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Abstract: Generative Topographic Mapping (GTM) can be
efficiently used to visualize, analyze and model large
chemical data. The GTM manifold needs to span the
chemical space deemed relevant for a given problem.
Therefore, the Frame set (FS) of compounds used for the
manifold construction must well cover a given chemical
space. Intuitively, the FS size must raise with the size and
diversity of the target library. At the same time, the GTM
training can be very slow or even becomes technically
impossible at FS sizes of the order of 105 compounds –
which is a very small number compared to today’s
commercially accessible compounds, and, especially, to the
theoretically feasible molecules. In order to solve this
problem, we propose a Parallel GTM algorithm based on
the merging of “intermediate” manifolds constructed in
parallel for different subsets of molecules. An ensemble of
these subsets forms a FS for the “final” manifold. In order to
assess the efficiency of the new algorithm, 80 GTMs were
built on the FSs of different sizes ranging from 10 to 1.8 M

compounds selected from the ChEMBL database. Each GTM
was challenged to build classification models for up to 712
biological activities (depending on the FS size). With the
novel parallel GTM procedure, we could thus cover the
entire spectrum of possible FS sizes, whereas previous
studies were forced to rely on the working hypothesis that
FS sizes of few thousands of compounds are sufficient to
describe the ChEMBL chemical space. In fact, this study
formally proves this to be true: a FS containing only 5000
randomly picked compounds is sufficient to represent the
entire ChEMBL collection (1.8 M molecules), in the sense
that a further increase of FS compound numbers has no
benefice impact on the predictive propensity of the above-
mentioned 712 activity classification models. Parallel GTM
may, however, be required to generate maps based on very
large FS, that might improve chemical space cartography of
big commercial and virtual libraries, approaching billions of
compounds
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1 Introduction

Nowadays, public and private chemical databases contain
millions of already synthesized compounds (ChEMBL,[1]

PubChem,[2] CAS,[3] etc.) and billions of computer-generated
virtual structures (GDB-17[4]). This chemical universe needs
to be explored and analyzed. Earlier, Oprea et al. proposed
to use geography concepts to represent chemical structures
on a map.[5] Several methods designed to visualize and
model chemical space are known in the literature: Scaffold-
Tree,[6] PCA,[7] Multi-fusion similarity maps,[8] t-SNE,[9]

UMAP,[10] TMAP,[11] etc. Generative Topographic Mapping
(GTM), introduced by Bishop et al.,[12] has a particular
advantage – it is a non-linear probabilistic approach
extending the Self-Organizing Maps.[13]

The GTM algorithm considers a 2-dimensional smooth
surface (manifold) injected into the high-dimensional
descriptors space. The manifold is fitted to data distribution
by maximizing the log-likelihood (LLh) of the molecules in
the input space defined by molecular descriptors. Once the
manifold is fitted, the molecules are projected onto the 2-
dimensional latent space superposed with a square grid of
k*k (K) nodes. To determine the position of each compound,
a vector of posterior probabilities (responsibilities) to be

associated with a given node is used. To describe the entire
data set, a vector of cumulative responsibilities can be built
using responsibility vectors of individual compounds. The
latter can be associated with class or property values which
leads to GTM Class Landscape or GTM Property Landscape.
These landscapes can be used as classification and
regression models in various chemoinformatics tasks.[13–27]
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A map is built on a set of molecules called a Frame set
(FS) that spans the given chemical space. Usually, the FS is
taken as a small portion of compounds in comparison to
the database size (10K to 30K molecules). The general
expectation is that a larger FS should give a “better” map.
However, it is not a priori clear how large the FS needs to
be. Note that the FS is not, as one might expect, meant to
be a representative “core” of a library, i.e. represent one
non-redundant example of every analogue contained by
the parent library. By analogy to cartography, one should
think of the FS as the “satellites” sufficient to ensure a
desired resolution of the GPS location system. Most of the
mapped molecules do not need to be by any means close
analogues to the FS – yet, they have to be “surrounded” by
several of FS members, in order to ensure the precise
“triangulation” and projection on the map. As such, not
only the number of FS compounds is of paramount
importance, but also their homogeneous spread over
chemical space (a few tens of satellites is sufficient to
support GPS location within 10 m anywhere on Earth, but
this would no longer be the case if all of them would be
hovering over the same spot of the Atlantic). In previous
works, FS selection was never thoroughly studied, since
maps of good quality were typically obtained on hand of
randomized compound subsets chosen as large as compu-
tational time and memory constraints would allow. A
thorough analysis of this problem was hence due, and will
be pursued in this work, all while introducing an original
parallel GTM (pGTM) algorithm to cope with FS sizes not
envisageable with previous map building tools.

