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Abstract

To identify countries that have seasonal patterns similar to the time series of influenza sur-

veillance data in the United States and other countries, and to forecast the 2018–2019 sea-

sonal influenza outbreak in the U.S., we collected the surveillance data of 164 countries

using the FluNet database, search queries from Google Trends, and temperature from 2010

to 2018. Data for influenza-like illness (ILI) in the U.S. were collected from the Fluview data-

base. We identified the time lag between two time-series which were weekly surveillances

for ILI, total influenza (Total INF), influenza A (INF A), and influenza B (INF B) viruses

between two countries using cross-correlation analysis. In order to forecast ILI, Total INF,

INF A, and INF B of next season (after 26 weeks) in the U.S., we developed prediction mod-

els using linear regression, auto regressive integrated moving average, and an artificial neu-

ral network (ANN). As a result of cross-correlation analysis between the countries located in

northern and southern hemisphere, the seasonal influenza patterns in Australia and Chile

showed a high correlation with those of the U.S. 22 weeks and 28 weeks earlier, respec-

tively. The R2 score of ANN models for ILI for validation set in 2015–2019 was 0.758 despite

how hard it is to forecast 26 weeks ahead. Our prediction models forecast that the ILI for the

U.S. in 2018–2019 may be later and less severe than those in 2017–2018, judging from the

influenza activity for Australia and Chile in 2018. It allows to estimate peak timing, peak

intensity, and type-specific influenza activities for next season at 40th week. The correlation

between seasonal influenza patterns in the U.S., Australia, and Chile could be used to fore-

cast the next seasonal influenza pattern, which can help to determine influenza vaccine

strategy approximately six months ahead in the U.S.

Introduction

Seasonal influenza viruses are a significant public-health problem that causes a great many

deaths worldwide every year [1]. The annual recurrence of seasonal epidemics is attributed to

the continued evolution of seasonal influenza viruses, which enables them to escape the
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immunity that is induced by prior infections or vaccinations, and to the ability of those viruses

to be transmitted efficiently human to human via respiratory droplets, direct contact, and

fomites [1]. Currently, the human influenza A subtypes H1N1 and H3N2, as well as influenza

B viruses, are the most commonly encountered variants worldwide [2]. Vaccination for sea-

sonal influenza is the primary tool for reducing its morbidity and death rate [3].

Early prediction of the international spread of viruses during a potential pandemic can

guide public-health actions globally [4]. Several previous studies have focused on predicting

the incidence rate, peak time, or onset time of influenza-like illness (ILI) using data from

online volunteer participants, ILI-related queries on Google, Wikipedia logs, or a combination

of several data sources, including temperature and humidity [5–7]. However, the previous

studies have focused on short-term forecasts for up to four weeks [5–7], and few studies have

predicted seasonal influenza epidemics by using influenza information from neighboring

regions [8,9].

Because influenza epidemics are acute, the long-term circulation of influenza viruses in the

human population is driven by the global movement of viruses [1]. The extent to which viruses

move internationally versus persisting locally during different epidemics has been of interest

since at least the 1800s [1]. High-quality influenza surveillance systems are needed to enable

countries to better understand influenza epidemiology, including disease incidence and sever-

ity, and help them implement appropriate prevention strategies [10].

The time horizon for which predictions are generally offered is in the order of 2 to 4 weeks,

which is generally too short for action [11]. Because of the time-consuming nature of vaccine

production, vaccine strategy needs to be prepared at least six months in advance of the upcom-

ing flu season [12]. The optimal strategy for any country is to use the most recently available

vaccine formulation with respect to local peak influenza timing, as long as the vaccine is avail-

able at least two months prior to the peak (early October for the Northern Hemisphere formu-

lation) [13].

Previous studies forecasting the next seasonal influenza were based on the previous influ-

enza patterns using time-series prediction models, such as the autoregressive integrated mov-

ing average (ARIMA) model or a simple humidity-forced susceptible–infectious–recovered–

susceptible mathematical model [14,15]. Although the influenza season occurs annually,

unique characteristics particular to each influenza season make forecasting difficult. Each year,

the geographical location, rates of increase and decrease, duration, and size of each outbreak

vary considerably [16]. Statistical models using historical data may accurately describe the typ-

ical pattern for a particular year, but they do not predict departures from the norm [16]. There-

fore, it is important to find factors related to the next seasonal influenza pattern and to make a

long-term prediction model.

