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METHODOLOGY

Statistical‑based database fingerprint: 
chemical space dependent representation 
of compound databases
Norberto Sánchez‑Cruz* and José L. Medina‑Franco*

Abstract 

Background:  Simplified representation of compound databases has several applications in cheminformatics. Herein, 
we introduce an alternative and general method to build single fingerprint representations of compound databases. 
The approach is inspired on the previously published modal fingerprints that are aimed to capture the most signifi‑
cant bits of a fingerprint representation for a compound data set. The novelty of the herein proposed statistical-based 
database fingerprint (SB-DFP) is that it is generated based on binomial proportions comparisons taking as reference 
the distribution of “1” bits on a large representative set of the chemical space.

Results:  To illustrate the Method, SB-DFPs were constructed for 28 epigenetic target data sets retrieved from a 
recently published epigenomics database of interest in probe and drug discovery. For each target data set, the SB-
DFPs were built based on two representative fingerprints of different design using as reference a data set with more 
than 15 million compounds from ZINC. The application of SB-DFP was illustrated and compared to other methods 
through association relationships of the 28 epigenetic data sets and similarity searching. It was found that SB-DFPs 
captured overall, the common features between data sets and the distinct features of each set. In similarity searching 
SB-DFP equaled or outperformed other approaches for at least 20 out of the 28 sets.

Conclusions:  SB-DFP is a general approach based on binomial proportion comparisons to represent a compound 
data set with a single fingerprint. SB-DFP can be developed, at least in principle, based on any fingerprint and refer‑
ence data set. SB-DFP is a good alternative for exploration of relationships between targets through its associated 
compound data sets and performing similarity searching.
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Background
Molecular fingerprints are bit strings representations of 
chemical structures in which each position indicates the 
presence (1) or absence (0) of chemical features as defined 
in the design of the fingerprint. There are several types of 
molecular fingerprints described elsewhere [1, 2]. Such 
representations are broadly employed for the assessment 

of chemical space coverage, molecular diversity and simi-
larity searching [1–3]. With the constant increasing size 
of chemical databases, such studies have become more 
computationally demanding, leading to the need of gen-
erating simplified representations of compound data-
bases to optimize storage and calculation speed. To this 
end, many of the approaches that have been proposed 
generate a single fingerprint trying to capture the com-
mon chemical features presents in all compounds in 
a database (or at least in most of them). The first strat-
egy dates back to 1996, when Shemetulskis et  al. [4] 
employed the Daylight Chemical Information Systems, 
Inc. molecular fingerprint to build the so-called modal 
fingerprint, which contains the common bits found in 
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the molecular fingerprints in a given compound data set. 
In the modal fingerprint, the degree to which bits have 
to be in common in the data set in order to be set as “1” 
is determined by a user-defined threshold value, which 
ranges from 50 to 100%, being 50% the best performing 
threshold in different studies. Since 1996 the algorithm 
has been extended to different molecular fingerprints and 
a number of studies have shown its application in similar-
ity searching [5, 6] and for the quantification of intra- and 
inter-database diversity [7]. In parallel, several modifica-
tions to this concept have been developed, mostly aim-
ing to enhance its performance on similarity searches at 
the expense of increasing the complexity to implement 
the approach. Such approaches include bit scaling [8–
10], bit silencing [11] and the determination of the best 
feature combinations [12]. In different publications the 
term “modal fingerprint” has been used to refer to dis-
tinct approaches. To avoid confusions, herein we refer 
as “database fingerprint (DFP)” to the modal fingerprint 
constructed using 50% as the predefined threshold.

In this work, we present the statistical-based database 
fingerprint (SB-DFP) as a novel and general approach 
to generate a compound database fingerprint based on 
binomial proportion comparisons. In this paper, we 
illustrate the application of SB-DFP in comparing target-
associated compound data sets and performing similar-
ity searching. As a case study, and to further advance the 
emerging field of epi-informatics [13], the SB-DFPs were 
applied to a recently published epigenomics database 
with potential therapeutic significance.

Methods
Concept and construction of SB‑DFP
As commented on the Background, in a “classic” DFP 
representation, to set a bit “1” requires that such bit is 
present in at least 50% of all the molecules in the input 
data set. The basic idea of such threshold is to extract 
common bits in at least half of the input data set. How-
ever, the underlying hypothesis assumes that the prob-
ability of presence of a feature (bit) in a molecular 
representation is 50% for each of them, so all bits are 
compared against such probability.

SB-DFP is based on the basic hypothesis that the 
probability of presence of a feature (bit) in a molecu-
lar representation is not equal for each bit. Instead, it is 
determined by the availability of such feature in a refer-
ence set e.g. the “known chemical space” (or a reasonable 
approximation) and such availability has to be deter-
mined. Once the frequency occurrence of each bit in a 
molecular representation is determined for both, namely 
the reference set and the data set of study, the SB-DFP 
is constructed by comparing the frequency occurrence of 
each bit between both sets. Thus, a bit is set to “1” only if 

the frequency in the target data set is statistically higher 
than the reference. Figure  1 depicts a schematic com-
parison between a classic DFP (reminiscent of the modal 
fingerprint, vide supra) and the SB-DFP, respectively. In 
this scheme the database fingerprint is illustrated for a 
short hypothetical fingerprint representation with 20-bit 
positions.

