 

1991), cell-cell recognition and adhesion (Wasserman, 
1990; Foltz and Lennarz, 1992), membrane fusion (Hong 
and Vacquier, 1986; Blobel et al., 1992; White, 1992), ox- 
idative stress (Shapiro, 1990), and ionic (Epel, 1990) and 
second messenger (Garbers, 1989)-mediated cellular activa- 
tion. When exposed to the extracellular jelly layer of the un- 
fertilized egg, sea urchin sperm undergo the acrosome reac- 
tion (AR 1) in which the acrosomal vesicle is exocytosed 
and an acrosomal process of filamentous actin is extended 
from the tip of the sperm head (Dan, 1967). The AR is an 
absolute prerequisite for fertilization; it is induced by the 
opening of ligand-gated ion channels, resulting in the net 
influx of Ca :+ and Na +, and the net efflux of H + and K ÷ 
(Vacquier, 1986; Babcock et al., 1992; Gonzalez-Martinez 
et al., 1992). 

mAb J18/29 induces the AR in sea urchin sperm (Trimmer 
et al., 1987). Based on reaction with this mAb, sperm mem- 
brane proteins of approximate Mr, 320 kD, 210 kD, 170 kD 
and 63 kD have been implicated as potential receptors for the 
egg jelly ligand(s) mediating the ion channel events underly- 
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ing the AR (Trimmer et al., 1987). Additionally, a 63-kD 
sperm membrane protein has been implicated as a receptor 
for the egg jelly peptide speract that activates sperm respira- 
tion and motility (Harumi et al., 1991). Another mAb, 
J17/30, reacts exclusively with the 63-kD protein and local- 
izes it to the sperm flagellum and midpiece (Nishioka et al., 
1987). 

To gain a deeper understanding of the sperm membrane 
proteins mediating the AR, we utilized molecular techniques 
to characterize the 63-kD protein. Here we report the cDNA 
and deduced amino acid sequences of the 63-kD protein of 
Strongylocentrotuspurpuratus sperm. We show that the pro- 
tein is anchored to the membrane by glycosylphosphatidyl 
inositol (GPI) and that it shares significant similarity with 
proteins of the EGF superfamily, including human uromodu- 
lin (Hession et al., 1987), and the developmentally regulated 
proteins crumbs (Tepass et al., 1990), notch (Wharton et al., 
1985) and xotch (Coffman et al., 1990). 

Materials and Methods 

Cloning and Sequencing the cDNA Encoding 
the 63-kD Protein 
A 1.9-kb cDNA coding for the 63-kD protein was isolated from a hgt 11 
sea urchin (S. purpuratus) testis library using mAb J17/30 (Nishioka et al., 
1987; Trimmer et al., 1987) after standard procedures for antibody screen- 
ing (Young and Davis, 1983). The Eco R/insert was cloned into pBluescript 
(Stratagane Corp., La Jolla, CA) and single stranded DNA (M13) was iso- 
lated. The sequences of both strands were determined by the dideoxy chain 
termination method using Sequenase 2.0 (United States Biochemical, 
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Cleveland, OH). This clone was then used to isolate several overlapping 
cDNAs from an S. purpuratus testis eDNA hZAP II library (Stratagene 
Corp.). Hybridizations were at 65"C in 6x SSPE (Ix SSPE: 150 mM 
NaCI, 1 mM EDTA, 10 mM NaH2PO4 pH 7.4), 5x Denhardt's (50x Den- 
hardt's: 1% ficoll, 1% polyvinylpyrrolidone, 1% BSA), 0.5% SDS and 100 
/~g/mi yeast tRNA (Sigma Chemical Co., St. Louis, MO) overnight. Initial 
washes were at 23°C for 15 rain (2x) in lx  SSC, 0.1% SDS with a final 
wash at 680C in lx  SSC, 0.1% SDS for 1 h. 

Analysis of Sequences 
The deduced amino acid sequence of the 63-kD eDNA was compared to 
all protein libraries available on the Pearson FAST88 package using FASTA 
(Pearson, 1990). An optimal alignment of homologous sequences was de- 
rived using the programs RELATE and ALIGN from the Protein Identifica- 
tion Resource (National Biomedical Research Foundation, Washington, 
DC). A hydropathy profile of the deduced amino acid sequence was ob- 
tained using TGREASE on the Pearson FAST88 package using the Kyte- 
Doolittle algorithm (Kyte and Doolittle, 1982). All computer programs 
used were accessed on the VAX/VMS system (Smith, 1988). 