To identify countries with seasonal patterns and influenza outbreaks that are similar to but

precede those of the United States, we used FluNet surveillance data to investigate cross–corre-

lation between the U.S. and other countries, in terms of time-series of the ILI, total influenza

(Total INF), influenza A (INF A), and influenza B (INF B) viruses. Our hypothesis was that

similar seasonal patterns of influenza outbreaks between two countries over the years are asso-

ciated with influenza activity in the following year. Knowing about such an association may

help clinicians to predict the pattern of influenza incidence in the next season. The prediction

model allows to estimate peak timing, peak intensity, and type-specific influenza activities for

next season at 40th week.

Forecasting type-specific influenza after 26 weeks in the U.S.
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Methods

Data collection

Data for ILI in the U.S. were collected from the Fluview database of the Centers for Disease

Control and Prevention in the U.S. The agency’s website (https://gis.cdc.gov/grasp/fluview/

fluportaldashboard.html) provides both new and historical data. The CDC’s ILI is freely dis-

tributed and available through ILInet [17]. From this website, we can obtain the CDC’s dataset

on weighted ILI (%).

Influenza surveillance data were collected from the FluNet database of the WHO Global

Influenza Surveillance Network (URL: http://apps.who.int/flumart/Default?ReportNo=12) [3,

18]. These data are uploaded to the FluNet database every week by the countries in the network

[3]. The FluNet database contains the following variables, reported by 164 countries: influenza

transmission zone, number of specimens, number of INF A and INF B detected by subtype,

and number of influenza-positive viruses. We collected the surveillance data of the 164 coun-

tries from the 40th week in 2010 to the 40th week in 2018. We set the starting point for our

research data in 2010, because influenza season during 2009 was an atypical season, with the

introduction of a novel pandemic strain (INF A H1N1 pdm09) [19]. Missing data were

replaced by a zero because some countries conducted surveillance only during weeks with

high influenza activity. Total INF, INF A, and INF B were defined as the number of influenza

subtypes detected among processed specimens.

Google Trends (GT) (https://trends.google.com/trends/) is the principal tool used to study

the trends and patterns of Google search engine queries [20]. Google Trends provides search

activity for each country and specific time periods. We included the search topics, “influenza”,

“influenza A virus”, and “influenza B virus” in the U.S., Australia, and Chile from October

2010 to October 2018. The search queries data from Google Trends were linearly interpolated

from monthly data to weekly data points.

The daily temperature data in the U.S. was obtained from the National Oceanic and Atmo-

spheric Administration (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/). We included

weekly temperature data and the average values for all stations in the U.S. during a week. The

overall flow chart for this study is presented in Fig 1.

Statistical analysis

In two time periods, cross-correlations were analyzed using Pearson’s correlation, with a time

lag range of ± 30 weeks, with Bonferroni’s correction. Cross-correlation allows the time lag

between two time series to be identified [21]. If the blue waveform of the reference country

correlates with the green waveform of country A with a time lag of -2 weeks, the peak or onset

of the reference country can be identified as occurring 2 weeks later than that of country A

(Fig 2). Time-series for ILI, Total INF, INF A, and INF B in the U.S. as reference were analyzed

with the Total INF, Total INF, INF A, and INF B, respectively, in the comparison country

using cross-correlation. For example, ILI in the U.S. was compared to Total INF in each com-

parison country. Moreover, cross-correlation analysis was also performed on the GT and tem-

perature data. We selected countries with a time lag between -20 and -30 weeks and a

correlation coefficient of 0.7 or more in Table 1.

Linear regression analysis (LR) was used to evaluate the relationship between influenza sur-

veillances in the U.S. after 26 weeks and those in selected countries, and GT and temperature

from the 40th week in 2010 to the 40th week in 2018. LR 1 used influenza data from the U.S.

after 26 weeks as dependent variable and previous seasonal data from the U.S. as independent

variable. LR 2 used influenza activities from selected countries, and LR 3 used GT with the
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keyword “influenza A virus” in selected countries. LR 4 used temperature in the U.S. The

input variables in LR 5 were those of LR models with the adjusted R2 values higher than the LR

1, and these input variables were used to forecast seasonal influenza after 26 weeks in the U.S.

