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ABSTRACT

We introduce RNA2DNAlign, a computational frame-
work for quantitative assessment of allele counts
across paired RNA and DNA sequencing datasets.
RNA2DNAlign is based on quantitation of the rela-
tive abundance of variant and reference read counts,
followed by binomial tests for genotype and allelic
status at SNV positions between compatible se-
quences. RNA2DNAlign detects positions with dif-
ferential allele distribution, suggesting asymmetries
due to regulatory/structural events. Based on the
type of asymmetry, RNA2DNAlign outlines positions
likely to be implicated in RNA editing, allele-specific
expression or loss, somatic mutagenesis or loss-of-
heterozygosity (the first three also in a tumor-specific
setting). We applied RNA2DNAlign on 360 matching
normal and tumor exomes and transcriptomes from
90 breast cancer patients from TCGA. Under high-
confidence settings, RNA2DNAlign identified 2038
distinct SNV sites associated with one of the afore-
mentioned asymetries, the majority of which have
not been linked to functionality before. The perfor-
mance assessment shows very high specificity and
sensitivity, due to the corroboration of signals across
multiple matching datasets. RNA2DNAlign is freely
available from http://github.com/HorvathLab/NGS as

a self-contained binary package for 64-bit Linux sys-
tems.

INTRODUCTION

Single nucleotide variations (SNV) are considered a com-
mon and important form of genetic variation, and have
been linked to various allele-specific features across a spec-
trum of diseases including cancer (1). Yet functional SNVs
can be difficult to identify. One approach to outline poten-
tial function-implicated SNVs is to distinguish loci with im-
balanced variant and reference allele distribution between
RNA and DNA. Such imbalances can indicate regulatory
events such as RNA editing, in which a post-transcriptional
alteration introduces a new allele (2,3), and variant specific
expression or loss (4), where the expression level of the vari-
ant allele is elevated or declined due to differential regu-
lation. When both germline and somatic datasets are an-
alyzed, the above events could be assessed in their tissue-
specific setting, the most prominent example of which is a
tumor versus normal tissue. Furthermore, comparison be-
tween the tumor and normal DNA at SNV loci can reveal
somatic mutagenesis (5) and somatic allelic loss, including
loss of heterozygosity (6), two events of crucial importance
for tumorigenesis. All of the above events have been associ-
ated with tumorigenesis and other diseases, in addition to
normal regulatory mechanisms.

Large-scale identification of allelic imbalances from NGS
datasets is challenged by data complexity, the requirement
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for intense high-precision computation, and the demand
for compatibility of the allele quantitation across different
types of data (7). We have developed RNA2DNAlign––a
robust and efficient computational framework that scans
matching RNA and DNA sequencing datasets for SNV loci
with differential distribution of the reference and variant al-
lele. To do that, RNA2DNAlign accesses the read counts at
every called SNV position and generates a (log-) likelihood
ratio score for genotype (DNA) and allelic status (RNA) for
all of the matching alignments. Next, the tool screens for de-
viations of the expected read distribution and association of
the position with one of the aforementioned events: RNA
editing, variant-specific expression/loss, somatic mutagen-
esis and loss of heterozygosity. The assessment is based on
the relative number of the variant and reference reads be-
tween the matching datasets, and relevance to placement in
each individual dataset: germline, somatic (normal tissue)
or tumor DNA, and normal or tumor RNA.

In the current genomic era when different types of
genome-scale data from the same individual are increas-
ingly available, development of applications allowing mean-
ingful integration of the information layers has become im-
perative. While such integration has been shown to reveal
essential disease-implicated mutational profiles at individ-
ual scale (8), to our knowledge, there are no existing tools
for large-scale quantitative integration of signals between
RNA and DNA, or for simultaneous identification of all
types of allelic imbalances. Due to corroboration of signif-
icant hits on more than one dataset, RNA2DNAlign per-
forms with very high specificity, as we demonstrate through
applications on previously analyzed datasets. In this pa-
per, we present and describe the tool, and provide it for
public use. We discuss the rationale behind the usage of
RNA2DNAlign algorithms and elaborate on the consider-
ations of their settings. We also demonstrate the high effi-
ciency and the large-scale capacity of RNA2DNAlign by
analyzing 360 tumor and normal tissue exomes and tran-
scriptomes from 90 breast cancer patients downloaded from
the TCGA (9), for which we present and discuss major find-
ings.