Peptide Antigen~Antibody Production 
and Immunoblotting 
Peptides 1 and 2 were synthesized based on the deduced amino acid se- 
quence of the 63-kD protein from residues 237-248 and 382-393 (Fig. 1; 
underlines). Both peptides had an additional lysine at the amino terminus 
and were coupled to BSA by the glataraldehyde method (Doolittle, 1987). 
The peptide antigens (BSA-peptide) were used to generate antisera in rab- 
bits (Cocalico Biologicals, Reamstown, PA). Peptide-specific IgG was 
purified by affinity chromatography using an ImmunoPure Ag/Ab Im- 
mobilization Kit No. 1 (Pierce Chemical Co., Rockford, IL). First, BSA- 
specific IgG was removed on a BSA affinity column, followed by purifica- 
tion of peptide-specific IgG on a BSA-peptide column. Immunoblotting of 
sperm membrane proteins isolated by the method of Podell et al. (1984) with 
peptide-specific IgG, and with mAb J17/30 IgG was detected with an alka- 
line phosphatase-conjugeted secondary antibody (Calbiocbem Corp., La 
Jolla, CA). 

Southern Blot Analysis 
Sperm DNA (5/zg) was digested with 20 U of Psi 1, 15 U of Bst X1, 20 U 
of Xba 1, and 10 U of Nde I, and electrophoresed in a 0.6% agarose gel. 
The DNA was transferred to a nylon membrane (Schieicher and Schaell, 
Inc., Keene, NH) and the blot probed with pL29-E, a 1,550-bp 63-103 
eDNA fragment that was random-prime labeled with [nP]dCTP (Amer- 
sham Corp., Arlington Heights, IL) to a specific activity of 7 x 108 
cpm/#g. Hybridization was at 6g°c in 6x SSPE, 5x Denhardt's, 0.5% 
SDS, and 200/~g/ml yeast tRNA (Sigma Chemical Co.) overnight. Initial 
washes were at 23°C for 15 rain (2x) in 0.1x SSPE, 1.0% SDS with a final 
wash at 68"C in 0.1x SSPE, 1.0% SDS for 1 h. 

Northern Blot Analysis 
Total RNA was isolated from spermatogenically active S. purpuratus testes 
by the guanidinium thiocyanate method (Chomczynski and Sacchi, 1987). 
Poly A ÷ mRNA was isolated with the polyATtract mRNA isolation system 
(Promega Corp., Madison, WI). The mRNA was electrophoresed and 
transferred to a nylon membrane (Schleicher and Schuell, Inc.). Blots were 
hybridized at 68"C with the pL29-E eDNA fragment (random-prime la- 
beled to a specific activity of 7 x l0 s cpm/#g) in 5x SSPE, 5x Den- 
hardt's, 0.1% SDS, and 100 #g/mi yeast tRNA for 48 h. Initial washes were 
at 23°C for 15 rain (2x) in Ix SSPE, 0.1% SDS with a final wash at 68"C 
in lx  SSPE, 0.1% SDS for 1 h. 

Gamete Collection, Iodination, and Enzymatic 
Release of the 63-kD Protein 
Sea urchins were spawned by intracoelomic injection of 0.5 M KCI. Semen 
was collected undiluted and stored on ice. Just before iodination semen was 
diluted into millipore-filtered sea water, pH 6.5, and pigment cells removed 
by centrifugation at 250 g for 12 rain at 4"C. Spermatozoa were washed 
twice by sedimentation at 1,000 g for 15 rain and resuspension in millipore- 
filtered sea water (4"C). Washed spermatozoa (8 x los) were vectorially 
labeled with 125I using iodobeads (Pierce Chemical Co.; Lopo and Vac- 

quier, 1980a). Labeled cells were washed free of 125I and sea water salts 
by layering 1 ml of iodination mixture on top of a 13 ml density step made 
by mixing one volume of 1.0 M sucrose/10 mM NaN3 with 3 voi of 1.1 M 
glycerol/20 mM Hepes pH 7.5 (buffer G). After centrifugation (4"C) at 
2,000 g for 20 rain, the supernatant was removed by aspiration and the 
sperm cell pellet was resuspended in 1 ml of buffer G. 

20/zl of 50 mM triethanolamine pH 7.5/10 mM EDTA/10 mM NaN3, 
with or without 1 U of phosphatidylinositol-specific phospholipase C (PI- 
PLC; Boehringer Mannheim Corp., Indianapolis, IN), was incubated with 
380 #1 of I~I-labeled sperm for 3 h at 230C. The digests were centrifuged 
in an alrfuge at 150,000 g for 1 h and the protein components of the superna- 
tants and pellets separated on a 10% SDS-PAGE gel (Laemmli, 1970). The 
gels were stained with Coomassie blue, dried, and prepared for autoradiog- 
raphy. 