Fig 1. The flow chart for this study.

https://doi.org/10.1371/journal.pone.0220423.g001
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All statistical analyses were performed using Python 3.6.2 (Python Software Foundation),

and p< 0.05 was considered statistically significant.

Prediction model

Forecasting seasonal influenza after 26 weeks was defined as forecasting influenza pattern after

six months (26 weeks) with data available only at the current point (Fig 3). Four seasons for

2015–2019 were selected to validate the prediction models for seasonal influenza patterns. This

is done because the training set accounted for 50% of eight seasons in the whole dataset for

2010–2018. For example, the prediction model for the seasonal influenza pattern during 2015–

2016 used the influenza surveillance data from the 40th week in 2010 to the 40th week in 2015

as the training set (Fig 4).

The prediction model is a single-output model for seasonal influenza patterns after 26

weeks using the four historical values that indicate a month (4 weeks): we predict Yt+26 based

on Xt, Xt–1, Xt–2, and Xt–3: Y, X, and t are the predicted value, input variable, and week, respec-

tively [22].

In order to forecast ILI, Total INF, INF A, and INF B of next season (after 26 weeks) in the

U.S., we developed prediction models using an artificial neural network (ANN), LR, and

ARIMA including exogenous variables (ARIMAX). ANN is an artificial intelligence technol-

ogy inspired by the architecture of biological neurons, such as that in the human brain [23].

The input layer receives an input signal, which moves to the next layer as a modified version of

the input signal. It passes through several layers composed of multiple transformations, and

last passes through the output layer as an output signal [24,25]. We implemented ANN using

the python library Keras (version 2.2.0) with TensorFlow (version 1.8.0) backend. The scikit–

learn library (https://scikit-learn.org/stable/) was used for data management and preprocess-

ing. In this study, we used a three-layer ANN network with a 10% dropout rate for the first

Fig 2. An example of cross-correlation analysis.

https://doi.org/10.1371/journal.pone.0220423.g002
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layer for the overfitting problem. The models were optimized using the Adam optimizer with

a loss function of mean squared error. Neuron activation functions were rectified linear units

for the second layer. We selected 100 epochs and one batch size for the ANN model.

Prediction models of LR were calculated to forecast influenza surveillance after 26 weeks in

the U.S. per each year. The influenza time series is characterized by an autocorrelation, so we

also employed the ARIMAX. The autocorrelation function and partial autocorrelation func-

tion is used to determine the autoregressive (AR) and moving average (MR) order. An

ARIMA model is notated as ARIMA (p, d, q), where p indicates the AR order, d the differenc-

ing order and q the MA order [26]. For a complete description of the ARIMA analysis, see

[27]. Prediction models of LR and ARIMAX were used the same input variables for ANN in S1

and S2 Tables, respectively.

Validation for the prediction model

The coefficient of determination, R2, which corresponds to the percentage of the variance of

the observed time-series that is explained by the model, was calculated. Root-mean-square

error (RMSE) was calculated using real values and predicted values for influenza activities in

the validation set from the 41th week in 2015 to 14th week in 2019. The onset of influenza

weeks for ILI is defined as the weighted percentage that exceeds the national baseline [28]. The

peak amplitude and the peak timing are defined as the maximum value and that week in sea-

sonal influenza week.

Table 1. Maximum correlation coefficient and time lag with time series of influenza surveillance data in the United States and input variables.