It should be noted that the SB-DFP representation for 
a given data set requires three main features (Fig. 1b): (1) 
a reference set, (2) a molecular fingerprint representa-
tion and 3) a statistical method to do the binomial pro-
portion comparisons. The chosen features for this work 
are described below, although SB-DFP can be developed 
with different fingerprints, reference sets, and statistical 
methods.

Compound data sets
As a case study we generated SB-DFPs for a recently pub-
lished epigenomics database [14]. The set of targets used 
as a test case in this work were selected based on their 
relevance in probe and epigenetic drug discovery that 
have attracted the attention to perform virtual screen-
ing [15, 16]. However, the SB-DFP is general and could 
be used for other targets. The epigenomics database used 
in this study contains compounds associations against 
60 epigenetic targets. For our analysis, we selected the 
information for 28 targets for which there was at least 50 
reported compounds with a potency of 10 µM or better. 
Table  1 summarizes the targets considered in this work 
that included bromodomain-containing proteins (BRD2, 
BRD3 and BRD4), histone acetyltransferases (CREBBP 
and EP300), DNA methyltransferase (DNMT1), his-
tone lysine methyltransferase (EHMT2), histone dea-
cetylases (HDAC1-HDAC11), lysine acetyltransferase 
(KAT2B), lysine demethylases (KDM1A and KDM4C), 
histone methyl-lysine binding proteins (L3MBTL1 and 
L3MBTL3), mitogen-activated protein kinase (MAP3K7), 
O-GlcNAcase (MGEA5), nuclear receptor coactiva-
tors with histone acetyltransferase activity (NCOA1 
and NCOA3), and protein arginine methyltransferase 
(PRMT1). Table  1 also includes the number of com-
pounds in each set (350 compounds on average with a 
maximum of 2740 for HDAC1). Note that SB-DFP could 
be applied to other data sets with larger number of com-
pounds and their performance in, for instance, virtual 
screening, would need to be assessed in a case-by-case 
basis. It might be anticipated that the performance could 
be target-dependent as it happens in other virtual screen-
ing approaches.

Reference set
In this study, the All Clean subset from the ZINC12 
database [17], with 16,403,844 unique compounds, was 
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selected as starting point to build the reference set for 
SB-DFP calculations. We removed 21 compounds that 
could not be processed by the RDKit module for Python 
[18] and also 154 compounds present in the epigenom-
ics database. The remaining molecules were randomly 
divided in two groups: one group with 1,000,000 com-
pounds to be used as decoys in similarity searching 
(vide infra) and the second group with the remaining 
15,403,690 molecules to be used as reference for SB-DFP 
calculations. We employed such database with more 
than 15 million compounds as a representative sample of 
the currently known chemical space of small molecules 

available in ZINC. We emphasize that SB-DFP could be 
implemented using other reference data sets.

Fingerprints
We selected two fingerprints to illustrate the applicabil-
ity of the concept of SB-DFP: Molecular ACCess Sys-
tem (MACCS) keys (166-bit) [19] as a “low resolution” 
dictionary fingerprint, and Extended Connectivity Fin-
gerprint diameter 4 (ECFP4) as a “high resolution” repre-
sentation [20] in its folded version of 2048 bits. MACCS 
keys and ECFP4 were generated with RDKit.

Fig. 1  Schematic representation of single fingerprints for a compound database and an hypothetical 20-bit fingerprint. The upper part of charts 
shows the binary representation of the generated single fingerprint: a database fingerprint (DFP) and b statistical-based database fingerprint 
(SB-DFP)
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Binomial proportion comparisons
To perform the binomial proportion comparisons we 
employed a Z-test, as implemented in the statsmodels 
[21] module for Python. As can be found elsewhere [22], 
the proportion comparison relies on the calculation of a 
test statistic (called Ztest ) defined as:

where pt and pr are the proportions in which a given bit 
appears as “1” in the target and reference data sets for 
a total of nt and nr observations, respectively. P is the 

Ztest =
pt − pr

√

P(1− P)

(

1

nt
+

1

nr

)

estimated true proportion of “1” bits considering both 
sample observations and it is calculated as:

With the Ztest calculated and through the standard Nor-
mal distribution, the exact probability than the observed 
difference between proportion is due to random vari-
ation can be determined (the p value). So that the pro-
portion difference is statistically significative if the p 
value is lower than the associated to the confidence level 
selected a priori. For example, for the bit 100 in MACCS 
fingerprint, the bit “1” occurrence in the reference set is 

P =
ntpt + nrpr

nt + nr

Table 1  Selected datasets from the epigenomic database

a  MACCS keys 166-bit
b  ECFP4 2048-bit

Dataset Number 
of compounds

Intra-set similarity 
median (Tc)