The standard GTM (sGTM) algorithm is limited in terms
of the size of the FS. This limitation rises when the machine
needs to compute Euclidean distances for each pair “node-
molecule”. For instance, computing the distances between
900 nodes (a map of 30×30 nodes) and 1000 compounds
described with some 500 descriptors takes approximately
4.5 seconds on a single CPU (Intel Core i7-6700HQ). The
complexity of the method is O(n). Hence, 30 K compounds
already need 135 seconds or 2.25 minutes. An additional
variation of the number of nodes makes the complexity to
be O(n, k), and 2 K compounds in a pair with 1800 nodes
already require 19 seconds to be treated. This procedure is
performed at each iteration, which makes the GTM
algorithm slow. This is acceptable for relatively small FSs
(up to 30 K compounds), whereas it is better to use
incremental GTM for larger ones.[12,22] Within this algorithm,
a data set is split into a number of blocks that are treated
sequentially. The acceleration of the method is achieved
due to the ability of the algorithm to converge faster on a
sequence of blocks than on the entire data set. Such an
approach, however, displays several drawbacks. First, it is
faster than sGTM but, still, too slow because the conver-
gence must be achieved on each block. Second, the
manifold is initialized only with the first block chosen
randomly, and then it is updated by the following blocks.
The order of the blocks in the sequence impacts signifi-

cantly the resulting manifold since the knowledge extracted
from the middle blocks can fully or partially be lost at the
end of the training procedure. Thus, for instance, the
reshuffling of the training data set leads to a completely
different GTM.

These problems become even more crucial in the case
of Big Data. To accelerate the training procedure, the FS
was necessarily limited to a subset of such big chemical
libraries (e.g., more than 100 K compounds). Thus, a
question on the optimal FS size arises. In the previous
studies,[18,27,28] the size of the FS was either optimized by the
Genetic Algorithm[29] (GA) as one of the hyper-parameters
of the GTM model or specified manually based on the
researcher’s experience.[17] Intuitively, one can assume that
a larger chemical collection may need a larger FS to
represent a given chemical space, whereas the GA was
often selecting FSs of few thousands (5 K–25 K structures).
This can be explained by assuming that the considered FS
of the order of 103–104 randomly selected compounds
effectively represents a huge chemical collection, such as
ChEMBL (106 compounds). Apparently, FS sizes of <1% of
the final targeted compound collection may – fortunately –
be sufficient, but no rigorous study of the FS size has been
conducted so far.

To overcome the FS size limitations all while rendering
the manifold independent on the order of FS data blocks,
we have developed a new parallel GTM (pGTM) algorithm.
It was applied to investigate the optimal size of the FS
suitable for producing a meaningful map for a large
chemical collection, such as the ChEMBL database. In
particular, we investigated whether increasing the FS size
far beyond the so-far employed 103–104 randomly selected
compounds would significantly enhance the map quality
using the pGTM approach. Different FSs ranging from 10 to
1.8 M compounds were prepared. Their representativity of
the entire ChEMBL database was calculated in the initial
descriptor space, using the Kullback-Leibler divergence
criterion. The maps were trained by pGTM, sGTM and iGTM
algorithms, in as far as FSs size allowed it (sGTM and iGTM
on smaller FS, iGTM/pGTM on larger ones, only sGTM and
respectively only pGTM for extremely small and respectively
large sets). The maps were analyzed from two points of
view: (1) the homogeneity of the mapped compound
density (Shannon Entropy) and (2) their predictive power in
class landscape-based polypharmacological activity predic-
tion, as will be detailed in the Methods section.

2 Data and Descriptors

As a data source, the public chemical database ChEMBL
(v.25) was used in this study. Chemical structures were
preprocessed in 7 steps: dearomatization, removal of the
explicit hydrogens, removal of the information on isotopes
and stereo, stripping salts, aromatization, selection of a
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major tautomer, and transformation of common functional
groups (e.g. nitro group).

The compounds possessing less than 5 or more than
100 heavy atoms were discarded. The obtained collection
of about 1.8 M compounds was used to prepare 80 FSs of
different sizes (10, 50, 100, 500, 1 K, 5 K, 10 K, 20 K, 30 K,
50 K, 100 K, 200 K, 400 K, 750 K, 1 M, and 1.8 M compounds)
with five randomly selected FSs per each size (in the case of
1.8 M compounds, the FS was just reshuffled 5 times). The
molecules were encoded by the 10,898 ISIDA fragment
descriptors using the IA-FF-FS-AP-2-3 fragmentation
scheme (sequences of 2–3 atoms colored by CVFF[30] and
formal charges).[27,31,32] The near-constant descriptor ele-
ments were removed (if the standard deviation was zero, or
less than 2% of the covered range width in the Frame set)
and standardized (centered and divided by its standard
deviation). Depending on the FS size, the final number of
descriptors varied from 180 to 540.