MATERIALS AND METHODS

Sample selection and analysis

The 360 exome and transcriptome datasets derived from
90 female breast cancer patients from The Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov/) were accessed
through the Cancer Genomic Hub (https://cghub.ucsc.edu)
(9). The samples’ identifiers are listed in Supplementary
Table S1A. All the used datasets were generated through
paired-end sequencing on an Illumina HiSeq platform.
The downloaded datasets were converted to fastq files us-
ing Picard tools (http://picard.sourceforge.net) version1.96
and processed through an in-house pipeline. Briefly, we
mapped the exome sequencing reads to the human reference
genome, build hg19, utilizing Bowtie2 (10) The RNAseq
data were aligned to hg19 genome by TopHat2 (11) ver-
sion 2.0.8, employing default settings and allowing two mis-
matches. For both DNA and RNA datasets variants were
called using the mpileup module of SAMtools (12). The
variants were further annotated by SeattleSeq 138 (http://

snp.gs.washington.edu/SeattleSeqAnnotation138/). The re-
sulting alignments (.bam) were sorted and indexed, and,
together with the variant calls (.vcf) were used as input
to RNA2DNAlign. In addition, we tested RNA2DNAlign
on pre-aligned indexed datasets (.bam and bam.bai) down-
loaded directly from TCGA (Bowtie2 and BWA (13) for
DNA, and TopHat2 and STAR (14) for RNA, Supplemen-
tary Table S1B).

Graphical user interface (GUI) design and implementation

The GUI interface is implemented using wxPython. The
GUI can be initiated either from the command line or by
double-clicking the program icon, displaying the GUI dia-
log for setting options. The user selects input file(s) of vari-
ant calls (tabular or VCF format) and the indexed, binary
read alignment files (BAM format) and chooses a destina-
tion folder for the output files. Read alignment file names
should indicate the sequencing read-type and sample-type.
The default substrings are: ‘GDNA’ for germline or nor-
mal exomes or transcriptomes, ‘SDNA’ for somatic or tu-
mor exomes or genomes, ‘NRNA’ for blood or normal tis-
sue transcriptome, and ‘SRNA’ for somatic or tumor tis-
sue transcriptome; these can be changed to desired sub-
strings from the original file names, if needed. Reads and
SNV-loci aligned to mitochondrial coordinates are ignored.
Variant calls format supports common chromosome la-
bels and must provide chromosome, position, reference,
and variant nucleotide. Common chromosome label for-
mats are supported. Importantly, both in-house produced
and pre-existing alignments and variant call lists must refer
to the same reference genome assembly. The ‘Advanced Op-
tions’ selection allows several self-explanatory options for
run control, including number of minimum required reads
at each locus (10 by default). The requirement for mini-
mum reads is included to remove incomparable genomic
regions, for example genes that are not expressed in the
tissue from which the RNA is derived. Processing is ini-
tiated after input files and parameters are submitted, and
the progress of the analysis is shown on the console. The
processing speed is 13–25 SNV sites per second (4 read
sets, normal/tumor/exome/transcriptome, exonic filter ap-
plied), depending on the sequencing depth and the size of
the files.

Filtering of exonic variants

The filtering of exonic variants uses a python-based script
to consider only SNVs situated within known exon inter-
vals. An exon coordinate reference file (GRCh37/hg19) is
included with the package (15). The use of this module is
optional and can be skipped for applications that do not re-
quire it. User provided intervals may be supplied instead,
if desired. Using the exon coordinates filter for applications
comparing exomes and transcriptomes is strongly recom-
mended for consideration of region compatibility and pro-
cessing time.

Tools utilized for statistical and graphical purposes

An in house python script was designed in order to arrange
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Figure 1. (A) Schematic representation of allelic asymmetries across normal and tumor RNA and DNA datasets, corresponding to eight nucleotide events.
An estimation of the range of the variant allele fraction for each of the events is represented through shaded areas. Briefly, loci classified as RNAed have an
R>0 exclusively in the RNA sets; for T-RNAed, R > 0 is confined to the tumor RNA sets only. VSE and VSL have 0 < R < 1 in the DNA sets, while R ∼
1 or 0 in the RNA sets. When the latter applies exclusively to the tumor RNA, the asymmetry matches T-VSE or T-VSL events, respectively. In the case of
LOH, the tumor datasets show an R ∼ 0 or 1, and for SOM R = 0 in the normal datasets while R>0 in the tumor sets. (B) IGV visualization of examples
of SNVs associated with each of the eight events. The gene and position are shown on the top of each IGV panel. The variant nucleotide is positioned at
the middle. The grey lines represent sequencing reads, and the colored letters show differences from the reference sequence. The colored blocks at the top
(middle) of each of the four sub-panels depict the quantitative ratio between the variance and reference reads (color-coded); grey at this position indicates
a lack of reads bearing the variant nucleotide.

and ascertain chromosome location and variation through
100MB of genome amongst the 90 sample sets. The file was
then visualized using CIRCOS version 0.67–7 scatter plots
(16). Manhattan Plot was generated using R-Studio Version
0.99.451. The alignments were visually inspected through
the Integrative genome viewer (IGV) version 2.3.32 (17).