Average “1” bits Number of “1” bits in DFP Number of “1” bits 
in SB-DFP

MACCSa ECFP4b MACCSa ECFP4b MACCSa ECFP4b MACCSa ECFP4b

BRD2 234 0.569 0.152 56.0 54.3 53 27 67 229

BRD3 246 0.573 0.153 56.6 54.6 53 26 73 231

BRD4 477 0.486 0.133 55.9 52.8 47 14 71 333

CREBBP 105 0.694 0.276 56.1 53.9 52 36 50 185

DNMT1 127 0.403 0.115 55.4 51.7 50 13 62 281

EHMT2 61 0.636 0.228 62.4 55.7 62 41 56 167

EP300 57 0.425 0.106 58.2 55.7 53 11 56 285

HDAC10 190 0.514 0.165 53.2 50.6 50 17 46 272

HDAC11 137 0.494 0.156 51.2 50.8 48 16 42 229

HDAC1 2740 0.453 0.149 53.2 51.4 51 15 63 499

HDAC2 767 0.447 0.149 50.3 48.4 46 13 53 336

HDAC3 669 0.474 0.147 52.6 50.3 49 13 54 356

HDAC4 452 0.427 0.135 50.4 46.4 42 10 49 248

HDAC5 112 0.455 0.153 47.3 44.1 39 13 26 176

HDAC6 1374 0.474 0.149 54.3 49.8 48 13 62 415

HDAC7 112 0.489 0.165 50.4 45.8 43 12 28 197

HDAC8 864 0.500 0.153 54.9 51.2 50 12 52 398

HDAC9 102 0.494 0.169 52.6 47.4 46 13 29 190

KAT2B 55 0.583 0.179 50.8 37.3 46 13 44 99

KDM1A 241 0.380 0.143 44.8 46.2 31 21 31 216

KDM4C 88 0.359 0.101 48.8 40.3 41 10 38 158

L3MBTL1 50 0.804 0.551 42.2 36.8 37 27 37 56

L3MBTL3 89 0.731 0.404 40.4 36.6 37 26 35 83

MAP3K7 96 0.539 0.137 57.1 60.5 59 35 45 190

MGEA5 67 0.683 0.316 54.2 39.6 48 19 42 126

NCOA1 51 0.350 0.105 45.5 43.3 34 11 18 132

NCOA3 157 0.368 0.109 47.7 44.6 39 10 26 166

PRMT1 61 0.395 0.076 53.0 53.5 41 9 40 239

Average 350 0.507 0.178 52 48 46 18 46 232
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10,892,579 from 15,403,690 observations ( pr = 0.707 ). 
By selecting a confidence level of 99% (p value < 0.01) and 
doing the calculations one gets that for a target data set 
of 350 compounds, the bit occurrence must be equal or 
greater than 268 ( pt = 0.766, p value = 0.008) to be set as 
an “1” bit in the SB-DFP representation even when for a 
bit occurrence of 248 the proportion seems to be  larger 
( pt = 0.708, p value = 0.476). This example illustrates that 
a greater proportion of “1” in a given bit for the target 
data set in comparison to the reference data set does not 
necessarily implies that such bit will be set as “1” in the 
SB-DFP. In other words, the proportion difference must 
be “big enough”.

For this work we choose a confidence level of 99% (p 
value < 0.01) based on the average AUC values obtained 
from similarity searching for ECFP4 and MACCS keys at 
five different confidence levels (vide infra). For the sets of 
targets and the fingerprints explored, the best perform-
ing method is the one with a confidence level of 99% 
(Additional file  1: Table  S1) and all further calculations 
and discussion are based on such method. Of note, other 
p values could be chosen for other targets and/or other 
fingerprints.

SB‑DFP to study inter‑data set relationships
To evaluate the performance of SB-DFP to capture the 
differences between data sets we calculated both, the 
classic DFP and the SB-DFP for each of the 28 targets. 
Both database fingerprints were constructed based on 
ECFP4 and MACCS keys fingerprints. Using the Tani-
moto coefficient [23] and for each molecular fingerprint, 
we constructed the similarity matrices between epige-
netic targets with three methodologies to calculate the 
similarity between pairs of targets: the median similar-
ity between all-compound comparisons (ACC) in the 
data sets, the similarity between DFPs, and the similar-
ity between SB-DFPs. This led to a total of six represen-
tations herein referred as ACC/MACCS, ACC/ECFP4, 
DFP/MACCS, DFP/ECFP4, SB-DFP/MACCS and SB-
DFP/ECFP4. The range of similarity values for each rep-
resentation was taken as a measure of its resolution. All 
six similarity matrices were transformed to their cor-
responding distance matrices based on the relationship 
(distance = 1 − similarity). The distance matrices were 
used as basis for hierarchical clustering with complete 
linkage to analyze the ability of the representations to 
recover the known relationships between epigenetic 
targets based on its sequence identity. Such ability was 
assessed by calculating the Adjusted Rand Index (ARI) 
of each clustering [24] at a level of 10 clusters. The ARI 