Results 

Deduced Amino Acid Sequence 
Overlapping cDNA fragments of the two libraries yielded 
the full-length sequence encoding the 63-kD protein (Fig. 1). 
The start of the putative open reading frame is the methio- 
nine designated number 1. A putative signal sequence of 2 5  
amino acids (Von Heijne, 1986) is followed by the putative 
amino-terminal amino acid, glutamine (~). The mature se- 
quence contains five sites for potential N-linked glycosyla- 

<CAATTAAC~ATTTGGCTGGAGTATTTTTG~AATGG~ACAGGGTAAA~J%GcA~C~TJ~AA~CTCATGTTTGAAGACTA/~%ATC~GG~T 90 
.•AGCTTGTTGGAAATATAAA•TCCCAAGTTTTCAAGATGT•CTGCCACC•GCATTGC••GTTGGTGGTCTTTT•TTTGCTC•TCAC•CTC 180 

M F C H L H C M L V V F S L L L T L  18 

ACAGGTTCcTTTGTGAAT~CRCAAACAA~AGAAGTGGTCACTGAAATAACAGCAA~AACGGCGGACCCCCCAGACCCATGTGCATCCAAC 270 
T G S  VN A~Q T T E V V T E I T A T T A D P p D P C A S N  48 

<CATGTACAATAGCCAGTACACACTGCGTGGCAGCCGGCGAATCCCACACGTGTGAATGCC~TCCAGGGTATTTTGAAAC~AACGGCAAT 360 
P C T  A S T H C V A A G E S H T C E C p p G y F E T N G N  78 

•CACAGTTGCACAGCAATTCGCTG•CTCATTTTCCGTCACACAG•TT•GCGGTAGTAATGATTGTACTCAGCTGACCTAGCCGACACG 450 
C T V A Q Q F A G S F S V T Q V G G S N ~ L y S A D L A D T  108 

`~ACTCTGC~CGTTTGC~T~TTT~GCAGCAGACGTGGAAGACGCGCTTGATACTGTCTA~C~AGCGAGTACGATGG~GGATAT~TACCTT 540 
D S A A F A S  A A D V E D A L D T V Y Q A S T M A D I Y L  138 

GGTAGTGAGGTATGGGGCGTTCCGGAGTGGCTCTATCG•GGCCGACTACATGTTCTGTTTGCCACAGAAGACGCCGGTCAGCCGGTGCT• 630 
G S E V W G V  E W L y R G R L H V L F A T E D A G Q P V L  ]68 

GTAAACTCGACCGACGCGACAGAGGCCTTCACGACTGCACTAGCTGCGGAGGCGGCCAACCTTGGTATAACCATTGATGATTCGACAATC 720 
V N S  D A T  A F T T A L A A E A A N I G I T I D D S T I  198 

ACTGTTTCAGATTTCGAC•AGTGTGCGTCGGCTGATGACAACGATTGTGATCCTAATGCCAACTGCACTAACACGGCAGGGTCATTCACC 810 
T V S  F D E  A S A D D N D C D p N A N C T N T A G S F T  228 

GTGAATGTGACACGGAACTTTACGACAACT•ACCGAATACTGAAGAACCCGGTAGAGTCTGTATCGCTCCCTGTGATCCTGGCCTATGT 900 
C E C  T E L  D N S p N T E E P G R V C I A P C D P G L C  258 

ACCCGACCCAACGAAATATGCAACAATGGCGGCACTATCGAAGATGAT~CCTATGTAAATGrATCGAGG~CTATGACTACACCCAATAT 990 
T R p  E I C  N G G T I E D D N L C K C I E G Y D Y T Q Y  288 

:;GT~ATTGTGACCCAATGGCGCGTTCAACGGATTTCCGATGCTATCACTGCG~GATTCCA~T~ATAACGTCAAATGCAACGGTCGTATG 1080 
G D C  p M A  S T D F R C y H C E D S I D N V K C N G R M  318 

GAATCTGAAAACGGTACCGCCCGACAGTGTCCAAATCCGACAGACACGTGCTATCAGACTATACAGATGAACC~GGAAGGAGATGGCTTC 1170 
E S E  G T A  Q C @ N P T D T C y Q T I Q M N p E G D G F  348 