RESULTS

Overview of RNA2DNAlign

RNA2DNAlign comprises a computational framework
for quantitative integration of variant and reference read
counts distribution between comparable regions of experi-
mentally derived RNA and DNA sequencing datasets from
the same individual. RNA2DNAlign assesses the variant
and reference read counts at each SNV position called
in any of the matching datasets and assigns a proba-
bility for a genotype (for DNA) and allelic status (for
RNA). The algorithm then aligns the genotypes and al-
lelic statuses across the matching datasets, and outlines

positions with deviations from the expected read distri-
bution (i.e. similar variant fraction across the matching
datasets). Based on relative placement of the observed devi-
ations between the datasets, RNA2DNAlign identifies al-
lelic distributions corresponding to the following events:
RNA editing (RNAed), variant-specific expression/loss
(VSE/VSL), somatic mutagenesis (SOM), and loss of het-
erozygosity (LOH). If different source datasets derived from
the same individual are available (such as normal and tumor
tissue) RNA2DNAlign simultaneously screens for tissue-
specific subsets of events, such as tumor-specific RNA
editing or variant expression/loss (T-RNAed, T-VSE and
T-VSL, respectively) (Figure 1). To illustrate the use of
RNA2DNAlign, we have selected matching datasets rep-
resenting a widely accessible combination of normal tissue
exome (referred from here on as Nex), normal tissue tran-
scriptome (Ntr), tumor exome (Tex) and tumor transcrip-
tome (Ttr).

The main framework of RNA2DNAlign is shown on Fig-
ure 2A. As an input, RNA2DNAlign requires two types
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Figure 2. (A) RNA2DNAlign workflow. RNA2DNAlign uses generated variant call files (.vcf) and binary alignments (.bam) derived from matching RNA
and/or DNA sequencing datasets. Upon filtering of exonic positions (Module 1) the algorithm accesses each alignment file (Module 2) to read the counts
and compute the likelihoods for all the possible genotypes (DNA) and allelic statuses (RNA). Module 3 then screens for significant genotypes and allelic
statuses and compares them between the matching datasets to outline variants associated with any type of imbalance. (B) Relationship between input
and output datasets. To assess for allele distribution matching an events, RNA2DNAlign requires a minimum of two datasets. SOM and LOH can be
extracted from normal and tumor exomes; RNAed, VSE and VSL, can be assessed through comparisons between normal exomes and transcriptomes, and
T-RNAed, T-VSE and T-VSL can be assessed through alignment of the tumor exomes to the normal and tumor transcriptomes. When all 4 datasets are
available, RNA2DNAlign generates all 8 outcomes; otherwise it produces only the possible outcomes.

of files derived from matching RNA and DNA: (i) lists of
variants in variant call format (.vcf), and, (ii) correspond-
ing aligned reads in binary alignment map (.bam) format.
For each combination of four matching datasets of the type
normal/tumor/RNA/DNA, RNA2DNAlign generates ten
outputs: eight lists of SNVs meeting the definition for the
described events, as follows: (a) RNAed, (b) T-RNAed, (c)
VSE, (d) T-VSE, (e) VSL, (f) T-VSL), (g) SOM and (h)
LOH, accompanied by (i) read count file containing refer-
ence and variant read counts for every examined SNV po-
sition and (j) summary report on the significant findings.

RNA2DNAlign can also work with less than four match-
ing datasets (Figure 2B). The number of matching datasets
(minimum two, maximum four per sample) is based on
availability and specificity/sensitivity considerations. As we
demonstrate below, using information from all four datasets
increases the specificity, due to dual confirmation of the de-
tected allele distribution. On the other hand, using the in-
formation from two datasets increases the comparable ge-
nomic regions.

To extract SNVs associated with differential allele distri-
bution, RNA2DNAlign employs three consequent modules
(see Figure 2A). The first module confines the testing to
SNV loci within the genomic regions of interest. Depending
on the intended comparisons, the filtering can range from a
single position, to exonic regions, or to the entire genome
(no filtering applied). In the herein demonstrated applica-
tion, we have used a filter removing variants positioned
outside known exonic intervals, and retaining only exonic

variants for further analyses (exonic intervals on hg19 are
provided with the package). We applied this filter to keep
the tests within regions of cover for both exomes and tran-
scriptomes, thus allowing meaningful comparisons between
RNA and DNA when exome datasets are used.

The second step of the algorithm employs the pysam
Python module to assess the read counts at every SNV po-
sition called in at least one of the datasets, in each of the
matching alignments (.bam). A critical contribution from
this module is the reference read count for datasets in which
the variant is not called (such as exomes for RNA-editing,
transcriptomes with monoallelic reference expression, etc.)
as this value is typically not output by other tools. The script
accesses every SNV position in each of the alignment files,
filters aligned reads for length, gaps, mapping quality, and
other read and alignment quality metrics, and tallies the re-
maining reads as having the expected reference or variant
nucleotides.