measures the similarity between a given clustering and a 
ground truth: an ARI value of 1 indicates that the clus-
tering recovers the original groups and an ARI value of 
0 indicates random assignations. As ground truth, we 
used the hierarchical clustering with complete linkage 
obtained from the distance form of the sequence identity 
matrix (shown as Additional file 1: Table S10) as obtained 
from the alignment with Clustal Omega [25] with default 
parameters for the 28 targets studied. Sequences for all 
targets were taken from the Universal Protein Knowl-
edgebase (UniProt) [26]. In addition, the number of “1” 
bits present in each representation was calculated as an 
approach of the amount of information contained in each 
one.

SB‑DFP as query for similarity searching
Previous studies have shown that using single fingerprint 
representation of compound databases as query yield 
better results in similarity searching than fingerprint 
representations of single compounds [5, 6]. However, 
when single fingerprint representations are compared 
with methods that use information for multiple com-
pound in a database, such as k-nearest neighbors (k-NN) 
and binary kernel discrimination, the single fingerprint 
searches are outperformed [5]. In this work, we tested 
the performance of SB-DFP in similarity searching as 
compared to the classic DFP and 1-NN search strategies 
for both MACCS keys and ECFP4 fingerprints, methods 
such as binary kernel discrimination were not compared 
in this work given its reported lack of efficiency [5]. The 
Tanimoto coefficient was used as similarity measure, 
although other similarity metrics could be explored. For 
SB-DFP, five different confidence levels were tested for 
binomial proportion comparisons, here we report only 
the best performing one (99%), the rest are summarized 
in Additional file 1: Table S1.

Using an approach similar to the one reported by Hei-
kamp et al. [27], from each of the 28 epigenetic targets, 
100 random sets of 10 active compounds each were 
randomly selected and used as query. In each case, all 
remaining active compounds were added as active data-
base of compounds (ADCs) to a database containing one 
million compounds randomly selected from the ZINC All 
Clean subset (vide supra), called the search set. For the 
searches involving DFP and SB-DFP, the 10 compounds 
used as query were employed to build the corresponding 
single fingerprint, which was compared against all com-
pounds in the search set, leading directly to a single simi-
larity value per compound. On the other hand, for 1-NN, 
each of the compounds in the search set was compared to 
the 10 compounds used as query, leading to 10 similarity 
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values per compound, from which the highest value was 
taken. For each similarity search, the compound recovery 
rates (RR) were calculated in a target-specific selection 
over the number of available ADCs as a measure of early 
enrichment. Receiver operating characteristic (ROC) 
curves and ROC area under the curve (AUC) values were 
also computed.

Results and discussion
Bit proportions in the reference set
As detailed in the Methods section, 15,403,690 com-
pounds from the ZINC All Clean subset were taken as 
a representative sample of the currently known chemi-
cal space of small molecules. For the complete data set, 
the frequency of each bit was calculated for ECFP4 and 
MACCS keys. The results are summarized in Additional 
file 1: Tables S2 and S3. Of note, only 43 out of 166 bits 
for MACCS keys and 12 out of 2048 bits for ECFP4 have 
frequencies over 0.5. This means that 43 and 12 bits of 
MACCS keys and ECFP4, respectively, are the most likely 
to appear in the DFP representation of any data set. Such 
bias is avoided in SB-DFP.

Compound data sets
For the 28 data sets studied in this work a total of six rep-
resentations were generated for each set: the fingerprints 
for each compound, the single DFP, and SB-DFP, all 
based on ECFP4 and MACCS keys, respectively. Of note, 
the data sets representations based on DFP and SB-DFP 
have the advantage over “all-compounds” representation 
in that the speed of calculation is NxM times faster than 
doing pairwise comparisons with all compounds in a set 
(with N and M being the number of compounds in two 
data sets).

The median of the intra-set similarity for all com-
pounds in each data set was computed with MACCS 
keys and ECFP4 and the results are summarized in 
Table 1. Overall, all 28 sets have structural diverse com-
pounds with, for instance, maximum median MACCS 

keys similarity of 0.694 (average of 0.507) and maximum 
median ECFP4 similarity of 0.551 (average of 0.178).

Table 1 also reports the average number of “1” bits for 
all compounds, as well as the number of “1” bits in the 
DFP and SB-DFP, respectively. For both MACCS keys and 
ECFP4 fingerprints, DFP representation has, on average, 
number of “1” bits (46 and 18, respectively) lower than 
all-compounds representation (52 and 48, respectively) 
but higher than the number of bits with occurrence fre-
quencies over 0.5 in the reference set (vide supra). As 
expected, DFP contains less information than the com-
plete data set. However, DFP captures more features in 
the data set than expected according to the occurrence 
frequencies in the reference data set.