• SGCGTCC ,~TGATTAGGAAAGGTTGCATGAATCTGGAGGACTGCTATGACCTGCTGTACAGTTACGAAG~CGACCCTGCCAA TGCTTTGAG 1260 
M I B  G C M  L E D C Y D L L Y S Y E A D P A K A S C F E  378 

TACATCTTTCCATACGGGCAGGACACTCCACCAGGCCCTGGCGTCCAGTGCCACTACTGCT•CAGCGAGTACTTCCCTCTCGACCTCTGT 1350 
Y I F  Y G Q  T P P G P G V Q C H Y C C S E Y F P L D L C  408 

AACTACGACAGCATCCACTTCATCTACGGGACGCCTCGCATCAATAGCTGGGACCC•AGAATGAACTGGGATCTCTCCATGAACCTTGAT 1440 
N Y D S I H F I Y C T P R I N S W D P R M N W D L S M N L D  438 

GCAACGGA•GAACCCGAGAGCGGGTCACAGCGCCATCTACCGGTCTGCGGTGTCCTAAGCCTAGTAGTCA•CACATTACTGGCGCTCATG 153D 
A T E E P E S  G~S Q ~ H L P V C G V L S I V V T T L L A L M  468 

CTCCACTAGAGATAAATCTCTCACATTCTTTTGTTCGTGATTTTCAAGTCATGTAAGGGGAAAAGTAATGGGCAAAAACAATGATTTCAT ]620 
H • 470 

~̀AT~AGCAAGATGAATCCA~GAGAAGGAACA~GACAAAG~CGAAAT~GTATG~ATATTAA~TAG~A~TCAGGAC~TATTTG I71o 
~ATAAGGTGTCAAAGCGGAAA~ATAATATTCATAAACACGTTCTAATCATATCTATGGAGA.CAGGTGCTTTAAAACGAGTTTATTTTGT 1800 
~TAATTCACAAGTGATCTAGATTAATTTGATTTCCCAA~T~ATTCAA~CAAATGAGAGTCGGATAAATG~ATTA~TG~TTGATAA 1890 
AGTTAGACATTGATT~TGGTG~TCTGTCGATTTTTGTCATAATATTTAGATCAAATTTAACGTC~TGT&TTGAGA~TGAAAAATAT 1980 
CTTTCTTATATTCGTTATTCGAAATGT~C~CTCAGGTTTTG~A~GACAGCTT~ATCGTATACTATTTATTTTTTTGCTTTTACTT 2070 
CTGCTTATTTTTG~AAAGTCAAGGCGGGTTTGAGTTCTAAATCAAACCTTCTACAAAAAAA~AAAAAGATGTTCATTGAATA~TGGTT 2160 
CCCTTTTTTAAATATTACTT 2180 

Figure 1. The  eDNA and deduced amino acid sequences of the 63- 
kD protein. N u m b e ~  on the fight margin indicate either amino acid 
position where the putative s ta~ methionine is designated 1, or 
nucleotide sequence position. The numbe~  in each row correspond 
to the sequence position of the last amino acid/nucleotide in that 
row. A signal sequence of 25 amino acids is foNowed by the putative 
amino-termin~ amino acid, glutamine (~). The mature sequence 
contains five sites for potentiN N-linked glycosyl~ion (o).  Syn- 
thetic peptide 1 is underlined with a solid line and peptide 2 with 
a dashed line. The stop cedon (*) yields an open reading ~ame  of 
470 amino acids fo~owed by a 3' un~anslated region of 641 nucleo- 
tides containing three modified signal sequences for polyadenyla- 
tion (AATAAT). Glycine 446 (a )  is tentatively assigned as the site 
of GPI a~achment. These sequence data are available Hom 
EMBL/GenBank/DDBJ under accession number  M99584. 
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Figure 4. Protein immuno- 
blots with J17/30 and synthetic 
peptide-specific antibodies. 
Lanes A and B are sperm 
membrane vesicles (SMVs) 
from S. purpuratus (I.0 #g and 
5.0 /~g) reacted with the 63- 
kD-specific mAb J17/30 (2.0 

/zg/ml). Lanes C-E contain 20 #g of SMVs. Lane C was reacted 
with peptide 1 IgG at 2.5 ttg/ml and lanes D and E were reacted 
with 2.5/zg/ml of peptide 2 IgG. Lane E was overdeveloped. The 
asterisk (*) denotes Mr 63 kD. 