Using the qualifying counts with reference (nR), variant
(nV) or other (nO) nucleotides at each locus, this module
computes scores to represent the strength of the read-count
evidence for homozygous reference, homozygous variant,
and heterozygous genotypes in the DNA-sequencing reads,
and reference dominant, variant dominant, and bi-allelic
expression in the RNA-Seq data. We construct binomial
distribution-based probability models for each of the above
three typical read-count patterns in DNA- and RNA-Seq
reads. We will refer to these scores and models using the
genomic terminology, even though we apply them to both
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Table 1. Rules used to define events based on distribution of variant and reference read counts in matching RNA and DNA datasets from the same
individual

RNAed T-RNAed VSE T-VSE VSL T-VSL LOH SOM

gDNA REF HOM REF HOM HET HET HET HET HET REF HOM
nRNA BiAl or VAR DOM REF DOM VAR DOM BiAl REF DOM BiAl BiAl or REF DOM or VAR DOM REF DOM
sDNA REF HOM REF HOM HET HET HET HET REF HOM or VAR HOM HET or VAR HOM
tRNA BiAl or VAR DOM BiAl or VAR DOM VAR DOM VAR DOM REF DOM REF DOM REF DOM or VAR DOM HET or VAR DOM

DNA- and RNA-Seq reads. The primary role of these sim-
ple probability models is not to distinguish all possible al-
lelic ratios, but instead, to reliably reject allelic read-count
patterns that show little deviation from expected behavior.
Of note, the read counts are provided in a separate output
file and can be re-examined or re-analyzed to identify other
genomic events of interest.

The binomial models we use assume that the allelic sta-
tus of each read covering a position is sampled indepen-
dently with respect to some underlying probability, such as
0.5 for heterozygote loci. Given X ∼ Binomial (0.5, nR + nV)
we compute the heterozygous genotype likelihood as pHET
= P (X ≥ max (nR,nV)). For homozygous likelihood mod-
els, we account for the possible, but unlikely observation of
the variant (or reference allele) due to incorrect base calls
instead of the alternative allele and use pseudo-counts to
compensate for the limited number of observations. Using
pseudo-count c = 0.5, we define nR’ = nR + c, nV’ = nV + c,
nO’ = nO + 2c, and the probability of the alternative allele
from a homozygous genotype as q = nO’/2(nR’ + nV’ + nO’).
Given Y ∼ Binomial (q, nR + nV + nO), we compute the ref-
erence homozygous genotype likelihood as pRefHOM = P(Y
≥ nV), and the variant homozygous genotype likelihood as
pVarHOM = P(Y ≥ nR). The likelihoods are corrected for mul-
tiple testing with respect to the number of variant positions
using the Benjamini–Hochberg false discovery rate (FDR)
technique (18) and FDR values converted to a score via –
10 log10 FDR. We transform the probabilities to FDR so
that fixed score thresholds can be applied regardless of the
number of variant loci.

The extent of the reference or variant imbalance in the
RNA-Seq data is assessed by the RefDOM and VarDOM
scores:

scRefDOM = −10 log10 F DRHET, if nR ≥ nV, otherwise 0;

scVarDOM = −10 log10 F DRHET, if nV ≥ nR, otherwise 0.

A log likelihood ratio style statistic is used to evaluate the
competing genotype models, comparing each model’s like-
lihoods against the most likely alternative:

scHET = −10 log10 (max (F DRRefHOM, F DRVarHOM) /F DRHET) ;

scRefHOM = −10 log10 (max (F DRHET, F DRVarHOM) /F DRRefHOM) ;

scVarHOM = −10 log10 (max (F DRHET, F DRRefHOM) /F DRVarHOM) .

In each case the scores can be used as multiple-trial cor-
rected tests for acceptance (large scores) or rejection (small
scores) of specific genotype models at each locus at the
level of DNA (scHET, scRefHOM, scVarHOM,) or the strength
of the imbalance in the reference and variant allele counts
(scRefDOM, scVarDOM) at the level of RNA. Accordingly, for
each of the matching datasets, the SNVs are classified as

heterozygous (HET), homozygous reference (RefHOM), or
homozygous variant (VarHOM) for DNA, and bi-allelic
(using scHET), reference dominant (via scRefHOM), or variant
dominant (via scVarHOM) for RNA. For loci with heterozy-
gous DNA alleles, we can use scRefDOM and scVarDOM to as-
sess the degree of imbalance in RNA-Seq allelic expression.

The third module screens the scores to find loci match-
ing the rules selected for read distribution corresponding
to each event in a diploid genome (Table 1). We apply
thresholds to the above binomial-distribution-based scores
computed for normal and tumor, genomic and transcript
reads in a rule-based fashion. These thresholds are empiri-
cally hand-tuned based on extensive validation using more
than 3000 SNVs with known allelic asymmetries, such as
known RNA-editing and somatic mutations, and variants
in known imprinted genes (Supplementary Table S2; rules
and score thresholds can be readily modified in an accom-
panying configuration file).