ILI Total INF INF A INF B

Country Corr TL Country Corr TL Country Corr TL Country Corr TL

Canada 0.891 1 Australia� 0.892 -22 Australia� 0.896 -22 Norway 0.884 0

Australia 0.861� -22 Canada 0.885 1 Canada 0.830 0 Sweden 0.864 1

Germany 0.790 4 U.K 0.826 0 Chile� 0.803 -28 Croatia 0.856 -2

Chile 0.786� -28 Norway 0.804 2 U.K 0.747 0 U.K 0.855 -2

Norway 0.778 2 Denmark 0.796 4 Kuwait 0.701 -9 Canada 0.851 0

Sweden 0.762 3 Chile� 0.778 -29 Myanmar 0.677 -23 Denmark 0.848 1

Iceland 0.756 3 Spain 0.775 -2 Bangladesh 0.657 -30 Switzerland 0.841 -4

Japan 0.741 -1 Iceland 0.770 2 Luxembourg 0.655 4 Ireland 0.840 -3

Croatia 0.731 1 Sweden 0.767 3 Laos 0.651 -19 Italy 0.830 -4

U.K 0.718 1 Malta 0.766 -2 Oman 0.647 -11 Australia� 0.792 -25

GT_INF_U.S. 0.880 -1 GT_INF_U.S. 0.902 -1 GT_INF_U.S. 0.891 0 GT_INF_U.S. 0.834 -4

GT_INF A_U.S. 0.861 -2 GT_INF A_U.S. 0.934 -1 GT_INF A_U.S. 0.929 -1 GT_INF A_U.S. 0.864 -4

GT_INF B_U.S. 0.797 1 GT_INF B_U.S. 0.907 1 GT_INF B_U.S. 0.874 2 GT_INF B_U.S. 0.947 -2

GT_INF_Australia 0.596 -27 GT_INF_Australia 0.598 -26 GT_INF_Australia 0.568 -25 GT_INF_Australia 0.643 -29

GT_INF A_Australia 0.808� -24 GT_INF A_Australia� 0.917 -24 GT_INF A_Australia� 0.899 -23 GT_INF A_Australia� 0.911 -27

GT_INF B_Australia 0.578 -23 GT_INF B_Australia 0.653 -24 GT_INF B_Australia 0.600 -23 GT_INF B_Australia� 0.710 -26

GT_INF_Chile 0.572 11 GT_INF_Chile 0.650 8 GT_INF_Chile 0.610 9 GT_INF_Chile 0.700 4

GT_INF A_Chile 0.800� -30 GT_INF A_Chile� 0.767 -30 GT_INF A_Chile� 0.800 -30 GT_INF A_Chile 0.507 -30

GT_INF B_Chile 0.593 -23 GT_INF B_Chile 0.603 -24 GT_INF B_Chile 0.567 -23 GT_INF B_Chile 0.579 -26

Temp_U.S. 0.764� -27 Temp_U.S. 0.568 -28 Temp_U.S. 0.560 -27 Temp_U.S. 0.510 -30

Corr, maximum correlation coefficient; GT, Google Trends; INF, Influenza; ILI, Influenza-like illness; Temp, temperature; TL, Time lag; U.K., United Kingdom of

Great Britain and Northern Ireland; U.S., United States.

GT_INF_U.S. is GT with the keyword “influenza” in the U.S.

� Countries with a correlation coefficient of 0.7 or more and time lag between -20 and -30 weeks from 2010 to 2018.

https://doi.org/10.1371/journal.pone.0220423.t001
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Results

Cross–correlation analysis

Table 1 shows the maximum correlation coefficient and time lag between the seasonal influ-

enza outbreaks in the U.S. and the input variables. The correlation coefficients were calculated

by cross-correlation between ILI in the U.S. and the number of positive influenza viruses

worldwide. In Table 1, Australia had the highest correlation coefficient of 0.896 (p = 1.24

10−140) with a -22 week time lag for the INF A. The -22 week time lag meant that the country’s

seasonal influenza outbreak 22 weeks earlier was highly correlated with the seasonal influenza

outbreak in the U.S.

In the analysis of the ILI and Total INF, the correlation coefficients of Australia were 0.861

with a -22 week lag and 0.892 with a -22 week lag, respectively. Chile had the third highest cor-

relation coefficient of 0.803 (p = 6.82 10−89) with a -28 week time lag for the INF A. However,

the correlation coefficients of Australia for the INF B were 0.792 with a -25 week lag, which is

much lower than that for the INF A. Moreover, the correlations for the INF B in such Euro-

pean countries as Norway, Sweden, Croatia, and the UK were higher than those of Australia in

the Southern Hemisphere. We selected Australia and Chile to forecast ILI, Total INF and INF

A after 26 weeks in the U.S., and Australia was selected for INF B.