Figure 2. Northern blot analysis of S. purpuratus testis. Various 
amounts of poly A ÷ RNA were electrophoresed on a formalde- 
hyde-denatured gel and blotted onto a nylon membrane, hybridized 
with clone pL29-E at 7 x 10 s cpm/ttg and washed at high strin- 
gency followed by autoradiography. RNA load (lane A) 22/zg; (lane 
B) 11 #g; (lane C) 5.5 #g; (lane D) 2.8 #g. Kilobase size markers 
are on the right. 

tion (Q). The stop codon (*; TAG) is followed by a 3' untrans- 
lated region of 641 nucleotides containing three modified 
signal sequences for polyadenylation (AATAAT). 

To confirm that the size of the mRNA coding for the 63-kD 
protein corresponds to that of the cDNA presented in Fig. 
l, Northern blot analysis of testicular poly A + RNA was 
performed. Fig. 2 shows that 32p-labeled pL29-E, a 1,550 
nucleotide fragment of the 63-kD protein cDNA, hybridizes 
to a single mRNA of ,o2,300 nucleotides, quite close to 
2,180 nucleotides presented in Fig. 1. 

Southern blot analysis was performed with S. purpuratus 

sperm genomic DNA to determine the copy number of the 
63-kD gene. Restriction enzyme digested genomic DNA 
from sperm cells was hybridized with 32p-labeled pL29-E 
(Fig. 3). Neither Ndel  nor Xba I restriction sites are present 
within the pL29-E sequence. Fig. 3 shows that 32p-pL29-E 
hybridizes with a single band in both Nde I (N; at 21 kb) and 
Xba I (X; at 7 kb) digested genomic DNA, supporting the 
conclusion that the 63-kD protein is encoded by a single copy 
gene. Furthermore, both Bst XI  and Pst I restriction sites are 
present at one site within the 1,550-bp pL29-E cDNA se- 
quence. As expected for a single copy gene, two bands (at 
17 and 4 kb) hybridize with 32p-pL29-E in the Pst I (P) 
digested genomic DNA. Hybridization of 32p-pL29-E to the 
Bst XI  (B) digested genomic DNA, however, is more difficult 
to interpret and suggests the presence of introns within the 
gene. 

To confirm that the deduced amino acid sequence was that 
of the 63-kD sperm membrane protein recognized by mAb 
J17/30, rabbit antibodies were prepared against two synthetic 
peptides made to distinct regions of the deduced sequence 
(underlines in Fig. 1; shaded zones in Fig. 5). On Western 
immunoblots of sperm membrane vesicles (SMVs), both pep- 
tide antisera reacted specifically with an antigen of Mr 63 
kD, which comigrated with the sperm membrane protein 
recognized by mAb J17/30 (Fig. 4). We conclude that the 
deduced amino acid sequence is that of the 63-kD protein. 
Neither the two peptide antibodies nor mAb J17/30 induced 
sperm ceils to undergo the AR, and none of the antibodies 
were capable of inhibiting fertilization or the egg jelly- 
induced AR. 

Figure 3. Southern blot analysis. Each lane contains 5 ttg of 
genomic DNA from sperm cells digested with various restriction 
enzymes (Nde I, N; Xba I, X; Bst XI, B; Psi L 10 as well as un- 
digested (U) DNA. The blot was hybridized with clone pL29-E. 
Size markers are shown on the right in kilobases. 

Figure 5. Hydropathy profile of the 63-kD deduced amino acid se- 
quence. Hydrophobicity plotted against amino acid position was 
obtained with the program TGREASE. Hydropathic index is on the 
y-axis in arbitrary units. A hydrophobic stretch at the extreme 
NH2-terminal end is designated as the signal sequence (SS). A sin- 
gle membrane spanning (MS) domain at the extreme COOH- 
terminal end is indicated. The regions of the deduced sequence 
from which peptides 1 and 2 were designed are shaded. 
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Figure 6. The 63-kD protein 
was enzymatically released 
from ~25I-labeled sperm with 
PI-PLC. Spermatozoa were 
incubated in the presence (+) 
or absence (-) of 1 U of PI- 
PLC from Bacillus cereus. 
The digests were centrifuged 
at 150,000 g for 1 h and the 
protein components of the su- 
pernatants (S) and pellets (P) 
separated on 10% SDS-PAGE 
followed by autoradiography. 
Mr is shown on the right in 
kilodaltons. The 63-kD pro- 
tein is freed from the SMVs 
(P+ lane) and appears in the 
supernatant (S+ lane). 