Implementation and availability

The open-source RNA2DNAlign software is implemented
in Python, and is available as a self-contained binary pack-
age for 64-bit Linux distributions source from http://github.
com/HorvathLab/NGS and as Python source. The pysam
package, plus a variety of common third-party python
packages including numpy and scipy must be installed to
use in Python source form. See the install instructions for
more details. The self-contained binary package is appro-
priate for most Linux users. The software can be config-
ured and executed on the command-line or via an interac-
tive GUI.

RNA2DNAlign analysis of 360 datasets from 90 individuals

To demonstrate the use of the RNA2DNAlign, we applied
it on 360 TCGA datasets from 90 female breast cancer
patients from whom all of the following four sequencing
datasets were available: Nex, Tex, Ntr, and Ttr (see Supple-
mentary Table S1A). The results presented below are the
outcome of RNA2DNAlign using high stringency settings
(minimum of 10 reads aligned across each examined posi-
tion in all four datasets), after pre-processing of the raw se-
quencing reads with an in-house pipeline (10–14).

RNA editing is acknowledged to significantly contribute
to the transcriptome diversity in tumors (19–22). Using the
information from all 4 datasets from the 90 breast can-
cer patients, RNA2DNAlign identified a total of 191 dis-
tinct exonic SNVs matching the read distribution corre-
sponding to RNAed. The distribution, type and predicted
function of the RNA editing events are plotted on Figure
3A. Of the 191 variants, 73 have not been previously re-
ported in the DARNED, DbSNP and/or other RNA edit-
ing variation sources (23–29). Of note, the nonsynonymous

http://github.com/HorvathLab/NGS
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Figure 3. (A) Circos plot of the variants matching the read distribution
requirements for RNA editing across the 90 studied samples. The size of
the peak corresponds to the number of samples (n) in which the variant
was called (cut-off 1.5 after log10(n + 1)). Positions commonly assigned as
RNAed are seen on chromosomes 3, 13, 16, 17, 22 and X. The outer layer
displays a color scheme of the type of nucleotide substitution––C>T (light
yellow) and A>G (pink) dominate over the rest of the changes. The central
plot shows the substitution type (synonymous––teal, missense––blue), and
the inner plot depicts the conservation score for the position (low––light
yellow, medium––orange, high––dark orange). (B) IGV visualization of
the most commonly called RNAed variant in the dataset (A>G at
chr13:52604880 in UTP14C). (C) Circos plot of the variants matching the
read distribution for T-RNAed across the 90 studied samples. The plots
(from inner-to-outer) follow exactly the legend of (A). (D) IGV visual-
ization of a novel variant called as T-RNAed––G>A at chr3:63981802 in
ATXN7.

variant in COG3 identified through integrated genome and
transcriptome assessment of a single breast cancer patient
(8), was seen in 18 samples of our dataset. The majority
of the SNVs corresponded to transitions of either C>T
(39%) or A>G (29%). The most frequently seen RNAed
SNV was the previously reported RNA editing substitu-
tion on chr13:52604880 A>G, leading to a missense change
(Q647R) in the gene UTP14C; this variant was called in
62 (69%) of the 90 samples (Figure 3B). Overall, a total

of 632 exonic RNA editing events were called across the
90 individuals (Supplementary Table S3). In comparison,
RNA2DNAlign called as T-RNAed 95 distinct exonic vari-
ants (Figure 3C, Supplementary Table S4), 37 of which were
not present in RNA editing variation sources. An exam-
ple of novel potential tumor-specific RNA-editing G>A at
chr3:63981802, in the gene ATXN7 seen in multiple samples
(Figure 3D). To ensure that the previously unreported po-
sitions sufficiently match the rules established for RNAed
we examined each call individually (Supplementary Figure
S1).

Variant specific expression/loss. Common regulatory
mechanisms that lead to monoallelic expression include im-
printing, (30), and cis-acting expression advantage or dis-
advantage provided by the variant-harboring allele (31).
In addition, monoallelic expression can be observed where
the transcripts carrying deleterious variants are degraded
through surveillance mechanisms such as Nonsense Me-
diated mRNA Decay (NMD) (32). RNA2DNAlign iden-
tified 172 and 215 distinct exonic positions with overex-
pressed variant (VSE) or the reference (VSL) allele, respec-
tively (Supplementary Tables S5 and S6). While, expectedly,
some of the VSE/VSL variants resided in known imprinted
genes, most of the genes from those datasets have not previ-
ously been associated with monoallelic expression. Exam-
ples of monoallelic SNVs include the overexpressed variant
rs7334587 in the gene PARP4 (Supplementary Figure S2A),
and the depressed variant allele of rs75085951 in PSPC1
(Supplementary Figure S2B). When we assessed the tumor-
specific allelic expression, we identified 815 T-VSE and 830
T-VSL variants (Supplementary Tables S7 and S8). Among
the redundant across samples observations are the T-VSE
rs156697 in GSTO2 and the T-VSL rs144610753 in PER3
(33,34).