Although the correlation coefficients for GT with the keywords “influenza”, “influenza A

virus”, and “influenza B virus in the U.S. showed high values, time lags for those ranged from

-4 to 2 weeks, which were not eligible variables to forecast influenza after 26 weeks. However,

Fig 3. The explanation for forecasting seasonal influenza after 26 weeks.

https://doi.org/10.1371/journal.pone.0220423.g003
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GT with the keyword “influenza A virus” in Australia and Chile showed high correlation coef-

ficients with -23 and -30 week time lags, respectively. The correlation coefficient for the ILI of

temperature in the U.S. was more than 0.7 with a -27 week time lag.

Fig 4. The explanation for the training set at the 40th week and output for forecasting seasonal influenza after 26 weeks.

https://doi.org/10.1371/journal.pone.0220423.g004

Fig 5. The surveillance data for influenza A (a) and B (b) viruses in the U.S. and Australia; the values for Australia were shifted forward 22 weeks in 2010–2018.

The surveillance data for influenza A (c) viruses in the U.S. and Chile; the values for Australia were shifted forward 28 weeks. The blank part of the graph, the

gap between INF A and the sum of the H1N1 and H3 viruses, is the number of influenza viruses (not subtyped).

https://doi.org/10.1371/journal.pone.0220423.g005
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Fig 5A and 5B, showing the INF A and INF B in the U.S. and Australia, shows that the val-

ues for Australia were shifted forward 22 weeks from the 40th week in 2010 to the 40th week in

2018. Interestingly, the waveforms for the U.S. and Australia are similar in peak timing and

amplitude. Fig 5C, showing the INF A in the U.S. and Chile, shows that the values for Chile

was shifted forward 28 weeks, the waveforms also similar. Therefore, influenza surveillance

data in Australia and Chile could be valuable for predicting an influenza outbreak after 26

weeks in the U.S.

Linear regression analysis

Table 2 shows results of LR for influenza after 26 weeks (ILI, Total INF, INF A, and INF B) in

the U.S. using influenza activities for the previous season in the U.S, influenza activities in Aus-

tralia and Chile, GT with the keyword “influenza A virus” in Australia and Chile, and tempera-

ture in the U.S. from 2010 to 2018. The results of LR 2 demonstrated that the adjusted R2

values for influenza surveillance at present in the selected countries were higher than those of

the previous season in the U.S. in LR 1 for ILI, Total INF, INF A, and INF B. In LR 3, the

adjusted R2 values for GT with the keyword “influenza A virus” in Australia and Chile were

also higher than those of LR1 for ILI, Total INF, INF A, and INF B. The adjusted R2 values for

temperature in the U.S. were only higher than that of LR1 for ILI. LR 5 shows the results for

the final selection of input variables to forecast influenza activities after 26 weeks in the U.S.

Prediction models

Table 3 shows the performance of the prediction models for seasonal influenza outbreaks in

the U.S. after 26 weeks using previous season data, LR, ARIMAX, and ANN. The R2 scores of

LR, ARIMAX, and ANN for ILI, Total INF, INF A, and INF B showed better performance

than those of the previous season. The R2 score for the prediction model of ANN for ILI was

0.758. The R2 score of ARIMAX for Total INF was 0.806, which was the highest.

Fig 6 shows the prediction of ANN for ILI, Total INF, INF A, and INF B from the 41st week

in 2015 to the 14th week in 2019 in the U.S. using temperature in the U.S., surveillance data,

and GT in Australia and Chile. Moreover, the forecast prediction by ARIMAX for type-specific

influenza activities in the U.S. (blue line) and the 95% confidence interval (light blue bar) indi-

cate the forecast uncertainty, as shown in Fig 7. The pattern of peak timing and amplitude of

influenza activity for the 2015–2016 season was different from the 2012–2015 season, but our

models forecasted later and less severe influenza activity. Moreover, the predicted INF B activ-

ity for the 2018–2019 season was a better match than the increasing pattern for the 2013–2018

seasons.