GPI-anchorage 

Although biochemical evidence indicates that the 63-kD pro- 
tein is an integral membrane protein (Podell et al., 1984), 
a hydropathy plot of the deduced sequence (Fig. 5) failed to 
identify a transmembrane domain. This analysis, however, 
showed that the COOH-terminal domain consists of 20 hy- 
drophobic residues having the characteristics of a signal se- 
quence for GPI anchor attachment (Ferguson and Williams, 
1988). To confirm this hypothesis, t25I-labeled spermatozoa 
were digested with PI-PLC. The 80-kD membrane protein 
was released from the cells independent of the presence of 
PI-PLC. However, the 63-kD protein was released from the 
cells to the 150,000 g supernatant only in the presence of PI- 
PLC (Fig. 6), confirming that the 63-kD protein is GPI- 
anchored to the sperm plasma membrane. Following estab- 
lished criteria for the identification of GPI signal sequences 
(Moran et al., 1991) we tentatively assign glycine 446 (Fig. 
1; A) as the site of GPI attachment. This assignment would 
yield a mature protein of 421 amino acids, ofmol wt 45,739 
D, GPI anchored to the outer surface of the sperm plasma 
membrane. Digestion of SMVs with Peptide-N-Glycosidase 
F results in an Mr shift from 63 to 51 kD (not shown) 
confirming the presence of N-linked oligosaccharides and 
partially accounting for the discrepancy between the molecu- 
lar weight predicted for the 421 amino acid protein and the 
observed Mr of 63 kD. The 63 kD protein is not released 
from the cells upon induction of the AR by soluble egg jelly. 

Homology to the EGF Superfamily 

Two regions of the 63-kD protein's deduced amino acid se- 
quence containing EGF-like domains are homologous to 
several proteins in GenBank. The first region spans ~38 
residues, from amino acid position 43 to 81. The second re- 
gion spans 113 residues, from amino acid position 202 to 
315. The proteins identified from the GenBank search in- 

elude the sea urchin EGF homolog (Hursh et al., 1987), uro- 
modulin (also known as the Tamm-Horsfall protein; Hession 
et al., 1987) from human, crumbs (Tepass et al., 1990) and 
notch (Wharton et al., 1985) from Drosophila, and xotch 
(Coffman et al., 1990), the Xenopus homolog of notch. 

To determine the significance of the similarity between 
these distantly related proteins, and to obtain optimal align- 
ments between them and the 63-kD sea urchin sperm pro- 
tein, the program ALIGN (Dayhoff et al., 1983) was used. 
EGF 1 contains six cysteine residues that are conserved be- 
tween the 63-kD protein and the other EGF-like proteins 
(Fig. 7 a). The second region of similarity (Fig. 7 b) includes 
the two remaining EGF-like domains in the 63-kD protein 
sequence (EGF 2 and EGF 3). This region is characterized 
by the alignment of 11-13 cysteine residues with the 63-kD 
protein over 102-113 amino acids. Table I lists pairwise com- 
parisons of the percent amino acid identity for these domains 
(above the diagonals) and the alignment score in SD units 
greater than random (below the diagonals) determined by the 
program ALIGN. Table I, a and b, correspond to the regions 
presented in Fig. 7, a and b. Both percent identity and align- 
ment scores presented in Table I include only the regions 
presented in Fig. 7, not the entire protein sequence. 

The most significant homology is between the 63-kD pro- 
tein and uromodulin, a glycoprotein expressed in human kid- 
ney on the thick ascending limb of the loop of Henle (Kumar 
and Muchmore, 1990). The alignment score is 10 SD U 
above random (Table I b) which indicates that the probability 
of this alignment occurring by chance is <1 in 1023. The 
least significant alignment score is 4.0 SD units between the 
63-kD protein and xotch over the region that includes EGF 
2 and 3 (Table I b). The probability of this occurring by 
chance is <1 in 10 ~. These data support the conclusion that 
the sea urchin sperm 63-kD protein is a member of the EGF 
superfamily. 

The 63-kD Protein is not a Speract Receptor 

Harumi et al. (1991) have reported that some echinoid sperm 
possess a 63-kD receptor for the egg jelly decapeptide sper- 
act (SAP 1; Suzuki, 1990). The following experiment was 
performed to determine if the 63-kD protein ofS. purpuratus 
sperm was a receptor for this egg-derived peptide. Two sper- 
act analogs, GYGG-GFDLN~JGVG (GYGG-speract) and 
GGGY-speract were iodinated and then cross-linked to live 
spermatozoa according to the methods described by Harumi 
et al. (1991). These authors reported the identification of two 
speract receptors from the Japanese sea urchin Hemicen- 
trotrus pulcherrimus of Mr 63 and 71 kD with the GGGY- 
analog. We found (Fig. 8) that both analogs cross-linked to 
a single protein of Mr 77 kD of S. purpuratus sperm, con- 
firming the results reported by Dangott and Garbers (1984). 
Although minor cross-linking reactions are apparent in this 
autoradiogram, at pH 7.8 there is no cross-linking of labeled 
peptide to proteins in the Mr 63-kD range. 