DFP/MACCS and SB-DFP/MACCS capture simi-
lar amount of information with an average number of 
“1” bits of 46. However, as shown in Table  1, there is a 
dramatic increase in the number of “1” bits for SB-DFP/
ECFP4 as compared to DFP/ECFP4 (232 vs. 18). These 
results indicate that for the 28 data sets considered in this 
work, SB-DFP/ECFP4 captures a higher amount of spe-
cific structural features of the compounds.

Similarity matrices
The similarity matrices between epigenetic targets were 
calculated with three different approaches to calcu-
late the similarity between pairs of targets: the median 
similarity of the all pairwise comparisons (e.g., all-com-
pound comparisons) in the data sets (ACC), the similar-
ity between their DFPs, and the similarity between their 
SB-DFPs, all based on MACCS keys and ECFP4 using the 
Tanimoto coefficient. As described in the Methods sec-
tion, these representations are referred in this work as 
ACC/MACCS, ACC/ECFP4, DFP/MACCS, DFP/ECFP4, 
SB-DFP/MACCS, and SB-DFP/ECFP4. The six matri-
ces are shown in Additional file 1: Tables S4–S9. Table 2 
summarizes the maximum, minimum, average and range 
of Tanimoto similarity values for each similarity matrix. 
By using the median similarity between ACC in the data 
sets, the ranges are the smallest for MACCS keys and 

Table 2  Range of Tanimoto similarity values in similarity matrices

a  It should be noted that the comparisons involving the self-similarity of data sets does not reach a value of 1 and in some cases such self-similarity does not 
correspond to the highest value in the matrix row, that could be misinterpreted as the existence of pairs of databases more similar to each other than to themselves, 
which makes no sense. The matrices constructed by using DFP or SB-DFP do not present such problem, since when dealing with unique comparisons, a maximum of 1 
is guaranteed for the diagonal of the matrix

Representation MACCS keys (166-bit) ECFP4 (2048-bit)

Minimum Average Maximum Range Minimum Average Maximum Range

All compoundsa 0.293 0.407 0.804 0.511 0.059 0.114 0.553 0.494

DFP 0.254 0.540 1.000 0.746 0.070 0.408 1.000 0.930

SB-DFP 0.050 0.342 1.000 0.950 0.011 0.185 1.000 0.989
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Fig. 2  Dendograms for hierarchical clustering of targets computed with different approaches based in two molecular fingerprints, MACCS keys 
and ECFP4. a The ground truth; b, e all-compound comparisons (ACC); c, f database fingerprint (DFP); d, g statistical-based database fingerprint 
(SB-DFP). The Adjusted Rand Index (ARI) of each clustering is indicated in each panel. See main text for details
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ECFP4 (i.e., 0.51 and 0.49, respectively). Table  2 shows 
that the similarity matrices constructed using SB-DFP 
present a broader range of values (0.950 and 0.989) than 
those constructed using DFP (0.746 and 0.930).

The SB-DFP matrices also have lower average similari-
ties between data sets than the DFP matrices (0.540 vs. 
0.342 for MACCS keys and 0.408 vs. 0.185 for ECFP4, 
respectively). Based on these results, the representation 
that captures better the differences between data sets 
is SB-DFP/ECFP4. This result agrees with the relative 
“higher resolution” of SB-DFP/ECFP4 i.e., higher number 
of “1” bits discussed above (Table 1).

SB‑DFP to study inter‑data set relationship
Figure  2 shows the dendrograms for each hierarchi-
cal clustering obtained with the corresponding distance 
matrices (vide supra). Analyzing the differences between 
data sets is not a trivial task and it is not straightfor-
ward evaluating the performance of a structural rep-
resentation. In this work, we assessed the ability of the 
six representations listed above to recover the known 
relationships between epigenetic targets based on its 
sequence identity, using as metric the ARI at a level of 
10 clusters and as ground truth the hierarchical clus-
tering obtained from the distance form of the sequence 

Fig. 3  Early enrichment performance of similarity searches. Average recovery rates (selection set size equal to the number of ADCs) for three search 
strategies over 28 epigenetic data sets are reported in a histogram representation for a MACCS keys and b ECFP4. Standard deviations are displayed 
as error bars
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identity matrix (vide supra). The level of ten clusters was 
selected as ground truth given its recovery of four groups 
of epigenetic targets with known relationships: group 1 
containing BRDs 2–4, CREBBP and EP300; group 2 con-
taining HDACs 1–11; group 3 including L3MBTLs 1 and 
3; and group 4 consisting of NCOAs 1 and 3. Accord-
ing to the results, the best performing methods were 
those based on the SB-DFP, with ARI values of 0.831 for 
SB-DP/ECFP4 and 0.808 for SB-DFP/MACCS. Meth-
ods based on ACC had worst but similar performances 
for both fingerprints with ARI values of 0.762 and 0.708 
for ACC/MACCS and ACC/ECFP4 respectively. Finally, 
methods based on DFP had contrasting performances, 

being DFP/MACCS tied as the second best method with 
an ARI value of 0.808 and DFP/ECFP4 the worst of them 
with an ARI value of 0.388.