Discussion

The aim of this study was to identify countries with seasonal patterns and influenza outbreaks

that were similar to but preceded those of the United States. We used influenza activities in

Australia and Chile, GT with the keyword “influenza A virus” in Australia and Chile, and tem-

perature in the U.S. to forecast for seasonal influenza after 26 weeks in the U.S. The seasonal

influenza patterns in Australia before 22 weeks and Chile before 28 weeks showed a high corre-

lation with those of the U.S. In Table 2, influenza surveillance and GT in Australia and Chile at

present were more useful than previous seasonal influenza in the U.S. for forecasting next sea-

sonal influenza in the U.S. ANN models showed better performance for forecasting influenza

activities after 26 weeks in the U.S than previous season data. The LR and ARIMAX models

also showed high performance which can be interpretable. Our prediction models forecast

that the ILI for the U.S. in 2018–2019 may be later and less severe than that in 2017–2018.
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The seasonal influenza patterns in the U.S. were highly correlated with those in Canada,

Australia, Chile, and the United Kingdom. The correlation coefficients for these countries

were higher than those for their neighboring countries or for other countries in the Northern

Hemisphere, for example, Mexico (0.412 for Total INF), Russia (0.329), Cuba (0.121), Spain

(0.775), and Japan (0.600), which are not shown in Table 1. Moreover, the period of the pri-

mary influenza peak in the Southern Hemisphere countries was July and August [13], so the

absolute values of the time lag for the U.S. in the Southern Hemisphere countries were more

than 20 weeks in Table 1. However, the correlation coefficients for Argentina, Australia, Chile,

and Uruguay with similar latitudes were different, at 0.516, 0.892, 0.778, and 0.303 for Total

INF in the U.S., respectively, which are not shown in Table 1. For these reasons, the correla-

tions for seasonal influenza between countries could be caused by characteristics of influenza,

Table 2. Linear regression analysis for influenza activities of previous season in the U.S. and input variables from the 40th week in 2010 to the 40th week in 2018.

ILI for the U.S. after 26 week

LR 1

Beta [P-value]

LR 2

Beta [P-value]

LR 3

Beta [P-value]

LR 4

Beta [P-value]

LR 5

Beta [P-value]

ILI—U.S. (before 26 week) 0.857 [<0.001] - - - -

Total INF—Australia (present) - 0.005 [<0.001] - - 0.001 [0.485]

Total INF—Chile (present) - 0.009 [<0.001] - - 0.007 [<0.001]

GT INF A—Australia (present) - - 0.059 [<0.001] - 0.043 [<0.001]

GT INF A—Chile (present) - - 0.023 [<0.001] - -0.009 [<0.001]

Temp—U.S. (present) - - - 0.111 [<0.001] 0.054 [<0.001]

Adj. R-squared 0.537 0.761 0.720 0.557 0.865

Total INF for the U.S. after 26 week

ILI—U.S. (before 26 week) 1.076 [<0.001] - - - -

Total INF—Australia (present) - 18.4 [<0.001] - - -2.610 [0.012]

Total INF—Chile (present) - 23.6 [<0.001] - - 26.8 [<0.001]

GT INF A—Australia (present) - - 246.7 [<0.001] - 250.0 [<0.001]

GT INF A—Chile (present) - - 49.8 [<0.001] - -24.9 [0.001]

Temp—U.S. (present) - - - 277.9 [<0.001] -

Adj. R-squared 0.475 0.729 0.839 0.286 0.887

INF A for the U.S. after 26 week

ILI—U.S. (before 26 week) 0.900 [<0.001] - - - -

Total INF—Australia (present) - 16.3 [<0.001] - - -3.415 [0.006]

Total INF—Chile (present) - 25.3 [<0.001] - - 24.8 [<0.001]

GT INF A—Australia (present) - - 169.6 [<0.001] - 182.7 [<0.001]

GT INF A—Chile (present) - - 56.2 [<0.001] - -7.491 [0.261]

Temp—U.S. (present) - - - 219.9 [<0.001] -

Adj. R-squared 0.387 0.690 0.769 0.300 0.832

INF B for the U.S. after 26 week

ILI—U.S. (before 26 week) 1.344 [<0.001] - - - -

Total INF—Australia (present) - 24.8 [<0.001] - - 9.636 [<0.001]

GT INF A—Australia (present) - - 74.9 [<0.001] - 54.4 [<0.001]

Temp—U.S. (present) - - - 58.0 [<0.001] -

Adj. R-squared 0.552 0.627 0.749 0.143 0.787

Beta, Beta coefficient; CI, Confidence Interval; GT, Google Trends; INF, Influenza; ILI, Influenza-like illness; LR, Linear regression; Temp, temperature; U.S., United

States of America.