Somatic mutations. RNA2DNAlign identified 309 dis-
tinct exonic somatic mutations (total of 326) across the 90
breast cancer samples (Figure 4, Supplementary Table S9),
299 of which (99.6%) were present in COSMIC (35).

Loss of heterozygosity. RNA2DNAlign identified 668
distinct (685 total) SNV sites woth LOH (Figure 5, Supple-
mentary Table S10).

Performance analysis

To analyze the performance of RNA2DNAlign, we used
two approaches in parallel. First, we used simulated
datasets to assess the sensitivity of RNA2DNAlign as a
function of the call base quality and the sequencing depth.
Next, when applicable, we analyzed the intersection be-
tween our findings on the 90 breast cancer patients, and
well-established databases of variants with the correspond-
ing functionality.

To assess how the RNA2DNAlign sensitivity depends on
the variant base quality and sequencing depth, we analyzed
the variant detection rate on simulated data, containing ar-
tificially introduced SNVs (Figure 6). To generate the simu-
lated data we used partitions of real fastq files, in which we
replaced the reference with a variant base, at the same time
keeping the original quality score. We used real data fastq
files for our simulations in order to supply realistic quality
and coverage metrics. Three different fastq partitions were
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Figure 4. Circos plot representation of the somatic variants found by
RNA2DNAlign across the 90 studied samples. The grey area shows the
distribution and the frequency of all somatic variants. The red band rep-
resents the least frequent but significant somatic mutation regions on var-
ious regions of the genome (lower frequency limit). The green band sig-
nifies the most frequent somatic mutations identified by RNA2DNAlign
on different regions of genome. The orange color represents novel somatic
variants. The highest frequency of somatic mutations was observed for re-
gions chr19:44625648-55782060 followed by other regions of chromosome
19, 17, 13 and 22, respectively.

extracted to represent genomic regions with low, medium
and high coverage; the tests were run with the requirement
for a minimum of 3, 5 and 10 total sequencing reads span-
ning each SNV position of consideration. As illustrated on
Figure 6, for low quality calls, the variant detection rate
strongly correlated with the base quality and the depth of
sequencing, while for positions with quality scores over 50
the sensitivity approached 100% for all three levels of depth.

To evaluate the performance of the binomial model at loci
with very high coverage, we have explored the properties of
scores across all loci. We currently cap the maximum score
at 100 (representing FDR-corrected likelihood ratios of 1E-
10), in part to avoid unreasonably large scores due to high
coverage. First, we observe that most loci receive scores near
zero or 100, with relatively few loci with intermediate val-
ues (Supplementary Figure S3), indicating that our analy-
sis is not strongly affected by the specific choice of absolute
score threshold. Second, if we partition the loci by cover-
age, we do not observe proportionately more high scores
in the high-coverage loci; in fact, we observe the opposite,
with more high scores in the low-coverage loci (See Supple-
mentary Figure S3C). These empirical results suggest that
false-positives due to the simple binomial based model and
very high coverage loci are not common in our results.

Next, because the 90 samples in our study have been pre-
viously studied by other groups, genetic variants of differ-
ent types have been reported in genomic sources. Among
the types of variants identified by RNA2DNAlign, somatic
mutations are the most extensively curated and documented

Figure 5. Summary of significant LOH loci throughout the genome for
the 90 samples illustrated on Manhattan plot based on –log10(P) (A) and
qqman plot (B). Altering colors dissociate each chromosome.

(35–37); therefore, we selected to analyze the overlap be-
tween RNA2DNAlign output on somatic mutations and
COSMIC. We extracted the somatic mutations in COSMIC
on our dataset of 90 samples, and intersected with SOM lists
called by RNA2DNAlign under different minimum read
thresholds. As seen in Supplementary Figure S4, the sen-
sitivity was inversely related to the minimum required read
number. Next, we examined the somatic mutations listed in
COSMIC and not called by RNA2DNAlign. The major-
ity of the variants not called by RNA2DNAlign resided in
positions with low or absent RNA-seq reads in the corre-
sponding sample. Because RNA-seq read counts generally
reflect expression levels, a major proportion of these missed
variants is likely due to low or absent expression of the cor-
responding transcript. The remaining missed variants were
not called by our default pipeline and hence were not con-
sidered by RNA2DNAlign.

The RNA2DNAlign output did not show significant de-
viations using datasets pre-processed through the aligners
tested in this study (default settings). Expectedly, tuning the
settings towards higher number of called variants (for exam-
ple, including variants called on unpaired reads) led to an
increased number of calls (data not shown).