To discard the compounds that are poorly described by
the manifold (i. e., with large distances to the manifold), a
Gaussian-based GTM Applicability Domain (AD)[17] was
employed. Within this AD, a Gaussian is fitted to the LLh

distribution built by binning the corresponding FS. The LLh
threshold is computed as LLhpeak� 3σ, where LLhpeak is the
LLh value corresponding to the peak of the fitted Gaussian,
and σ is its width. Once the threshold is computed,
compounds possessing the LLh below the threshold are
discarded.

To validate the maps, more than 1000 ChEMBL targets
for “Homo sapiens” organism with assay type “Binding
assay” and target type “Single protein” were preselected.
They were filtered according to the number of compounds
for which the IC50 value was measured (at least 30). The
labels “active”/”inactive” were assigned based on the IC50
value according to the protocol depicted in Figure 1. Briefly
speaking, the protocol defines the IC50 thresholds for each
target individually in accordance with the number of active
and inactive compounds. The protocol consists of three
steps. First, the “active” IC50 threshold (ActIC50) is selected
out of the range [10 nM, 50 nM, 100 nM, 300 nM, 500 nM,
700 nM, 1 μM] to define at least 15 actives. Next, it selects
the “inactive” IC50 threshold (InactIC50) which determines
30% or at least 15 compounds as inactive. In the meantime,
the condition “InactIC50/ActIC50�10” is checked. Finally, if the

Figure 1. Labels assignment protocol. Here, three stages are depicted: 1) assessing of the preliminary IC50 threshold for actives (ActIC50); 2)
determining of the IC50 threshold for inactive compounds (InactIC50); 3) updating the ActIC50 as InactIC50/10 if InactIC50/ActIC50>10. The
compounds with ActIC50< IC50< InactIC50 are discarded.
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threshold for inactive compounds InactIC50 is more than
10 times bigger than the threshold for actives (ActIC50), the
ActIC50 is updated as InactIC50/10 to collect more active
molecules.

The targets with less than 15 active or 15 inactive
compounds were discarded. The final number of the targets
considered in the study varied from 0 to 712 depending on
the size of the corresponding FS.

3 Method

3.1 Standard GTM

GTM is a probabilistic extension of the Self-Organizing
Mapping (SOM)[33] method where log-likelihood is utilized
as an objective function.[12] The manifold used to bind a
data point t* in the data space and its projection x* in the
latent space (Figure 2) is described by a set of M Radial

Basis Function (RBF; Gaussian functions are used in the
current implementation) centers.

To initialize the manifold, the parameter matrix W
containing the RBF positions in the data space is obtained
from the Principal Component Analysis (PCA)[34] performed
for the descriptors matrix as

W ¼ F� 1ðXUÞ: (1)

Here, Φ is K×M matrix containing relative RBF positions
in the latent space with respect to the nodes:

Fkm ¼ exp
k xk � mm k

2

2s2

� �

, (2)

where xk and μm are the coordinates of a node k and an RBF
center m in the latent space, respectively, and σ is the
average squared Euclidean distance between two RBF
centers multiplied by a tunable factor w; X is K×2 matrix of
nodes’ coordinates in the latent space (according to the

square grid which represents the latent space), and U is 2×
D matrix of the first two eigenvectors produced by PCA.

Once the manifold is initialized, the mapping function Y
is computed as

Y ¼ FW, (3)

which is K×D matrix projecting the nodes from the latent
to the initial space. Next, the initial log likelihood value LLh
(W, β) is computed using the 3rd eigenvalue issued from
PCA calculations at the manifold initialization step as an
initial guess of β� 1 (the noise variance)

LLh W; bð Þ ¼
1
N

XN

n¼1

ln
1
K

XK

k¼1

p tnjxk;W; bð Þ

( )

, (4)

p tnjxk;W; bð Þ ¼
b

2p

� �
� D=2

exp �
b

2 kyk � tnk
2

� �

, (5)

where tn is the position of a molecule n in the data space,
yk is the position of a node k in the data space (obtained
via eq. 3). These conditional densities (eq. 5) are trans-
formed then into posterior probabilities (responsibilities)

rnk ¼
p tnjxk;W; bð Þ

PK
k0 ¼1 p tnjxk0 ;W; bð Þ

, (6)

and the Expectation-Maximization (EM) algorithm is run to
fit the manifold. Within the training procedure, the matrix
W and the value of β are updated as

W ¼ ðFTGFþ lIÞ� 1FTRT, (7)

1
b
¼

1
ND

XN

n¼1

XK

k¼1

rknkyk � tnk2: (8)

The EM algorithm maximizes the log-likelihood of
compounds to be described by the nodes and stops once
the convergence is achieved. Finally, the projected data set
is described by the N×K matrix of responsibilities R (eq. 6),
or by a vector of cumulated responsibilities (sum of
responsibilities at a given node over the entire data set) of
length K.