SB‑DFP as template for similarity searching
All 28 epigenetic data sets were subjected to systematic 
fingerprint search calculations. To obtain statistically rel-
evant data, from each data set, 100 compound reference 
sets of 10 compounds were randomly selected and used 
as query in six different representations: the fingerprints 
for each compound (1-NN), the DFP and the SB-DFP, the 
three of them based on ECFP4 and MACCS keys. For the 

Fig. 4  General performance of similarity searches. Average AUCs for three search strategies over 28 epigenetic data sets are reported in a histogram 
representation for a MACCS keys and b ECFP4. Standard deviations are displayed as error bars



Page 10 of 13Sánchez‑Cruz and Medina‑Franco ﻿J Cheminform           (2018) 10:55 

six search strategies, Figs. 3 and 4 show the results of the 
RR and AUC, respectively. In terms of early enrichment, 
by using MACCS keys as molecular representation, the 
SB-DFP approach outperformed the other methods with 
an average RR of 35.3%, followed by 1-NN (33.1%) and 
DFP (26.4%). Similar trends were obtained using ECFP4, 
being the average RRs 50.2%, 46% and 21.5 for SB-DFP, 
1-NN, and DFP respectively. Regarding to the global 
performance, the tendency was identical. The best per-
forming method in both cases was SB-DFP, for MACCS 
keys with an average AUC of 0.898, followed by 1-NN 
and DFP with average AUCs of 0.853 and 0.824 respec-
tively and for ECFP4 with average AUCs of 0.926, 0.882 
and 0.755 for SB-DFP, 1-NN and DFP respectively. These 
results revealed the anticipated differences between 

high- and low-resolution fingerprints, since ECFP4 
achieved higher RRs and AUCs for 1-NN searches, while 
for the single fingerprint searches the higher values cor-
responded to the most populated representations in 
terms of number of bits “1” (MACCS keys for DFP and 
ECFP4 for SB-DFP).

The results also illustrated the general data set-depend-
ence of the similarity searching performance and the 
good success rates achieved for 2D fingerprint methods, 
since the best performing search strategy for each data 
set obtained an average RR of at least 50% in 22 of 28 
cases, and an average AUC larger than 0.7 in all of them. 
By analyzing the individual performances, according to 
RRs (Table 3), SB-DFP was the best method for 17 cases, 
from which eight were based on MACCS keys, seven 

Table 3  Average recovery rates

The best performing methods for each dataset are shown in bold. If there were no significative difference between two or more methods, all of them are marked. 
Standard deviations are shown in parentheses

Dataset MACCS keys (166-bit) ECFP4 (2048-bit)

1-NN DFP SB-DFP 1-NN DFP SB-DFP

BRD2 43.7 (5.0) 29.9 (13.7) 13.8 (12.8) 75.4 (5.2) 28.4 (24.2) 68.0 (7.1)

BRD3 43.5 (4.8) 32.0 (12.3) 10.6 (11.3) 74.4 (5.7) 31.9 (23.8) 68.7 (7.1)

BRD4 30.0 (5.4) 7.6 (7.7) 4.5 (4.3) 54.1 (6.2) 2.7 (4.7) 52.6 (8.1)

CREBBP 52.7 (4.7) 45.5 (7.8) 16.5 (16.2) 79.0 (5.4) 55.6 (25.0) 73.7 (4.2)

DNMT1 9.9 (5.2) 0.5 (1.5) 3.8 (3.9) 12.9 (5.7) 0.0 (0.0) 17.7 (7.1)
EHMT2 66.3 (7.1) 40.9 (12.6) 28.1 (17.8) 80.1 (8.0) 40.2 (23.5) 78.4 (8.3)

EP300 34.6 (7.5) 5.5 (5.8) 1.4 (2.7) 50.2 (7.7) 0.7 (2.8) 37.0 (10.8)

HDAC10 37.1 (8.6) 34.2 (15.1) 52.2 (11.1) 36.5 (8.0) 15.4 (12.3) 51.1 (9.5)
HDAC11 34.7 (8.3) 22.5 (12.4) 43.7 (12.1) 39.6 (8.8) 6.6 (6.4) 49.3 (11.3)
HDAC1 18.2 (6.1) 15.8 (13.5) 53.7 (6.3) 30.9 (6.7) 6.3 (5.1) 51.1 (9.0)

HDAC2 20.9 (7.0) 20.1 (16.1) 54.8 (6.9) 31.3 (6.5) 9.1 (6.0) 44.7 (10.6)

HDAC3 27.5 (8.7) 27.3 (13.1) 60.2 (8.1) 32.0 (6.2) 10.4 (6.6) 45.4 (9.6)

HDAC4 19.2 (4.7) 9.1 (7.3) 29.6 (11.0) 44.9 (6.2) 7.9 (11.2) 45.8 (7.0)
HDAC5 20.7 (9.6) 30.2 (12.1) 67.6 (4.4) 23.1 (6.4) 10.0 (4.3) 32.0 (12.1)