Discussion 

Sea urchin sperm are ideal single cells for studying the 
mechanism of signal transduction underlying exocytosis. 
They are a uniform population that can be obtained in mass 
quantities, they have a large cell membrane surface area to 
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hURO L S P G L G C T D V D E:::~::A E . - G L S H - ~ : : : i -  - H A L A T - - : r ~ V  . - - - V V 1 3 0  
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I 
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Figure 7. Optimal alignments of sequences homol- 
ogous to the 63-kD protein were derived using the 
programs RELATE and ALIGN. The matrix used 
for the alignment was PAM250; matrix bias was 6; 
and gap penalty was 12. Dots (.) indicate identical 
residues and dashes (-) are inserted for alignment. 
Conserved cysteine residues are shaded. The pro- 
tein sequences include the sea urchin 63-kD pro- 
tein (su63), the sea urchin EGF homolog (suEGE), 
human uromodulin (hURO), Drosophila crumbs 
(dCRU) and notch (dNOD, and xotch (xXOD, the 
Xenopus homolog of notch. Amino acid position 
within the full-length protein sequence is indicated 
at the right. EGF-like domains characterized by 
conserved cysteine residues are indicated above 
the sequences (EGF 1; EGF 2; EGF 3). 

Table L Pairwise Comparisons of % Identity and 
Alignment Score 
a 

su63 suEGF dCRU dNOT xXOT 

su63 ~ 47 47 43 40 

suEGF 7.4 ~ 47 47 44 

dCRU 6.6 9.0 ~ 33 39 
dNOT 6.0 9.2 6.7 ~ 61 
xXOT 6.3 8.3 6.6 11.5 

b 

su63 hURO dCRU dNOT xXOT 

su63 

h U R O  

d C R U  

d N O T  

x X O T  

29 26 27 25 

10.0 ~ 33 37 37 

5.4 6.5 ~ 33 37 

5.1 7.8 10.7 ~ 61 

4 .0  8.1 13.8 25.2 

Paitwis¢ comparisons of percent amino acid identity (above the diagonals) and 
alignment score (below the diagonals) in SD units above random, as deter- 
mined by the program ALIGN. The data in a and b correspond to the regions 
presented in Fig. 7 a and b. The matrix used for the alignment was PAM-250; 
matrix bias was 6; gap penalty was 12. 

volume ratio, and they undergo the exocytotic acrosome 
reaction in a time span of seconds when treated with soluble 
egg jelly. Evidence that cell surface receptors mediate the 
AR comes from the finding that protease digestion of sperm 
renders them unresponsive to egg jelly (Vacquier, V. D., un- 
published observations). Also, J18/29, the mAb that reacts 
with an epitope shared by sperm membrane glycoproteins 
of Mr 320, 210, 170, and 63 kD, induces the AR in a man- 
ner indistinguishable from egg jelly (Trimmer et al., 1987). 

The 63-kD protein was first discovered because it is the 
most heavily labeled protein after vectorial radioiodination 
of living sea urchin sperm (Lopo and Vacquier, 1980a). A 
high titre rabbit antiserum made to the denatured 63-kD pro- 
tein reacted strongly with living sperm. Fab fragments of this 
antibody did not inhibit the egg jelly induced AR (Lopo and 
Vacquier, 1980b). Here we describe the eDNA and deduced 
amino acid sequences of the 63-kD sperm membrane pro- 
tein. The protein is GPI-anchored to the cell membrane 
making it the first such protein discovered in sea urchin 
sperm. Kabakoff et al. (1992) have identified three GPI- 
anchored proteins on the surface of primary mesenchyme 
cells of the developing sea urchin embryo, purported to be 
involved in embryonic spicule formation. These are the only 
other sea urchin proteins reported to be GPI-anchored. The 
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Figure 8. Autoradiogram of a 
sperm extract after the cross- 
linking of two radioiodinated 
speract analogs to living 
sperm. Lane A is with the 
GYGG-GFDLNGGGVG ana- 
log and lane B is with the 
~ - G F D L N G G G V G  ana- 
log. The major cross-linking 
is with an Mr 77-kD sperm 
membrane protein as shown 
previously by Dangott and 
Garbers, 1984. Molecular 
weight standards are marked 
at left: Mr 205 kD, 116 kD, 97 
kD, 66 kD, 45 kD, 29 kD. 