3.2 Incremental GTM

To overcome the limitation of the sGTM described above
(the number of training compounds), the Incremental GTM
algorithm was introduced.[12] Within this approach, a
manifold is initialized by a randomly chosen subset. Next,
the data set is split into a series of blocks of a certain size
which are used to train the manifold sequentially. This
solves the problem of the number of training compounds

Figure 2. The basic idea of the GTM. Here, the data point t* from
the multi-dimensional data space (right) is projected to x* the 2D
latent space (left) using the manifold which is injected into the data
space and described by a set of Radial Basis Functions (RBF).
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and allows treating of larger FSs. At the same time, the
manifold is built slower since the convergence must be
achieved on each block. In addition, the GTM training of the
FS of more than 100 K–200 K compounds becomes too
costly in terms of computational time which means that a
new GTM method able to handle larger FSs in a relatively
short time is needed.

3.3 Parallel GTM

An attempt to parallelize the sGTM algorithm was already
made using Message Passing Interface (MPI) technique.[35–37]

For this purpose, the matrix of responsibilities was decom-
posed and its parts were distributed over the CPUs to be
updated by small chunks of the data set iteratively. This
accelerated the manifold training, but the mentioned
approach is dependent on the certain architecture of a
machine used to run the calculations. Namely, a single
machine or a highly organized cluster that supports the MPI
technology must be used for calculations, and the RAM has
to be shared between the machines to store the whole
matrix of responsibilities.

Here, we present a new solution named Parallel GTM
(pGTM) which extends the iGTM to multiple CPUs. The idea
is to generate, first, a common initial guess valid for the
given FS, and then to distribute the tasks over the cluster in
order to fit each data block independently. The workflow is
presented in Figure 3.

Within this approach, the parameter matrix W is
initialized on the entire FS using the incremental Principal
Components Analysis (iPCA). To do so, the covariance
matrix is computed incrementally followed by the Eigenval-
ue decomposition[38] (the scikit-cuda library in Python was
applied).[39] Once the PCA is done, the FS is split into a series
of blocks, and, then, the manifold training procedure is
executed to fit each block independently.

Each block produces an intermediate GTM manifold
fitted on a portion of the data set. Since the same initial
position of the manifold in the descriptors space and the
same GTM parameters are used to treat the blocks, the
intermediate manifolds can be then merged into the final
one. For this purpose, simple averaging of the matrices W
and the noise variances β can be used:

�wm;d ¼

PN
i¼1 wm;d;i

N
, (9)

�b ¼

PN
i¼1 bi

N , (10)

where N is the number of data blocks used to train the
manifold.

3.4 Benchmarking Strategy

Each of the 80 FSs was used to train a GTM with the GTM
parameters taken from the previous study:[12] 841 nodes,
324 RBFs, the regularization coefficient of 3.236, and the
RBF’s width of 0.4. For benchmarking purposes, the FSs
were treated by three GTM algorithms: sGTM, iGTM, and
pGTM. The standard approach was applied to the FSs of 10
to 30 K compounds. The incremental algorithm was applied
to the FSs of 5 K–200 K compounds. The pGTM algorithm
was used to build the maps on FSs containing 5 K–1.8 M
compounds (smaller FSs were not used with iGTM and
pGTM which are intrinsically less accurate technical “back-
up” solutions meant for processing FSs too large or too
time-consuming for sGTM). The FSs of sizes close to the
applicability thresholds of the methods (corresponds to the
FS sizes analyzed by the methods) were processed by
several methods. The data blocks used for iGTM and pGTM
contained no more than 5 K compounds.

The FSs representativity was checked, and the obtained
maps were compared in terms of the homogeneity of the
mapped compound density, and the polypharmacological
predictive performance as defined below.

Figure 3. The Parallel GTM algorithm.
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3.4.1 Frame Set Representativity

Within a particular descriptor, an FS, as well as the chemical
collection, can be represented as a probability distribution
obtained by binning the corresponding standardized
descriptor values. The probability distributions pi(x) ob-
tained for the FS and qi(x) for the entire chemical collection
can be then compared to assess the FS representativity
within the i-th descriptor. In an ideal case, pi(x) should fully
mimic the qi(x), and the Kullback-Leibler divergence
(KLDi),

[40] computed as:

KLDi ¼

Z

pi xð Þlog
pi xð Þ
qi xð Þ

dx (11)

should be equal to zero. In the case of a non-representative
FS, the KLDi tends to be infinite. To extend this to the multi-
dimensional distributions, the single-dimension KLDi values
were averaged, and the mean KLD and its standard
deviation were computed.