GT INF A—Australia is GT with the keyword of “influenza A virus” in Australia.

https://doi.org/10.1371/journal.pone.0220423.t002
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Economic Status, Educational Status, or Access to Health Care as well as by Season environ-

mental factors in the Northern Hemisphere [3, 29]. However, this study did not prove the

Table 3. Performance of prediction models for seasonal influenza outbreaks after 26 weeks in the United States from 2015 to 2019.

R2 RMSE (forecast values) RMSE (Peak timing) RMSE (Peak amplitude)

Influenza-like illness Previous season 0.487 1.1 5.5 2.2

LR 0.720 0.8 2.5 1.5

ARIMAX 0.714 0.8 2.9 1.6

ANN 0.758� 0.7� 1.8� 0.8�

Total Influenza viruses Previous season 0.346 4802.8 5.8 6657.8

LR 0.792 2707.6 1.7 5574.5�

ARIMAX 0.806� 2618.2� 1.7 6726.4

ANN 0.738 3039.6 1.7� 7544.3

Influenza A virus Previous season 0.289 4190.9 5.8 4901.0

LR 0.777 2347.8 1.9 4694.7

ARIMAX 0.792 2265.2 1.6 5355.9

ANN 0.798� 2231.9� 1.2� 4545.3�

Influenza B virus Previous season -0.238 1880.8 3.7 5142.3

LR 0.427� 1279.4� 3.0 1453.6�

ARIMAX 0.352 1360.4 2.7 3163.0

ANN 0.403 1306.3 2.4� 1512.0

R2, Coefficient of determination; RMSE, Root-mean-square error; LR, Linear regression; ARIMAX, Auto Regressive Integrated Moving Average; ANN, artificial neural

network.

� Best value among previous season, LR, ARIMAX, and ANN.

Units for the RMSE (forecast values) are percentage of visits for influenza-like illness and number of total influenza, influenza A, and influenza B viruses.

Units for the RMSE (Peak timing) are week.

Units for the RMSE (peak amplitude) are percentage of visits for influenza-like illness and number of total influenza, influenza A, and influenza B viruses.

https://doi.org/10.1371/journal.pone.0220423.t003

Fig 6. The prediction of ANN for ILI (a) and Total influenza (b), influenza A and influenza B viruses (c) after 26 weeks from 2015 to 2019 in the U.S.

https://doi.org/10.1371/journal.pone.0220423.g006
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causality of correlations for seasonal influenza between countries. Although we do not know

the reasons, the patterns for seasonal influenza in the U.S., Australia, and Chile were similar,

and influenza surveillance in Australia and Chile can be used to predict seasonal influenza out-

breaks after 26 week in the U.S.

A study of Bedford et al. demonstrated that the less-frequent global movement of INF A/

H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection,

and smaller, less-frequent epidemics than for A/H3N2 viruses [30]. Their study analyzed the

correlation of peak timing for seasonal influenza between countries, and gave a time-series

graph for influenza surveillance from 2000 to 2012 in the U.S. and Australia [30]. The time-

series of virological characterizations for A/H3N2 in the U.S. and Australia were consistent

with the time-series graph in our Fig 5A. Bedford et al. suggested that differences in ages of

infection could explain patterns of global circulation across a variety of human viruses [30].

Viboud et al. analyzed correlations for influenza epidemics from 1972 to 1997 in the U.S.,

France, and Australia [31]. In their study, France and the U.S. had a high correlation for influ-

enza epidemics, but there was no significant correlation between the U.S. and Australia. In the

scenario in which the influenza season in Australia was systematically six months in advance

of that in the Northern Hemisphere, the median time lag between the peaks in Australia and

in the United States was 27 weeks (range 14–39) [31]. Our study analyzed correlations for INF

A and INF B, but the study of Viboud et al. did not [31].

The previous studies for prediction models for seasonal influenza have focused on social

networking service data, search engine query data, and environmental factors [32–34]. These

predictors are correlated with present influenza cases with a relatively short-term gap, of about

one to four weeks. However, the influenza surveillance data in Australia had a time gap of 22

weeks from those in the U.S., which can help to establish a data-driven influenza vaccine strat-

egy about six months ahead.