The overall analysis shows that the major factors that
impact the RNA2DNAlign sensitivity are: (i) minimum re-
quired read number, (ii) expression of the gene/transcript
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Figure 6. Sensitivity of RNA2DNAlign as a function of base quality and minimum required total number of reads for consideration; performance on
simulated datasets. Quality scores were broken into 10-point intervals; between 20 and 40 artificially introduced SNVs for each quality interval were
assessed. For each of the eight types of imbalances, the variant read fractions were set according to Table 1; the tests were run with the requirement for
a minimum of 3, 5 and 10 total sequencing reads spanning each SNV position of consideration. The sensitivity if RNA2DNAlign was measured as the
fraction of positive calls over all introduced SNVs. Overall, similar sensitivity was observed across the different variation types. For quality scores below 50,
the detection rate strongly correlated with the base quality and the depth of sequencing, while for positions with higher quality the sensitivity approached
100% for all three levels of depth. On positions covered with more than 10 reads. RNA2DNAlign showed higher than 80% detection rate for quality ranges
above 20, and reached over 95% for quality ranges above 30, respectively.
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in the tissue from which RNA was derived and (iii) num-
ber and combination of considered datasets. Naturally, the
design confines the analyses to (a) loci expressed in the tis-
sue of interest, and (b) regions comparable between the an-
alyzed datasets (exons, in our example). Hence the lists of
variants called by RNA2DNAlign are not exhaustive for
the entire genome, but rather represent positions co-covered
by the studied sequencing libraries, thus allowing estima-
tion of read distribution asymmetries. Therefore, substan-
tially higher number of calls is achieved when using two
matching datasets. Since comparisons outside exome-to-
transcriptome, such as exome-to-exome, or transcriptome-
to-transcriptome, are not restricted to exonic positions
only, using two datasets can increase the comparable se-
quenced regions with informative loci, such as exon flank-
ing areas when comparing exomes, or non-coding RNAs
when comparing transcriptomes, thus additionally increas-
ing the number of the identified SNVs. Also, using only two
datasets reduces the number of variants ignored due to ran-
dom sequencing inconsistencies, such as accidental low cov-
erage in some datasets. Of note, running the same match-
ing datasets in different combinations allows aiming both
at high specificity (4 matching datasets) and higher detec-
tion rate (<4 appropriate matching datasets according to
Figure 2B).

It is noteworthy that RNA2DNAlign identified somatic
mutations that have not been reported before (Supplemen-
tary Figure S5). Our analysis shows that the main propor-
tion of these variants was called exclusively in the tumor
transcriptome with our default pipeline (and not in the tu-
mor exome), which is likely the reason why they have not
been reported so far. Because RNA2DNAlign assesses each
dataset at every position called in at least one of the datasets,
it is poised to identify variants challenging for some of the
call settings, likely due to a different stringency dynamics
of the variant calls between datasets (exome and transcrip-
tome in our example).

DISCUSSION

With the increasing availability of individual omics-scale se-
quencing data, the bio-medical community will significantly
benefit from tools enabling integration of DNA and RNA
data, which is expected to reach far beyond linear addition
of the separate layers of information. Apart from several
recent efforts (38–41), tools integrating DNA and RNA se-
quencing information at nucleotide resolution on a large
scale are missing. RNA2DNAlign is a free software ap-
plication for large-scale quantitation of variant and refer-
ence reads’ distribution between DNA and RNA sequenc-
ing datasets.

In the herein demonstrated application, RNA2DNAlign
identified a total of 2038 high confidence distinct exonic
variants (5800 across the 90 breast cancer patients), asso-
ciated with allelic imbalance of different kinds (Table 2 and
Figure 7). Many of the 2038 SNVs were already linked
to the respective event, which supported the general con-
fidence of our algorithms. Most, however, have never been
reported in the regarded context, and thus comprise novel
findings. An example of significant novel outcome is the
comprehensive list of variants presenting with monoallelic

Figure 7. Distribution and frequency of all 8 types of allele imbalances in
the 90 studied samples.

expression––VSE, T-VSE, VSL and T-VSL––totaling 2133
SNVs, the vast majority of which have not been reported as-
sociated with imprinting or other allele-specific expression.
It is important to note that while the RNA2DNAlign called
SNVs can cause, contribute, or result from the respective
event, they may also randomly reside on the highlighted al-
lele, and downstream studies are required to distinguish be-
tween driving and passengers variants.

Of note, all the above variants are identified using
very high stringency settings of RNA2DNAlign, defined
through: (i) consideration of four NGS datasets of the
type tumor/normal/exome/transcriptome, (ii) minimum
requirement of 10 sequencing reads in all four datasets for
each examined position and (iii) restriction of the tests to ex-
onic regions only. Relaxing of any of the above requirements
substantially increases the number of the calls. For exam-
ple, setting the minimum required read number to three re-
sulted in 8.6-fold increase in the number of significant calls
in the same samples (17 577 distinct significant exonic po-
sitions, data not shown). Using the information from all
four datasets, expression-specific elements could be found
through exome-to-transcriptome comparison, and cancer-
related changes could be outlined through comparison be-
tween the normal and tumor datasets. Such approach is set
to provide higher specificity due to cross-validation of the
observation in more than one dataset (i.e. VSE is assigned
at positions with variant specific expression in both the nor-
mal and the tumor transcriptome, LOH is assigned to posi-
tions with monoallelic reads in both tumor exome and tu-
mor transcriptome, etc.). Thus, RNA2DNAlign addresses
the well-regarded challenge of high noise of variant calls
produced by NGS sequencing.
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Table 2. Overall characteristics of the frequency and distribution of exonic SNVs identified through RNA2DNAlign to be associated with allelic imbalance
reflecting eight regulatory events. The numbers reflect the summary statistics across 90 samples