3.4.2 Compound Density Distribution on the Map (in the
Latent Space)

To measure the uniformity of compound distribution, the
normalized Shannon entropy can be used as a metric. For
this purpose, the vector of cumulative responsibilities is
created using the compounds passed the LLh filtering (the
compounds with LLh lower than the threshold were
discarded; the LLh threshold is explained in the chapter “2
Data and Descriptors”). The Shannon entropy is computed
as

E ¼ �
X

k

CumRklog CumRkð Þ, (12)

which can be normalized then dividing it by the maximal
entropy log(K):

Enorm ¼
�
P

k CumRklog CumRkð Þ

log Kð Þ
*100, (13)

Here, CumRk is the cumulated responsibility in the node
k, and K is the total number of nodes. The Enorm (normalized
entropy) ranges within [0;100], where 0 means that all the
molecules are mapped into the same node, and 100 means
that the molecules cover the chemical space uniformly.

3.4.3 Predictive Performance

Predictive performance is a key indicator of the relevance of
a GTM manifold.[14] This was estimated in terms of three-
fold cross-validated classification challenges of active versus
inactive compounds associated with a large profile of

ChEMBL biological targets, following the “universal map”
paradigm.[18,21,28] Within the cross-validation procedure, a
target-specific data set was split into three folds, and a GTM
class landscape (not a manifold) was trained on two folds
and evaluated by the third one. Balanced Accuracy (BA) was
applied in this study to assess the predictive performance
of the maps. Upon projection of an item to be predicted on
the activity-specific two-class classification manifold (1=

inactive, 2=active), the returned real score indicates the
predicted likelihood of the compound is a member of the
class closest to the rounded-up score. Therefore, to
compute the BA, this score is simply rounded up to the
next integer as a predictor of the most likely activity class.
As a result, each target was characterized by the mean BA
values. To compare the maps, the targets predicted with
the <BA> �0.7 were counted.

4 Results and Discussion

4.1 Comparison of Different Algorithms of GTM
Construction for a Given Frame Set

The parallel GTM algorithm was tested, first, on an FS of
20 K compounds. For this purpose, four intermediate GTM
manifolds were trained on 5 K compounds each, and the
entire ChEMBL collection was projected on them as well as
on the final manifold. The obtained projections were used
to train GTM density landscapes, to compute the normal-
ized Shannon entropy and to count the targets predicted
with the <BA> �0.7 (NBA; Figure 4).

Analysis of the produced landscapes shows that the
intermediate manifolds are similar to each other visually,
although they describe different parts of the FS.

The entropy of the intermediate manifolds is 84.3�1.7,
and the NBA is 431�7. Merging them into the final
manifold, we increase the entropy (87.34) but decrease the
predictive performance (415 targets were predicted with
the <BA> �0.7). Thus, the plain averaging of manifolds
appears to be slightly detrimental on prediction quality – in
perspective, alternative ways to merge local manifolds into
the global one need to be addressed.

Comparing the pGTM density landscapes with sGTM
and iGTM density landscapes trained on the same FS
(Figure 5), one can see that the maps are visually similar (a
significant part of compounds is on the left half of the
map). The entropy of the projections is nearly the same
(85.17�1.96) for all three methods, but pGTM performs
worse than two other algorithms. The best performance of
the standard algorithm, sGTM, can be explained by the fact
that it does not use any heuristics and approximations
necessary for working with large amounts of data. In the
case of the iGTM, the non-complete convergence of this
iterative algorithm could deteriorate the quality of the
manifold, which, in turn, decreases the predictive perform-
ance of the corresponding classification models (NBA=428).
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As for the pGTM algorithm, its poorer performance could
be a consequence of the heuristic character of the matrix
averaging in the process of merging intermediate manifolds
(NBA=415). On the other hand, pGTM trains the manifold 5–
6 times faster than sGTM and iGTM (e.g., 30 minutes for
pGTM to treat 20 K structures in contrast with 3 hours for
sGTM on a machine with 8 CPUs and 32Gb RAM). In our
opinion, this is a big advantage which makes the pGTM
method more attractive, despite the slight decrease in
predictive performance. However, it should be noticed that
this speed-up is due to the use of more CPU cores, i. e. gain
in physical time – not necessarily a net gain in computa-
tional cost.

In addition, it is less dependent on the order of
compounds in the FS as iGTM. Indeed, the density land-
scapes built on five reshuffled copies of the ChEMBL
database are very similar and their performance character-
istics (Entropy and NBA) are also rather close to each other
(Figure 6). Finally, pGTM can be used to treat FSs containing
millions of compounds which is impossible with sGTM and
hardly achievable with iGTM algorithms.

4.2 How Large Does a Frame Set Need to Be

To investigate the optimal size of the FS suitable to map
the entire ChEMBL collection, 80 FSs of different sizes were

Figure 4. GTM density landscapes built for the intermediate and final pGTM manifolds. To build the landscapes, the entire ChEMBL collection
was projected on each manifold. Here, an FS of 20 K compounds was split into four blocks to train the intermediate manifolds. Each
manifold was described then by the normalized Shannon entropy (Entropy) and the number of targets predicted with <BA> �0.7 (NBA).
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prepared. First, the FS representativity was compared using
the Kullback-Leibler Divergence (KLD, eq. 11). The mean
and standard deviation values averaged on five repetitions
are in Figure 7.