63-kD protein is also a member of the EGF superfamily, 
sharing homology with the developmentally regulated Dro- 
sophila proteins crumbs (Tepass et al., 1990) and notch 
(Wharton et al., 1985), Xenopus protein xotch (Coffman et 
al., 1990), and the sea urchin EGF homolog (Hursh et al., 
1987), as well as human uromodulin (Hession et al., 1987). 
The 63-kD protein shows no similarity to the two other cell 
membrane proteins of known sequence from sea urchin 
sperm: the speract receptor (Dangott et al., 1989) and 
guanylate cyclase (Singh et al., 1988). 

GPI-anchored proteins are ubiquitous and have been im- 
plicated in a variety of physiological processes (Ferguson 
and Williams, 1988; Low and Saltiel, 1988; Thomas et al., 
1990; Robinson, 1991). Of these, protein anchoring is the 
only clear function that can be assigned. GPI-anchored pro- 
teins reside exclusively in the apical membranes of polarized 
epithelial cells (Lisanti et al., 1988) and have been impli- 
cated in signal transduction in which inositol phosphate gly- 
can and myristylated diacylglycerol act as second mes- 
sengers (Eardley and Koshland, 1991). Some effects of 
insulin (Saltiel et al., 1987), NGF (Chan et al., 1989; Ma- 
hanthappa and Patterson, 1992) and T cell activation (Gaul- 
ton et al., 1988) are mediated by GPI-anchored proteins. 
Others have shown that protein tyrosine kinase activity is as- 
sociated with GPI-anchored proteins on the surfaces of T 
cells (Stefanova et al., 1991; Thomas and Samelson, 1992). 

GPI-anchoring of the 63-kD sea urchin sperm membrane 
protein, plus the fact that it contains 20 tyrosine residues are 
the most probable reasons why it is the most heavily labeled 
sperm protein when vectorial radioiodination is performed 
on living cells (Lopo and Vacquier, 1980a). The protein does 
not change location, nor detach from the cell, after the egg 
jelly induced AR. Significant homology to the developmen- 

tally regulated proteins crumbs, notch and xotch, suggests 
that the 63-kD may function in sperm cell differentiation. 
The cysteine-rich repeats characteristic of the EGF super- 
family in proteins such as urokinase (Apella et al., 1987), 
laminin (Graf et al., 1987), coagulation factor IX (Rees et 
al., 1988) and notch (Rebay et al., 1991) are directly in- 
volved in protein-protein interactions underlying cell prolif- 
eration and differentiation. 

Showing the most significant similarity with the sea urchin 
63-kD protein is human uromodulin (Tamm-Horsfall pro- 
tein). The alignment score of 10 SD U (Table I b) indicates 
that the probability of this homology occurring by chance is 
<1 in 1023. Additionally, like the 63-kD protein, uromodu- 
lin utilizes the modified polyadenylation site AATAAT (Hes- 
sion et al., 1987; Fig. 1) and both proteins are GPI-anchored 
(Rindler et al., 1990; Fig. 6). The function of the 63-kD sea 
urchin sperm membrane protein remains unknown; how- 
ever, it is worth noting that uromodulin, known for four de- 
cades to be the most abundant protein in human urine, re- 
mains unknown in terms of function (Kumar and Muchmore, 
1990). The thick ascending limb of the loop of Henle in hu- 
man kidney and the sea urchin sperm flagellum share the 
common attribute of being extremely active in ion flux. Gels 
of uromodulin can act as an electret, possessing a gross per- 
manent dipole moment that allows the free passage of ions, 
but restricts the passage of water (Mattey and Naftalin, 
1992). This observation is consistent with the observed high 
ionic and low water permeability of the thick ascending limb 
of the loop of Henle (Kumar and Muchmore, 1990). Simi- 
larly, in sea urchin sperm cells, high ion permeability and 
low water permeability across the flagellar membrane are 
crucial for the activation and maintenance of sperm motility 
(Clapper et al., 1985) and induction of the acrosome reaction 
(Schackmann and Shapiro, 1981; Shackmann et al., 1981; 
Christen et al., 1983; Lee, 1985). In relation to general 
phenomena of cellular homeostasis, protein homologous to 
the 63-kD protein of the sea urchin sperm flagellar mem- 
brane, and human uromodulin, might occur on the mem- 
branes of other cells that exist in high ionic strength media 
and also possess a relatively high rate of ionic flux. 
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