RNAed T-RNAed VSE T-VSE VSL T-VSL LOH SOM TOTAL

Unique 191 94 171 815 215 830 685 309 2038
Total 632 103 616 929 585 929 668 329 5800
Average 9 2 9 19 9 20 22 4 64
Median 7 1 6 6 5 6 2 3 22
Range 1-22 0-16 1-16 0-91 0-26 0-65 0-211 0-15 6-229

For applications of RNA2DNAlign that use previously
generated alignments and variation calls, it is important to
consider that its outputs will depend on the used pipelines
and their stringency settings, with a major expected im-
pact towards the false negative variant calls (i.e. calls missed
by the variant caller). By default, the RNA2DNAlign de-
sign reduces this effect as it inspects the matching datasets
for all positions called in any of the datasets. Thus, only
SNVs missed in all of the relevant datasets will not be as-
sessed for allele distribution. Of note, in addition to post-
aligner-caller applications, RNA2DNAlign could work di-
rectly with pre-aligned datasets and lists of positions of in-
terest (for example TCGA alignments, and dbSNP, COS-
MIC or DARNED variants, or any custom pre-defined list).
Such an approach can be used to determine the allelic be-
havior of positions of interest in the particular datasets. Im-
portantly, in addition to the positions involved in the eight
events, RNA2DNAlign outputs the read counts for all the
submitted positions, including those not qualifying for any
of the 8 events; this output can be used for variety of custom
allele-quantifying applications.

Notably, RNA2DNAlign is designed for diploid
genomes, and the tumor genomes often present with local
or massive ploidy alterations. While the generic definitions
used by RNA2DNAlign are expected to be preserved for
many ploidy alterations, loci different from diploid need
to be treated with conscious. For example, for regions of
unknown ploidy, LOH output positions need to be consid-
ered as indicative for change from hetero- to mono-allelic
status, inclusive but not restricted to changes from di- to
monoploid status.

An important challenge addressed by RNA2DNAlign is
the limited compatibility between RNA and DNA datasets,
more obvious when using exomes. While largely consistent
with transcriptomes over exonic regions, exomes present
with extra coverage at the exon-flanking areas (usually tar-
geted by the exome capture), and with all the known genes,
as compared to only the expressed ones in the tissue from
which the RNA was derived. On the other hand, transcrip-
tomes present with a multitude of non-coding expressed se-
quences that are not targeted by the exome capture. Our
design addresses this incompatibility in two ways: (i) the
option for filtering, which confines the comparisons within
regions targeted of both sequencing approaches, and, (ii)
the requirement for minimum of reads at every assessed
SNV position, which directs the tests to the expressed genes
in the tissue of the RNA-origin. It is noteworthy that
RNA2DNAlign is different from approaches optimized to-
wards identifying of allelic imbalances from RNA data
alone, which often address biases caused by unavailability of
matching DNA (26,42–50). By design, RNA2DNAlign in-

tegrates multiple signals from regions co-covered by RNA
and DNA sequencing, aiming to identify all possible bio-
logically meaningful allelic asymmetries.

In summary, RNA2DNAlign possesses several impor-
tant advantages that support novel types of applications.
First, the simultaneous assessment of a position in multi-
ple matching datasets supports novel nucleotide-resolution
analyses, for example, expression for the DNA-confined
events LOH and SOM, normal vs tumor comparisons, etc.
Second, this is the first tool to simultaneously produce eight
different outputs of SNVs associated with major molec-
ular events, thus allowing multilevel within-sample vari-
ant functionality assessments. Third, the read-count output
supports numerical operations towards fine quantitation of
allelic abundance, including the reference allele-count for
positions with no variant, which can prompt various cus-
tomized downstream analyses. Next, in terms of specificity
and sensitivity, the application supports user control both
through number of considered datasets, and adjustment
of the stringency settings. Related to that, RNA2DNAlign
workflow efficiency and high processing speed allows run-
ning datasets under multiple settings in parallel, aiming
both at specificity and sensitivity in a high-throughput man-
ner. In addition, to screen for allele-specific variants poten-
tially implicated in alternative splicing RNA2DNAlign can
be run in parallel with a tool for molecular phasing of vari-
ants with an alternative junction/boundary – SNPlice (41),
which utilizes the same input files and interface. Finally, the
application of RNA2DNAlign does not require computa-
tional skills or script writing, and can be run through user-
friendly interface by wide range of research- and clinically-
oriented users.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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