It is seen from the figure that the FS of 10 compounds is
not able to describe 1.8 M molecules (KLD=0.23�0.23).
However, the divergence becomes very low already for the
FS of 1 K compounds, and it is 0.002 for the FS of 5 K
molecules which means that 5 K already describes the
ChEMBL collection very well in the current descriptor space.

Then, the GTMs were trained and compared in terms of
the Shannon entropy (Figure 8a). It can be seen from the
chart that a FS of 10 molecules does not properly cover the
relevant chemical space, with the consequence that most
compounds are “dumped” onto a single spot on the map.
The low Shannon entropy (29�14%) is illustrative of this
fact. With the increase of the size of the FS, the manifold
achieves a better expansion through relevant chemical
space, which leads to more uniform data distribution over
the map. The level of 86�3% of Enorm (eq. 13) is reached
already with the FS containing 500 compounds and it does
not change significantly for the larger FSs.

Analyzing the predictive performance of the maps
(Figure 8b), we have found that the plateau of the <BA>
can already be reached with 5 K compounds and it remains

Figure 5. GTM density landscapes trained by sGTM, iGTM and pGTM algorithms using the FS of 20 K compounds. Here, 1.8M ChEMBL
structures are projected, and each map is characterized by the normalized Shannon’s entropy (Entropy) and the number of targets predicted
with the <BA> �0.7 (NBA).

Figure 6. Density landscapes for the manifolds trained by pGTM on
1.8 M compounds (entire ChEMBL collection). Here, each map was
trained on a reshuffled copy of the ChEMBL database and
characterized by the normalized Shannon’s entropy (Entropy) and
the number of targets predicted with the <BA> �0.7 (NBA).

Figure 7. Mean Kullback-Leibler divergences computed in N dimen-
sions for pairs FS-ChEMBL as a function of the FS size, where N
ranges within [180; 540] (number of descriptors) depending on the
FS size.
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the same for the sGTM approach. The iGTMs and pGTMs are
characterized by almost the same number of targets with
the <BA> �0.7 as the standard GTMs. However, there is a
slight decrease as a function of the FS size (for the parallel
GTM, from 418 targets for the FSs of 10 K compounds down
to 402 targets for the FSs of 1.8 M compounds). This means
that we can achieve the best predictive performance with
just 5000 compounds which is 0.003% of the entire data-
base.

It is also noteworthy that the maps trained on
500 compounds can already provide good predictive per-
formance. This gives an opportunity to greatly accelerate
the construction of GTMs for large data sets: hyper-
parameter tuning may be run with rather small FSs, while
the final manifold at so-far best-found combinations of
hyperparameters could be rebuilt on a larger FS if needed.

In terms of data visualization, the GTM density land-
scapes obtained with the standard approach (sGTM)
support the conclusion made earlier: 5 K compounds are
already enough to model the entire ChEMBL collection. On
the density landscapes (Figures 9a–9f), the maximal density
systematically decreases from 70 K structures down to 20 K
structures and then keeps in this range. In addition, the
data becomes more spread. For instance, about 7–10 clus-
ters with a cumulated density above 10 K structures can be
found for the map trained on the FS of 5 K molecules
(Figure 9e) in contrast to two huge clusters shown on the
map which was trained just with 10 molecules (Figure 9a).
Further increasing of the FS size is not needed in this case
since it does not bring any new information (Figures 9f).
However, large FSs might be needed in case of huge and/or
very diverse chemical collections such as CAS or Zinc where
millions and billions of compounds are stored. In this case,
sGTM and iGTM cannot be applied, and, therefore, pGTM
can be used instead.

5 Conclusions

The new Parallel Generative Topographic Mapping (pGTM)
algorithm was proposed. It was shown that pGTM may in
principle use any, arbitrarily large FS, as it supports
dispatching of the manifold fitting procedure to an arbitrary
number of CPU cores or independent nodes of a cluster.

Figure 8. Benchmarking results: (a) the mean normalized Shannon entropy which shows the uniformity of the data distribution; (b) the
mean number of targets predicted with the mean BA�0.7.

Figure 9. Generative Topographic Maps for the ChEMBL database
built on Frame Sets of (a) 10, (b) 100, (c) 500, (d) 1000, (e) 5000, and
(f) 10000 compounds using sGTM technique. The color code reflects
the data density.
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Despite the slightly poorer predictive performance, pGTM is
intrinsically faster (depending on the number of available
CPUs) and it allows treating Frame Sets (FS) containing
millions of compounds.