HDAC6 22.8 (6.7) 32.0 (15.1) 64.5 (4.3) 25.7 (5.8) 9.3 (9.1) 44.6 (9.0)

HDAC7 25.6 (8.4) 36.6 (11.7) 77.6 (4.5) 28.4 (6.7) 11.0 (4.9) 38.6 (10.4)

HDAC8 27.4 (7.0) 33.9 (11.9) 71.5 (9.5) 29.6 (6.9) 9.5 (3.9) 46.2 (9.8)

HDAC9 25.4 (9.0) 34.9 (11.9) 73.9 (9.7) 27.7 (7.5) 9.6 (8.7) 38.4 (13.0)

KAT2B 55.3 (12.7) 41.0 (8.7) 37.6 (13.5) 61.8 (10.8) 35.3 (14.1) 60.4 (9.4)
KDM1A 24.6 (5.1) 13.3 (8.0) 6.8 (5.6) 53.3 (8.4) 18.3 (15.1) 58.4 (10.0)
KDM4C 12.2 (5.1) 0.4 (1.0) 11.5 (8.7) 18.9 (6.4) 0.1 (0.3) 17.1 (5.8)

L3MBTL1 62.2 (8.5) 68.8 (4.6) 66.0 (11.1) 91.1 (4.6) 94.5 (1.8) 95.5 (2.3)
L3MBTL3 59.5 (8.5) 49.7 (4.2) 37.4 (11.2) 82.8 (6.6) 71.1 (4.5) 81.1 (6.8)

MAP3K7 41.2 (6.0) 19.8 (14.3) 2.2 (3.1) 56.6 (5.2) 31.1 (23.8) 58.0 (4.0)
MGEA5 58.5 (25.6) 84.8 (4.9) 84.6 (1.7) 86.3 (3.5) 86.4 (2.0) 87.6 (2.2)
NCOA1 2.7 (2.1) 0.0 (0.2) 5.7 (5.1) 5.5 (3.3) 0.1 (0.3) 5.5 (3.4)
NCOA3 1.1 (0.9) 0.1 (0.2) 4.9 (4.5) 2.6 (1.4) 0.1 (0.3) 4.1 (2.5)
PRMT1 48.8 (8.7) 2.8 (5.7) 2.7 (4.3) 52.8 (10.5) 1.0 (3.8) 55.3 (12.1)
Average 33.1 (19.6) 26.4 (22.8) 35.3 (29.1) 46.0 (25.9) 21.5 (28.4) 50.2 (23.8)
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based on ECFP4 and two without significative difference 
between molecular fingerprints. The second best method 
was 1-NN with eight favorable cases by using ECFP4. 
For three data sets there was not significative difference 
between SB-DFP and 1-NN (Fig.  3). Additionally, the 
DFP representation was not the best performing method 
for any of the data sets studied.

According to the AUCs values (Table 4), the best per-
forming method for 23 data sets was SB-DFP, from which 
four were based on MACCS keys, 17 based on ECFP4 
and two without significative difference between finger-
prints. The overall second-best approach was 1-NN with 
better predictions for two data sets (one for each molecu-
lar fingerprint). In general, DFP had lower AUCs values 
as compared to the other two search methods (Table 4).

Remarkably, the search method based on SB-DFP could 
be applied in at least 20 out of the 28 data sets studied 
leading to the best RRs, with the additional advantage 
over 1-NN that the speed of calculation is N times faster 
(with N being the number of compounds used as query). 
This fact is because the number of comparisons needed 
for the screening is always equal to the number of com-
pounds in the screened database in contrast to 1-NN, 
where this number scale with the number of compounds 
used as query.

Conclusions and perspectives
Here we presented the statistical-based database fin-
gerprint (SB-DFP) as a novel general approach to gen-
erate single fingerprints of compound databases based 

Table 4  Average areas under ROC curves

The best performing methods for each dataset are shown in bold. If there were no significative difference between two or more methods, all of them are marked. 
Standard deviations are shown in parentheses

Dataset MACCS keys (166-bit) ECFP4

1-NN DFP SB-DFP 1-NN DFP SB-DFP

BRD2 0.938 (0.035) 0.875 (0.019) 0.911 (0.031) 0.974 (0.023) 0.865 (0.037) 0.970 (0.030)

BRD3 0.940 (0.041) 0.873 (0.015) 0.905 (0.029) 0.962 (0.037) 0.861 (0.056) 0.964 (0.032)
BRD4 0.880 (0.038) 0.821 (0.036) 0.871 (0.040) 0.927 (0.037) 0.740 (0.082) 0.941 (0.026)
CREBBP 0.953 (0.025) 0.924 (0.008) 0.963 (0.009) 0.956 (0.027) 0.913 (0.016) 0.972 (0.020)
DNMT1 0.652 (0.045) 0.652 (0.049) 0.855 (0.037) 0.711 (0.058) 0.484 (0.060) 0.834 (0.042)