Fig 7. The prediction and 95% confidence interval of Auto Regressive Integrated Moving Average for ILI (a) and Total influenza (b), influenza A (c) and

influenza B viruses (d) from 2015 to 2019 in the U.S.

https://doi.org/10.1371/journal.pone.0220423.g007
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Kandula et al. analyzed whether forecasts targeted to predict influenza by type and subtype

during 2003–2015 in the U.S. were more or less accurate than forecasts targeted to predict

Total INF using four compartmental models [35]. They found that forecasts separated by type/

subtype generally produced more accurate predictions and, when summed, produced more

accurate predictions of Total INF [35]. Our prediction models for type-specific influenza is

valuable as well as those for ILI, which could provide an important, richer picture of influenza

activity.

To our best knowledge, this is the first study to use influenza surveillance in Australia and

Chile for predicting influenza cases after 26 weeks in the U.S. However, our study has several

limitations. For the ILI study, we could not use ILI data in other countries, instead had to use

data for Total INF, because collecting ILI data separately for the 164 countries was difficult.

There were not enough data on other potential covariates to show relationships between influ-

enza outbreaks in Australia, Chile, and the U.S., such as the standard of the medical facilities,

economic level, and medical records of the influenza virus. Furthermore, we included only

data from laboratory-confirmed cases, which may underestimate the true incidence of influ-

enza in the population [36]. Further research to explain underlying mechanisms for the rela-

tionship of influenza activities between these countries is warranted.

Conclusions

Our study forecasts the 2018–2019 seasonal influenza after 26 weeks in the U.S. using the 2018

seasonal influenza in Australia and Chile. The correlation between the seasonal influenza pat-

terns in the U.S., Australia, and Chile could be used to forecast the next seasonal influenza pat-

tern, which can help to determine influenza vaccine strategy approximately six months ahead

in the U.S. Our prediction model allows to estimate peak timing, peak intensity, and type-spe-

cific influenza activities for next season at 40th week.

Supporting information

S1 Table. Linear regression models for influenza surveillance after 26 weeks in the U.S.

(DOCX)

S2 Table. Auto regressive integrated moving average including exogenous variables for

influenza surveillance after 26 weeks in the U.S.

(DOCX)

Acknowledgments

We acknowledge the National Influenza Centers (NICs) of the World Health Organization’s

Global Influenza Surveillance and Response System (GISRS).

Author Contributions

Conceptualization: Soo Beom Choi, Insung Ahn.

Data curation: Soo Beom Choi, Juhyeon Kim.

Formal analysis: Soo Beom Choi, Insung Ahn.

Methodology: Soo Beom Choi, Juhyeon Kim.

Project administration: Insung Ahn.

Supervision: Insung Ahn.

Forecasting type-specific influenza after 26 weeks in the U.S.

PLOS ONE | https://doi.org/10.1371/journal.pone.0220423 November 25, 2019 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220423.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220423.s002
https://doi.org/10.1371/journal.pone.0220423


Validation: Soo Beom Choi.

Visualization: Soo Beom Choi.

Writing – original draft: Soo Beom Choi.

Writing – review & editing: Soo Beom Choi, Juhyeon Kim, Insung Ahn.

References
1. Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol 2018; 16:47–

60. https://doi.org/10.1038/nrmicro.2017.118 PMID: 29081496

2. Xu C, Chan KH, Tsang TK, Fang VJ, Fung RO, Ip DK, et al. Comparative Epidemiology of Influenza B

Yamagata–and Victoria–Lineage Viruses in Households. Am J Epidemiol 2015; 182:705–13. https://

doi.org/10.1093/aje/kwv110 PMID: 26400854

3. Newman LP, Bhat N, Fleming JA, Neuzil KM. Global influenza seasonality to inform country–level vac-

cine programs: An analysis of WHO FluNet influenza surveillance data between 2011 and 2016. PLoS

One 2018; 13:e0193263. https://doi.org/10.1371/journal.pone.0193263 PMID: 29466459

4. Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human popula-

tions: a scoping review. PLoS One 2014; 9:e94130. https://doi.org/10.1371/journal.pone.0094130

PMID: 24714027

5. Cho S, Sohn CH, Jo MW, Shin SY, Lee JH, Ryoo SM, et al. Correlation between national influenza sur-

veillance data and google trends in South Korea. PLoS One 2013; 8:e81422. https://doi.org/10.1371/

journal.pone.0081422 PMID: 24339927
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