The method was applied to compare FSs of different
sizes (10 to 1.8 M compounds) in terms of their representa-
tivity, and the trained maps were compared in terms of
uniformity of data distribution, predictive performance and
data visualization. It was shown that FSs with 500 com-
pounds already produce the map of enough quality,
whereas the maps with the best predictive performance (in
terms of Balanced Accuracy) can be obtained with
5,000 compounds (approximately 440 targets were pre-
dicted with the mean BA�0.7). Considering the fact that
0.003% (5,000 structures) of the chemical collection is
already enough to describe (in the framework of the GTM
approach) the ChEMBL database of 1.8 M compounds, we
can assume that this might be the case as well for larger
chemical databases containing millions of synthesized and
billions of computer-generated structures. The study sug-
gests that relevant mapping of the billion-sized libraries
should by no means require frame sets above a million of
compounds, Frame Sets which can be handled, as shown,
by the pGTM algorithm.

Abbreviations

GTM Generative Topographic Mapping
LLh Log-Likelihood
FS Frame Set
RBF Radial Basis Function
PCA Principal Component Analysis
BA Balanced accuracy
AD Applicability Domain

Conflict of Interest

None declared.

Acknowledgements

The project led to this article has received funding from the
European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant Agree-
ment No. 676434, “Big Data in Chemistry” (“BIGCHEM”,
http://bigchem.eu).

References

[1] A. Gaulton, A. Hersey, M. L. Nowotka, A. Patricia Bento, J.
Chambers, D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E.

Cibrian-Uhalte, M. Davies, N. Dedman, A. Karlsson, M. P.
Magarinos, J. P. Overington, G. Papadatos, I. Smit, A. R. Leach,
Nucleic Acids Res. 2017, 45, D945–D954.

[2] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte,
L. Han, J. He, S. He, B. A. Shoemaker, Nucleic Acids Res. 2015,
44, D1202–D1213.

[3] “Chemical Abstract Service,” can be found under https://www.
cas.org/about/cas-content 2019.

[4] L. Ruddigkeit, R. Van Deursen, L. C. Blum, J. L. Reymond, J.
Chem. Inf. Model. 2012, 52, 2864–2875.

[5] T. I. Oprea, J. Gottfries, J. Comb. Chem. 2001, 3, 157–166.
[6] A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, H.

Waldmann, J. Chem. Inf. Model. 2007, 47, 47–58.
[7] H. Hotelling, J. Educ. Psychol. 1933, 24, 417.
[8] J. L. Medina-Franco, G. M. Maggiora, M. A. Giulianotti, C. Pinilla,

R. A. Houghten, Chem. Biol. Drug Des. 2007, 70, 393–412.
[9] L. van der Maaten, G. Hinton, J. Mach. Learn. Res. 2008, 9,

2579–2605.
[10] L. McInnes, J. Healy, J. Melville, arXiv Prepr. arXiv1802.03426

2018.
[11] D. Probst, J.-L. Reymond, J. Cheminf. 2020, 12, 12.
[12] C. M. Bishop, M. Svensén, C. K. I. Williams, Neurocomputing

1998, 21, 203–224.
[13] N. Kireeva, I. I. Baskin, H. A. Gaspar, D. Horvath, G. Marcou, A.

Varnek, Mol. Inf. 2012, 31, 301–312.
[14] H. A. Gaspar, G. Marcou, D. Horvath, A. Arault, S. Lozano, P.

Vayer, A. Varnek, J. Chem. Inf. Model. 2013, 53, 3318–3325.
[15] I. Casciuc, D. Horvath, A. Gryniukova, K. A. Tolmachova, O. V.

Vasylchenko, P. Borysko, Y. S. Moroz, J. Bajorath, A. Varnek, Eur.
J. Med. Chem. 2019, 165, 258–272.

[16] D. M. Volochnyuk, S. V. Ryabukhin, Y. S. Moroz, O. Savych, A.
Chuprina, D. Horvath, Y. Zabolotna, A. Varnek, D. B. Judd, Drug
Discovery Today 2019, 24, 390–402.

[17] A. Lin, B. Beck, D. Horvath, G. Marcou, A. Varnek, J. Comput.-
Aided Mol. Des. 2019, DOI 10.1007/s10822-019-00215-x.

[18] I. Casciuc, Y. Zabolotna, D. Horvath, G. Marcou, J. Bajorath, A.
Varnek, J. Chem. Inf. Model. 2019, 59, 564–572.

[19] D. Horvath, G. Marcou, A. Varnek, Molecules 2019, 24, 2269.
[20] B. Sattarov, I. I. Baskin, D. Horvath, G. Marcou, E. J. Bjerrum, A.

Varnek, J. Chem. Inf. Model. 2019, 59, 1182–1196.
[21] P. Sidorov, H. Gaspar, G. Marcou, A. Varnek, D. Horvath, J.

Comput.-Aided Mol. Des. 2015, 29, 1087–1108.
[22] H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, A. Varnek, J.

Chem. Inf. Model. 2015, 55, 84–94.
[23] H. A. Gaspar, P. Sidorov, D. Horvath, G. Marcou, I. I. Baskin, A.