EHMT2 0.969 (0.033) 0.897 (0.027) 0.965 (0.023) 0.951 (0.050) 0.860 (0.042) 0.947 (0.036)

EP300 0.874 (0.041) 0.810 (0.052) 0.896 (0.026) 0.843 (0.066) 0.592 (0.076) 0.873 (0.052)

HDAC10 0.932 (0.022) 0.916 (0.043) 0.946 (0.025) 0.934 (0.032) 0.821 (0.063) 0.975 (0.016)
HDAC11 0.939 (0.024) 0.899 (0.073) 0.940 (0.034) 0.948 (0.035) 0.786 (0.065) 0.979 (0.018)
HDAC1 0.797 (0.036) 0.755 (0.085) 0.886 (0.041) 0.884 (0.035) 0.688 (0.073) 0.945 (0.030)
HDAC2 0.847 (0.035) 0.808 (0.081) 0.895 (0.042) 0.905 (0.032) 0.750 (0.048) 0.954 (0.024)
HDAC3 0.875 (0.032) 0.862 (0.059) 0.888 (0.032) 0.892 (0.035) 0.725 (0.062) 0.950 (0.025)
HDAC4 0.841 (0.039) 0.781 (0.067) 0.888 (0.021) 0.890 (0.039) 0.672 (0.060) 0.939 (0.034)
HDAC5 0.866 (0.066) 0.838 (0.036) 0.920 (0.016) 0.917 (0.030) 0.840 (0.049) 0.926 (0.035)
HDAC6 0.828 (0.028) 0.825 (0.042) 0.895 (0.011) 0.868 (0.026) 0.743 (0.072) 0.928 (0.021)
HDAC7 0.907 (0.037) 0.925 (0.037) 0.948 (0.012) 0.913 (0.027) 0.864 (0.020) 0.934 (0.024)

HDAC8 0.878 (0.024) 0.883 (0.054) 0.937 (0.011) 0.896 (0.028) 0.762 (0.043) 0.953 (0.019)
HDAC9 0.901 (0.028) 0.933 (0.031) 0.943 (0.012) 0.942 (0.019) 0.885 (0.026) 0.960 (0.018)
KAT2B 0.926 (0.039) 0.893 (0.022) 0.947 (0.033) 0.935 (0.027) 0.928 (0.022) 0.965 (0.027)
KDM1A 0.745 (0.048) 0.701 (0.051) 0.860 (0.055) 0.885 (0.038) 0.721 (0.058) 0.941 (0.034)
KDM4C 0.677 (0.067) 0.608 (0.069) 0.837 (0.044) 0.653 (0.052) 0.527 (0.045) 0.823 (0.048)

L3MBTL1 0.997 (0.001) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
L3MBTL3 0.990 (0.003) 0.991 (0.002) 0.991 (0.003) 0.989 (0.005) 0.985 (0.004) 0.990 (0.005)
MAP3K7 0.860 (0.042) 0.791 (0.028) 0.861 (0.027) 0.858 (0.042) 0.738 (0.079) 0.911 (0.035)
MGEA5 0.985 (0.005) 0.985 (0.006) 0.979 (0.009) 0.979 (0.009) 0.996 (0.002) 0.992 (0.007)

NCOA1 0.491 (0.074) 0.572 (0.073) 0.682 (0.056) 0.618 (0.047) 0.519 (0.060) 0.722 (0.044)
NCOA3 0.530 (0.057) 0.577 (0.071) 0.680 (0.064) 0.590 (0.045) 0.503 (0.059) 0.709 (0.043)
PRMT1 0.867 (0.058) 0.673 (0.072) 0.843 (0.078) 0.881 (0.081) 0.365 (0.081) 0.934 (0.037)
Average 0.853 (0.132) 0.824 (0.129) 0.898 (0.082) 0.882 (0.113) 0.755 (0.171) 0.926 (0.077)
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on binomial proportion comparisons. In this work we 
shown its implementation for two molecular finger-
prints (e.g., ECFP4 and MACCS keys) and one specific 
reference set (e.g., ZINC). However, the applicability of 
SB-DFP can be extended to any binary fingerprint and 
to other reference sets. Using as a case study a recently 
published set of 28 epigenetic compound sets with ther-
apeutic relevance, we illustrate the application of SB-
DFP to capture the inter-data sets relationships and to 
perform similarity searching. For the data sets explored 
in this work the largest set has 2740 compounds (as 
deposited in ChEMBL) but SB-DFP could be applied 
to other larger compound data with relevance in drug 
or probe discovery. Despite the fact that no quantita-
tive analysis was performed in terms of speed of calcu-
lation, it is clear that single fingerprint approaches to 
represent compound databases are faster because they 
depend on single rather than multiple comparisons.

Two major perspectives of the SB-DFP approach are 
application in high throughput virtual screening and 
target identification. To these ends, studies involving 
different molecular fingerprints, target-associated com-
pound sets and reference data sets would be required, 
as well as exhaustive validations of their performance. 
Part of this work in ongoing and will be reported in due 
course.
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