Varnek, ACS Symp. Ser., 2016, pp. 211–241.
[24] T. R. Gimadiev, T. I. Madzhidov, G. Marcou, A. Varnek, Bionano-

science 2016, 6, 464–472.
[25] P. Sidorov, B. Viira, E. Davioud-Charvet, U. Maran, G. Marcou, D.

Horvath, A. Varnek, J. Comput.-Aided Mol. Des. 2017, 31, 441–
451.

[26] D. Horvath, G. Marcou, A. Varnek, Mol. Inf. 2018, 37, 1700115.
[27] A. Lin, D. Horvath, V. Afonina, G. Marcou, J. L. Reymond, A.

Varnek, ChemMedChem 2018, 13, 540–554.
[28] A. Lin, D. Horvath, G. Marcou, B. Beck, A. Varnek, J. Comput.-

Aided Mol. Des. 2019, 33, 331–343.
[29] L. D. Davis, M. Mitchell, Comput. Eng. 1991, 1–6.
[30] P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff,

M. Genest, A. T. Hagler, Proteins Struct. Funct. Bioinf. 1988, 4,
31–47.

[31] F. Ruggiu, G. Marcou, A. Varnek, D. Horvath, Mol. Inf. 2010, 29,
855–868.

Full Paper www.molinf.com

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 2000009 (10 of 11) 2000009

https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/cc0000388
https://doi.org/10.1021/ci600338x
https://doi.org/10.1037/h0071325
https://doi.org/10.1111/j.1747-0285.2007.00579.x
https://doi.org/10.1016/S0925-2312(98)00043-5
https://doi.org/10.1016/S0925-2312(98)00043-5
https://doi.org/10.1002/minf.201100163
https://doi.org/10.1021/ci400423c
https://doi.org/10.1016/j.ejmech.2019.01.010
https://doi.org/10.1016/j.ejmech.2019.01.010
https://doi.org/10.1016/j.drudis.2018.10.016
https://doi.org/10.1016/j.drudis.2018.10.016
https://doi.org/10.1021/acs.jcim.8b00650
https://doi.org/10.3390/molecules24122269
https://doi.org/10.1021/acs.jcim.8b00751
https://doi.org/10.1007/s10822-015-9882-z
https://doi.org/10.1007/s10822-015-9882-z
https://doi.org/10.1021/ci500575y
https://doi.org/10.1021/ci500575y
https://doi.org/10.1007/s12668-016-0246-5
https://doi.org/10.1007/s12668-016-0246-5
https://doi.org/10.1007/s10822-017-0019-4
https://doi.org/10.1007/s10822-017-0019-4
https://doi.org/10.1002/minf.201700115
https://doi.org/10.1002/cmdc.201700561
https://doi.org/10.1007/s10822-019-00188-x
https://doi.org/10.1007/s10822-019-00188-x
https://doi.org/10.1002/minf.201000099
https://doi.org/10.1002/minf.201000099
www.molinf.com


[32] G. Marcou, V. P. Solov’ev, D. Horvath, A. Varnek, “ISIDA
Fragmentor – User Manual” can be found under http://
infochim.u-strasbg.fr/recherche/Download/ 2017.

[33] T. Kohonen, Proc. IEEE 1990, 78, 1464–1480.
[34] K. Pearson, Philos. Mag. 1901, 2, 559–572.
[35] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,

J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, in Eur.
Parallel Virtual Mach. Passing Interface Users’ Gr. Meet., Springer,
2010, pp. 97–104.

[36] X. Qiu, G. C. Fox, H. Yuan, S. Bae, 2008 Seventh Int. Conf. Grid
Coop. Comput., IEEE 2008, pp. 4–11.

[37] J. Y. Choi, S. H. Bae, X. Qiu, G. Fox, CCGrid 2010–10th IEEE/ACM
Int. Conf. Clust. Cloud, Grid Comput., IEEE Computer Society
2010, pp. 331–340.

[38] J. N. Franklin, Matrix Theory, Courier Corporation 2012.
[39] L. E. Givon, T. Unterthiner, N. B. Erichson, D. W. Chiang, E.

Larson, L. Pfister, S. Dieleman, G. R. Lee, S. van der Walt, T. M.
Moldovan, “scikit-cuda 0.5.2: a Python interface to GPU-
powered libraries.,” DOI 10.5281/zenodo. 40565can be found
under https://scikit-cuda.readthedocs.io/en/latest/index.html
2018.

[40] J. M. Joyce, Int. Encycl. Stat. Sci. 2011, 720–722.

Received: January 16, 2020
Accepted: April 10, 2020

Published online on April 29, 2020

Full Paper www.molinf.com

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 2000009 (11 of 11) 2000009

https://doi.org/10.1109/5.58325
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1007/978-3-642-04898-2_327
www.molinf.com

